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Abstract—Attacks on mix networks have been extensively
studied in the literature. However, most work in this area only
considers scenarios with one global active adversary. We examine
this problem in the context of blending attacks by modeling more
than one independent global active adversary using stochastic
processes. We prove that the expected effectiveness of blending
attacks changes, and that in some cases greater adversity actually
improves the effectiveness of mix networks. We further present
a model for analyzing the behavior of mix networks under
attack by multiple adversaries, and demonstrate its efficacy.
Our work shows that single-adversary models do not completely
characterize the behavior of security systems, and that further
research in this area is needed.

I. INTRODUCTION

A wide range of adversarial models have been studied in
security literature. The capabilities of an adversary range from
almost none in the case of a local passive adversary to nearly
all in the case of a global active adversary (GAA). While it is
not uncommon for models to include multiple actors, these are
generally acting in unison as a single unit. Far less common is
the concept of multiple oblivious actors (MOA), who are each
conducting their own attack without knowledge of the other
actors.

We examine this scenario in the context of mix networks [1].
This choice restricts us to a single well-defined problem: how
well does a mix network preserve anonymity under attack by
MOAs? Serjantov, Dingledine, and Syverson [2] detailed the
effectiveness of various attacks by GAAs and introduced the
taxonomy that we will make use of in this work. In particular,
they study the class of blending attacks, dividing them into
certain / uncertain and exact / inexact based on their worst-case
effectiveness. Certain attacks will always succeed, while exact
attacks are capable of identifying a sender with no ambiguity.

They show that several basic kinds of mixes are vulnerable
to exact, certain attacks. We show that these same mixes cease
to be exact as long as multiple adversaries are attacking at
the same time. The question of how realistic this scenario is
naturally follows. We note that any attacker seeking to break
sender/receiver anonymity with certainty must successfully
attack or compromise every mix along the route a message
takes. If multiple oblivious attackers are interested in breaking
the anonymity of a message, then every attacker must do this.
Thus the chance of m > 1 attackers acting at the same time
on the same mix is the chance of m attackers seeking to trace
a message. It is not hard to imagine a scenario in which this
is the case.

For example: suppose an activist A is targeted by two
different states, X and Y . Their goal is to identify with
whom A is communicating in order to stifle dissent. However,
these states may be indifferent to each other and thus not
willing to collaborate unless necessary. In this case, they’d
each conduct their attack independently – and in the process
introduce inexactness and uncertainty into the result.

This paper is structured as follows. In section II we define
the network and adversarial models and lay out the problem
we aim to solve. In section III we present our solution to this
problem. Section IV covers work related to this problem and
our solution. We conclude with a discussion in section V.

II. MODEL AND PROBLEM DEFINITION

We consider a single mix network with homogeneous mix
nodes (e.g. all timed, all threshold, etc.), a single user of
interest A, and m adversaries seeking to trace A’s messages
through the network. Note that each different kind of mix
demands independent analysis, just as was done by Serjantov,
Dingledine, and Syverson [2]. Due to the time constraints
imposed by this being a course project, we only consider
simple threshold mixes, which are vulnerable to exact, certain
attacks at a cost of n−1 messages inserted in the m = 1 case.

The attack used is the flooding attack: the adversary sends
n − 1 messages to the n-threshold mix in addition to the
message of interest. During the flood, the adversary must delay
all other incoming messages. In the single adversary case, the
adversary may perform these actions at any location along
the link. However, things become more complicated when
additional adversaries enter the picture.

Suppose two adversaries A and B are independently exe-
cuting a flooding attack on a single mix. They must observe
at some point on the outbound links, and delay / insert at
some point along the inbound links. We term these locations
the observation points and control points, respectively. If A
has a control point preceding B’s control point, then clearly
A will not be able to successfully conduct the attack because
B will delay all of their messages while injecting additional
messages. In this case, m = 1 for all intents and purposes.
Thus, for this attack we consider only the number of attackers
that are co-resident on last occupied control point.

