Too Many Cooks Analysis of Mix Network Behavior Against Multiple Adversaries

J David Smith

Problem Statement

One Mix NetworkMultiple GA Attackers $\mathcal{A}, \mathcal{B}, \mathcal{C}, \dots$ Attackers are oblivious $\forall \mathcal{A}, \mathcal{B} \in A$

 $\mathcal{A}, \mathcal{B}, \mathcal{C}, \ldots \in A, |A| > 1$ $\forall \mathcal{A}, \mathcal{B} \in A : \mathcal{A} \text{ has no knowledge of } \mathcal{B}$

Question: How effective are the attackers?

Problem Statement

Answer: It depends.

Let's look at the Flooding attack.

Basic Construction

Scenario: Multiple Control Points

Scenario: Colocation

What is Success?

Intuitively: Success is when a single adversary knows all messages received by the target mix.

But that's binary. What about degrees of success?

Formally: Success is when a single adversary has reduced the effective anonymity set size of the target to 1.

What is Success?

 $\Pr(\mathcal{A} \text{ is succesful}) = \Pr(\mathcal{A} \text{ sent } n-1 \text{ messages before } \mathcal{B} \text{ sent } 1)$

Suppose at time t each adversary A has probability p_A of sending a message. Then

$$\Pr\left(\mathcal{A} \text{ is successful}\right) = p_{\mathcal{A}}^{n-1}$$

What about Partial Success?

Want: Probability distribution over number of messages \mathcal{A} sent before n-1 messages were sent.

What about Partial Success?

Solution: Binomial Theorem

$$\sum_{k=0}^{n-1} \binom{n-1}{k} p_{\mathcal{A}}^{k} p_{\mathcal{B}}^{n-1-k}$$

Specifically: each term of the binomial represents a the probability of a A sending k messages

Expected Anonymity Set Size (EAS)

From the persepective of \mathcal{A}

n-1	$p_{\mathcal{A}}$	$p_{\mathcal{B}}$	EAS
10	0.5	0.5	1.89
10	0.2	0.8	2.21
10	0.05	0.95	2.29
50	0.5	0.5	3.34
100	0.5	0.5	4.00
100	0.2	0.8	4.43

Generalizing to More Adversaries

Conjecture

The probability distribution of this model satisfies the multinomial theorem:

$$\sum_{k_1+k_2+\ldots+k_m=n} \binom{n}{k_1,k_2,\ldots,k_m} \prod_{1 \le t \le m} x_t^{k_t}$$

Markov Chains

A Markov Chain is a finite sequence of states drawn from a finite space such that

$$\forall Z : \Pr(X, Y) = \Pr(X, Y, Z)$$

Modelling with Markov Chains

Initial State

$$q_0 = (0, \ldots, 0)$$

Transition Probability

$$\Pr\left((a,\ldots,m+1,\ldots),(a,\ldots,m,\ldots)\right) = \begin{cases} \sum k < n-1 & p_m\\ \sum k \ge n-1 \land A = B & 1\\ \text{else} & 0 \end{cases}$$

If we write out the transition matrix, then the stationary distribution satisfies

 $\pi = \pi P$

Expected Anonymity Set Size (EAS)

From the persepective of \mathcal{A}

n-1	$p_{\mathcal{A}}$	$p_{\mathcal{B}}$	$p_{\mathcal{C}}$	EAS
10	0.33	0.33	0.33	2.09
10	0.2	0.5	0.3	2.21
10	0.05	0.8	0.15	2.29
50	0.33	0.33	0.33	3.59
100	0.33	0.33	0.33	4.26
100	0.2	0.5	0.3	4.43

Generalizing the Markov Chain Model

By changing the transition function, we can model different behaviors. For example:

$$\Pr\left((a,\ldots,m+1,\ldots),(a,\ldots,m,\ldots)\right) = \begin{cases} m < n-1 & p_m \\ m \ge n-1 \land A = B & 1 \\ \text{else} & 0 \end{cases}$$

