CHAPTER 5: DISTRIBUTED PROCESS SCHEDULING

Chapter outline

• Three process models:
 – precedence
 – communication
 – disjoint
• System performance model that illustrates the relationship among
 – algorithm, scheduling, and architecture
• Scheduling:
 – Static scheduling: precedence model, communication model
 – Dynamic scheduling: load sharing, load balancing
 – disjoint process model
 – interacting process model
• Implementation:
 – remote service and execution
 – process migration
• Real-time scheduling and synchronization
 – basic RTS
 – Priority Inversion
 – Blocking
Process models

(a) Precedence process model
(b) Communication process model
(c) Disjoint process model

Note: Dashed lines represent processor boundaries

• Precedence Process Model
 – Precedence relationship represented best by DAG
 – Suitable for Fork/Join or CoBegin/CoEnd code
 – Communication costs incurred if arc crosses processor boundary
 – Goal: Minimize makespan

• Interacting Process Model
 – Persistent processes that exchange messages asynchronously
 – Represented by graph showing processes and communication paths
 – Communication costs incurred if message crosses processor boundary
 – Goal: Minimize computation and communication costs

• Disjoint Process Model
 – Processes can run independently
 – Processes arrive independently
 – Queuing time and service time
 – Goal: Minimize turnaround time/processor idle time
 – If process migration, get load sharing/balancing at migration cost
A system performance model

Speed-up factor

\[S = F(Algorithm, System, Schedule) \]

\[S = \frac{OSP T}{CPT} = \frac{OSP T}{OCPT_{ideal}} \times \frac{OCPT_{ideal}}{CPT} = S_i \times S_d \]

- \(S = \) actual speedup on an \(n \) processor system
- \(OSP T = \) Optimal Sequential Processing Time
- \(CPT = \) Actual Concurrent Processing Time
- \(OCPT_{ideal} = \) Optimal Concurrent Processing Time
- \(S_i = \) ideal speedup
- \(S_d = \) degradation due to actual implementation
Ideal speed-up

\[S_i = \frac{RC}{RP} \times n \]

\[RP = \frac{\sum_{i=1}^{m} P_i}{OSPT} \]

\[RC = \frac{\sum_{i=1}^{m} P_i}{OCPT_{ideal} \times n} \]

- \(S_i \) = ideal speedup on an \(n \) processor system
- \(RC \) = Relative Concurrency (processor utilization) \(\leq 1 \)
- \(RP \) = Relative Processing requirement \(\geq 1 \)
- \(n \) = number of processors
- \(m \) = number of tasks
- \(P_i \) = Computation time of task \(i \)
System degradation

\[S_d = \frac{1}{1 + \rho} \]

\[\rho = \frac{CPT - OCPT_{ideal}}{OCPT_{ideal}} \]

- \(S_d = \) System degradation
- \(\rho = \) loss of parallelism on a real machine

Finally,

\[S = \frac{RC'}{RP} \times \frac{1}{1 + \rho} \times n \]
Amdahl’s Law

Speed-up is limited intrinsically by parallelizability of program. If P is the parallelizable fraction of a program (in running time), and that part can be sped up a factor of S_p, then

$$S_{tot} = \frac{1}{(1 - P) + P/S}$$

Even if P can be sped up arbitrarily fast, depending only on the number N of processors used, the maximum speedup is still limited by

$$S_{tot} = \frac{1}{(1 - P) + P/N}$$
Queuing System Comparisons

(a) M/M/1 isolated workstation model

(b) M/M/2 processor pool model

(c) Migration workstation model

$$\lambda \quad \mu$$

$$\lambda \quad \gamma \quad \mu$$

System Load

Turnaround Time

M/M/1 single processor workstation model

M/M/2 processor pool model
Static scheduling - Precedence process model

(a) Precedence process model

(b) Communication system model

(a) LS

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Makespan = 16

(b) ELS

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/6</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/5</td>
<td>2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>F/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/4</td>
<td>10</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Makespan = 28

(c) ETF

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/6</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>E/6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/5</td>
<td>2</td>
<td>G/4</td>
<td></td>
</tr>
<tr>
<td>F/4</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>C/4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Makespan = 18

Note that List Scheduling has a lower makespan because it does not charge for communication costs at all (it represents a best case).
Also note that LS, Extended LS, and Earliest Task First are heuristics, and may not give an optimal schedule.
Communication process model

<table>
<thead>
<tr>
<th>Process</th>
<th>Cost on A</th>
<th>Cost on B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>infinity</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>infinity</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Computation cost

(b) Communication cost

For min-cut algorithms, see
http://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm, and

Dashed line = cost to run task on other processor
(Task T in same set as A runs on A, so total cost must include cost of running T on A.)