We measure the effectiveness of this attack in terms of the
effective anonymity set size [3]. The EAS is defined as the
entropy of the probability distribution over possible senders.
This provides a concrete measure of an attacker’s certainty



that it has identified the sender of the message of interest.
However, note that each attacker has a distinct distribution over
possible senders. Therefore, we measure EAS with respect to
an individual adversary. With these definitions laid out, we
define the problem we seek to solve:

Problem 1. Given a mix M , a message of interest e, a set
of adversaries A with |A| = m, and an adversary A ∈ A,
determine the EAS of the sender of e with respect to A.

III. SOLUTION

We begin by noting that the messages sent by B are opaque
to A and indistinguishable from e. Thus, if A manages to
complete flooding M prior to B sending any messages, then
A is successful in conducting an exact attack. However, if B
sends any messages before M fires, then A has no way to tell
which of the outgoing messages is the target. We can represent
the success of A in terms of the number of messages A sent
before the mix fires.

A. Special Case: m = 2

Theorem 1. When m = 2, the probability of A sending k
messages prior to n − 1 messages being sent is given by the
kth term of the binomial formula:(
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)
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where pi is the probability of adversary I sending a message
at any given time step.

Proof. First we define some notation. We write a sequence of
messages being sent as (x, . . . , y) where each glyph represents
the sender of a message. So (a, b, b) would be the sequence of
A sending a message, followed by B sending two messages.
We denote the probability of adversary I sending a message
at any point in time as pi.

Note that we are interested only in the number of messages
sent by A, so the sequences (a, b, b), (b, a, b) and (b, b, a) are
all identical. Further, all three have equal probability: pap2b .
The number of ways to write a sequence with k a’s and n−
1 − k b’s is given by the binomial coefficient:

(
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k

)
. Thus,

the probability of A sending k messages before n − 1 have
been sent is given by(

n− 1
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)
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which is the kth term of the binomial formula.

This gives us sufficient information to compute the EAS
with respect to A.

EASA(n− 1) = H(σ)

where H is Shannon entropy and σ is the distribution over
anonymity set size given by application of Theorem 1.

TABLE I
EXPECTED ANONYMITY SET SIZE FOR m = 2 AND VARIOUS VALUES OF

n, pA , AND pB

n− 1 pA pB EAS

10 0.5 0.5 1.89
10 0.2 0.8 2.21
10 0.05 0.95 2.29

50 0.5 0.5 3.34

100 0.5 0.5 4.00
100 0.2 0.8 4.43

B. General Case

We generalize this special case to a Markov Chain represen-
tation. Markov chains are stochastic processes which operate
on a finite state space and discrete time, with the additional
property of being memoryless [4]. A memoryless process is
one for which the transition to the next state depends only on
the current state:

∀X,Y, Z : Pr [Y → Z] = Pr [X → Y → Z]

We model the possible states of this system as m-tuples
of natural numbers starting at 0. The initial state is q0 =
(0, . . . , 0), which indicates that all m adversaries have sent
0 messages. This state representation captures the possible
combinations of message counts during an attack. Finally, we
define the following transition function to model the possible
ways the process can progress:

Pr [X → Y ] =


∑
k < n− 1 pi∑
k ≥ n− 1 ∧X = Y 1

else 0

where
∑
k is the sum of the number of messages sent by

each adversary so far, and pi is the probability of adversary
i sending a message. Then, the final distribution of over all
possible states is the stationary distribution of the Markov
Chain. If we write the transition matrix P , then the stationary
distribution π satisfies

π = πP

when written as a vector. This distribution gives the probability
of remaining on each state as t → ∞. We note that for the
case m = 2, the probabilities given by π are the same as
those predicted by Theorem 1. The stationary distribution is
mapped to a distribution over anonymity set size by summing
the probabilities of each sequence with ka = n − 1 − |AS|.
There is not a notationally straightforward way to write this,
so the formula is omitted. The EAS is then computed as the
entropy of the AS size distribution.

This representation can be generalized to other behaviors
and attacks by changing the transition function. For example:
if A always sends n− 1 messages before checking the output
of the mix, then the transition function becomes:



TABLE II
EXPECTED ANONYMITY SET SIZE FOR m = 3 AND VARIOUS VALUES OF

n, pA , pB , AND pC

n− 1 pA pB pC EAS

10 0.33 0.33 0.33 2.09
10 0.2 0.5 0.3 2.21
10 0.05 0.8 0.15 2.29

50 0.33 0.33 0.33 3.59

100 0.33 0.33 0.33 4.26
100 0.2 0.5 0.3 4.43

Pr [X → Y ] =


ka < n− 1 pi

ka ≥ n− 1 ∧X = Y 1

else 0

where ka is the number of messages A has sent at state X .

IV. RELATED WORK

The most closely related prior work is that of Serjantov,
Dingledine, and Syverson [2]. They developed the taxonomy
of attacks on mix networks that is further developed in this
work. However, as was noted previously their work is limited
to the single-adversary case. To the best of our knowledge,
there is no prior work on this problem.

There is prior work on related problems. Game theoretic
models have been devised to optimize the behavior of both
the adversary and the principals [5, 6]. These models typically
allow collaboration, which is something explicitly disallowed
in our model. A logical next step for this work would be to
develop a Stackelberg-game model as in [5] for this scenario
to optimize adversary behavior. However, these models are
known to be NP-hard [7] even though they are well-behaved
[8].

Another related problem, detecting attackers, has been stud-
ied under a wide variety of scenarios. Rennhard and Plattner
[9] introduced a new form of mix along with a method for de-
tecting collusion attacks. Their work is not directly applicable
to this problem because the adversaries are colluding instead
of oblivious. Work in other fields has included detecting Sybil
attacks on social networks [10] and mobile ad-hoc networks
[11], detecting spoofing attacks in wireless and other networks
[12], among many others.

Among all of these works collusion is either assumed or
allowed, or a single adversary is assumed. Practically, there are
scenarios where collusion will not occur. The example of rival
states given in section I is one such scenario. By revisiting the
assumption that adversaries will collude if optimal, we have
shown that there are interesting emergent behaviors missed by
prior work.

V. DISCUSSION

Our contributions are threefold:
1. We define and motivate a novel adversarial model in

which there are multiple attackers.

2. We demonstrate that the behavior of known attacks on
mix networks is different under this adversarial model.

3. We present a model for analyzing attack behavior in this
kind of scenario.

Of particular interest is that exact, certain attacks become
inexact in this scenario, which suggests that in some cases
increasing the number of attackers actually decreases the threat
to users of the system. We only examined the most basic mixes
in this work, but there is reason to believe that similar results
may be shown for more advanced mix networks and even mix-
like networks such as Tor.

However, it is also clear that some attacks to not become
less effective as more adversaries join the system. Trickle
attacks on timed mixes, for example, would suffer no such
drop in effectiveness as the mix will always receive only
the one message. Developing a taxonomy for the scaling of
attack effectiveness with respect to the number of independent
adversaries would be valuable for understanding the deeper
behavior of networks under attack.

There are numerous other possible extensions of this work.
Expanding the model to continuous-time Markov chains
(called Markov processes) would allow modeling of mixes that
include timing components (such as timed mixes, and timed
pool mixes). Treating the probability of an adversary sending
a message as a random variable sampled from a probability
distribution rather than a fixed constant would allow a greater
degree of detail in modeling adversary behavior and interaction
on control points.

In conclusion, we showed that the scenario of multiple
independent oblivious adversaries attacking a mix network
is distinct from the scenario of a single adversary on a mix
network. We further showed that under this adversarial model,
attacks on mix networks have emergent behavior which does
not appear in the standard single-adversary model.
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