Cluster tasks by Communication Threshold \(C \)
Limit # tasks (or computation cost) on processor by Task Threshold \(X \)

Objective: minimize cutset cost, representing aggregate cost (communication plus processing).
May lead to significant imbalance in processor loads.
Dynamic scheduling

Load sharing and balancing

Sender initiated algorithms (Push)

- **transfer policy**: When does a node become the sender?
- **selection policy**: How does the sender choose a process for transfer?
- **location policy**: Which node should be the target receiver?
 - probe limit issues

Sender initiated algorithms (Push)

Receiver initiated algorithms (Pull)

- **transfer policy**: When does a node become a receiver?
- **location policy**: How does the receiver choose a heavily loaded node? probing
- **selection policy**: How does the source choose a process for transfer? requires preemption (processes have already started)
Hybrid algorithms and their performance

- **Push**: Best at low to moderate loads, unstable at high loads
- **Pull**: Best at higher loads, never unstable
- **Hybrid**: Sense system load, select algorithm accordingly
- **Brokered**: Server to hold load info, schedule jobs
Remote process implementation

Remote service
- As remote procedure calls at the language level
- As remote commands at the operating system level
- As interpretive messages at the application level

Remote execution
The remote operation initiated by a client is created by the client for resource or load sharing (processor-pool model).
- Load sharing algorithm
- Location independence
- System heterogeneity
- Protection and security
Process migration
Preemption and reconfiguration

link redirection and message forwarding

suspend execution | state and context transfer | resume execution

messages buffered by source kernel | messages buffered by destination kernel

process freeze time

state and context transfer
freeze time and residual computation dependency

Pointer forwarding through DNS
soft (symbolic) and hard links
Real-time scheduling

Soft/hard deadlines, periodic/aperiodic, priority scheduling

Task τ_i described by
$$\tau_i = (S_i, C_i, D_i)$$

S_i = earliest start time
C_i = worst case execution time
D_i = deadline

(Aperiodic) Realtime Task Set V is
$$V = \{ \tau_i \mid i = 1, 2, ..., n \}$$

Periodic Realtime Task Set V is
$$V = \{ J_i = (C_i, T_i) \mid i = 1, 2, ..., n \}$$

C_i = worst case execution time
T_i = period

Schedule A is set of execution intervals
$$A = \{ (s_i, f_i, t_i) \mid i = 1, 2, ..., m \}$$

s_i = start time of interval i
f_i = finish time of interval i
t_i = task executed during interval i

A is valid iff:
1. $\forall i = 1, 2, ..., m$, $s_i \leq f_i$
2. $\forall i = 1, 2, ..., m$, $f_i \leq s_{i+1}$
3. $\forall i = 1, 2, ..., m$, if $t_i = k$, then $S_k \leq s_i$ and $f_i \leq D_k$

A schedule A is feasible iff every task receives at least C_k time in A
A RT Task Set V is feasible iff there is a feasible schedule for it.
Priority scheduling

- Rate monotonic priority assignment: task period
- Deadline monotonic priority assignment: deadline
- Earliest deadline first: dynamic deadline

Static Priority Assignment

Critical Instant

Scheduling a higher priority task earlier or later can only make its demand on the processor less.
Rate Monotonic (RM) priority assignment

Optimal static priority assignment

\[T_h < T_i \text{ then } Pr_h > Pr_i \]

Scheduling using priority assignment A

Swap the priorities of tasks \(i \) and \(i+1 \)

If task \(\tau_{i+1} \) could finish by time \(T_{i+1} \) in the first priority assignment, then it finishes by time \(T_{i+1} - C_i \) in the Rate Monotonic assignment. Likewise, \(\tau_i \) will finish by \(T_{i+1} < T_i \) in the Rate Monotonic assignment, so both will still be satisfied.
A sufficient (but not necessary) condition for feasible RM schedule, Load L is:

$$L = \sum_{i=1}^{n} \frac{C_i}{T_i} \leq n(2^{1/n} - 1)$$

which approaches 0.69 as n becomes large. This is pessimistic.

Response time r_i of task i must satisfy:

$$r_i = C_i + \sum_{h=1}^{i-1} \left\lfloor \frac{r_i}{T_h} \right\rfloor C_h \leq T_i$$

Find r_i iteratively (start with $r_i(0) = C_i$), and if ever $r_i(k) > T_i$ for some iteration k, then fail.
If $r_i(k) = r_i(k-1) \leq T_i$ for some iteration k, then we have reached a fixed point and the RM schedule is feasible.
Deadline Monotonic (DM) priority assignment

When periodic task deadlines are sooner than next start time

\[V = \{ J_i = (C_i, T_i, D_i) \mid i = 1, 2, \ldots, n \} \]

\(C_i \) = worst case execution time
\(T_i \) = period
\(D_i \) = incremental deadline (if arrive at \(t \), must finish by \(t + D_i \))

\[D_h < D_i \text{ then } Pr_h > Pr_i \]

Optimal for static priority assignments for short deadline periodic tasks

Earliest Deadline First (EDF) priority assignment

Optimal dynamic scheduling

\[d_h(j) < d_i(k) \text{ then } Pr_h(j) > Pr_i(k) \]

\(d_h(j) \) = deadline for \(j^{th} \) instance of task \(h \)
\(Pr_h(j) \) = priority for \(j^{th} \) instance of task \(h \)
Real-time synchronization

Priority Inversion:

Direct:
\(\tau_2 \) has higher priority than \(\tau_3 \), so it effectively blocks \(\tau_1 \) by running instead of \(\tau_3 \), which holds lock \(S \) that \(\tau_1 \) needs.

![Priority Inversion Diagram]

Indirect - Chain Blocking:
\(\tau_3 \) blocks \(\tau_1 \) through \(\tau_2 \), even though it does not hold a lock needed by \(\tau_1 \)

![Chain Blocking Diagram]

PIP - Priority Inheritance Protocol:
When \(\tau_h \) blocks on \(S \) (directly or indirectly), \(\tau_l \) inherits the priority of \(\tau_h \) (transitively).
Direct and Push-through Blocking:
τ_h suffers direct blocking; τ_m suffers push-through blocking due to PIP (this is desired).

\[B_h = \text{maximum time } \tau_h \text{ will be blocked} \]

Let us find $B_h = \text{maximum time } \tau_h \text{ will be blocked}$

Task-oriented perspective:

\[
B_h \leq \sum_{l \mid Pr_l < Pr_h} E_h(l)
\]

$E_h(l) = \text{maximum execution time of any critical section in } Bl_h(l)$

$Bl_h(l) = \text{set of all critical sections of } \tau_l \text{ that can block } \tau_h \text{ (directly, indirectly, or push-through)}$

Lock-oriented perspective:

Since a higher priority task can only be blocked once by a lower priority task per semaphore S,

\[
B_h \leq \sum_{S \mid ceil(S) \geq Pr_h} E_h(S)
\]

$E_h(S) = \text{maximum execution time of any critical section of a task with lower priority than } \tau_h \text{ that can block } \tau_h \text{ through } S$

Priority ceiling of S, $\text{ceil}(S) = \max \{Pr_h \mid \tau_h \text{ can be blocked by } S\}$.

If no nested critical sections, then $\text{ceil}(S) = \max \{Pr_h \mid \tau_h \text{ locks } S\}$.

So, for schedulability, take the smaller upper bound B_h.

A sufficient condition for a feasible RM assignment is then:

$$\sum_{j=1}^{h} \frac{C_j}{T_j} + \frac{B_h}{T_h} \leq h(2^{1/h} - 1)$$

More specifically, compute response time r_i for each task i iteratively:

$$r_i(0) = C_i + B_i$$

$$r_i(k + 1) = C_i + B_i + \sum_{h=1}^{i-1} \left\lceil \frac{r_i(k)}{T_h} \right\rceil C_h \leq T_i$$

If ever $r_i(k) > T_i$ for some iteration k, then fail.

If $r_i(k) = r_i(k - 1) \leq T_i$ for some iteration k, then we have reached a fixed point and the RM schedule is feasible.

However, we are allowing a task to be blocked by more than one lower priority task or lock, making schedulability less certain....
PCP - Priority Ceiling Protocol:
Insure no process is blocked for more than one critical section by a lower priority process.

Add the following rule to PIP:
\(\tau_i \) is granted lock \(S \) iff \(Pr_i \geq ceil(R) \) for every lock \(R \) held by a different task.

So we get a (possibly) smaller value for \(B_h \):

\[
B_h \leq \max\{ E_h(S) | ceil(S) \geq Pr_h \}
\]