
Owner: Gyanranjan Hazarika
UFID: 63889154

Page 1 of 13

A Report on Modified Onion Routing and its
Proof of Concept

Introduction:
This document briefly describes the architecture, code layout, operation principles and
testing covered in the implementation of project Modified Onion Routing and its Proof of
Concept. It also briefs on the purpose and the test results.

Background of Onion Routing
Onion Routing is an infrastructure for private communication over a public network. It
provides anonymous connections that are strongly resistant to both eavesdropping and
traffic analysis. It provides bi-directional anonymous connections. An onion is a data
structure that carries relevant cryptographic information for each onion router in the path
(in each layer of the onion). Onions themselves appear differently to each onion router as
well as to network observers. The same goes for data carried over the connections they
establish. An initiator and a responder set up a virtual circuit between themselves by use of
an onion. The intermediate nodes of the path know only its immediate next hop neighbor by
means a virtual circuit id. Nodes further encrypt multiplexed virtual circuits which make
studying traffic patterns really cumbersome.

Purpose:
The purpose of this project is to identify a few vulnerabilities present in a conventional
Onion Routing infrastructure and propose a few modifications to overcome these
vulnerabilities. The identified vulnerabilities are:

1. Compromised Onion Proxy can nullify anonymity and privacy.

2. Similarly, compromised exit funnel at responder’s proxy can nullify anonymity and

privacy.

3. An unsecured connection from responder’s proxy to the ultimate recipient keeps the

data exposed to passive adversary.

4. No protection against tampering of data.
5. Finally, passive adversary can link sender and recipient’s data.

Proposed Modifications:
Following are the proposed modifications to overcome these vulnerabilities.

1. Run Onion Proxy at the sender’s host machine.
2. Run Exit Funnel (from responder’s proxy) at recipients’ host machine.
3. Add MAC to frame structure.
4. Introduce MIXes at the intermediate routers/nodes.

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 2 of 13

Proof of concept:
For providing proof of concept, software based on the following architecture is
implemented. The final test result proves the feasibility of the above modifications.

Basic Architecture:
The base architecture of the software is shown in the following diagram. Multiple
applications can register against a single application proxy in the sending side. Similarly,
multiple applications can register against a single exit funnel in the receiving side. Onion
Proxy and exit funnel are designed such a way that they can be decoupled from host and
run in dedicated proxy servers. See blow in the relevant section.

APP1

Application Proxy

Onion Proxy

Sending Host

Router 1 Router 2 Router n……………...
Exit Funnel

: An Onion Proxy sets up a virtual circuit along this paath hop to hop by sending an Onion

: Data travels along this path after virtual circuits are set up

APP2
APP

n
APP1 APP2

APP
n

……
… ……

…

Recipient Host

Figure 1- Basic Architecture Diagram of M. OR

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 3 of 13

Role of ORCS in Key and Neighbor Information Distribution:
The role of ORCS is described in figure 2 and 3 below. ORCS will maintain a table of
registered members. When a new member joins, it will set up an account with the ORCS and
will provide its IP, port, device type (router or end device or both) and public key using the
public key of the ORCS. Each member will further encrypt the data using the symmetric key
generated from the account password. ORCS, in turn, will assign a member id to each new
member and update the table it is maintaining. It will then provide this table, signed by its
private key and encrypted using the symmetric key. Note that no reconfiguration is required

SENDER ROUTERS RECIPIENTS

ORCS

:Members of M. OR sets up account with ORCS using password and username. Members
provide their public key, IP and port s to ORCS using symmetric key generated from
password.

:ORCS assigns memberid and provides a neigbor table consisting of public keys, IP and port of
each neighbor

ORCS :Onion Routing Central Server

Figure 2 - Role played by central server in providing keys and neighbor information

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 4 of 13

as in case of crowds when a new member joins. The following MSC explains the procedure

in more detail. How the members avail the public key of the ORCS is considered out of scope

of this document.

MSC of ORCS Execution Flow

New Member ORCS

Message1

Message2
Set up account using Username and Password

{Both side generates symmetric key
using shared password}

Message3

Message4

Member Sends Public Key, IP and Port to
 ORCS encrypted using symmetric key

{ORCS assigns member id and adds
relevant information concerning
that neighbor into the neighbor
table.}ORCS sens back the updated neighbor

table to the new member and all existing
 members.

Figure 3 - A new member joins

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 5 of 13

Flow among Application, Application Proxy and Onion Proxy

{Checks whether (member vs nbr tbl)
exist. If exist then creates onion
ans send waits for response. It re-
turns success/fail to app_proxy de-
pending on response.}

Application Application Proxy Onion Proxy

OR_APP_PROXY_INIT

OR_ONION_PXY_INIT

{Initializes OnionPxySsnTable,
(Member vs Neighbor Table)Pool,
OrAvlblSesnId Q, OrAvlblVCId Q}

OR_ONION_PXY_UPDATE_NBR_TABLE{Updates(Member vs
Neighbor Table)in
Pool}success/fail

OR_APP_PXY_SEND_DATA

{Does a sesn
exist?}

(dest, proto, data, fncb)

OR_PXY_DATA_REQ

(memberid, sesnId, data)

{Checks whether an ongoing sesn
for this member with the reques-
ted sesn id? If found, it encrypts
data, creates an OR pkt and adds
it into the ougoing Q. It then sig-
nals send thread.}

success/fail

{If a sesn
doses not
exist}

OR_PXY_CREATE_OR_SESN_REQ

(success, sesnid)/(fail, null)

OR_PXY_DATA_REQ

(memberid, sesnId, data)

success/fail

success/fail

Figure 4 - Execution flow among App, App Proxy and Onion Proxy

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 6 of 13

Flow between Application/Receiver Proxy and Exit Funnel

Application/Receiver
Proxy Exit Funnel

{Initializes orAvlblSesnId Q}

OR_EXIT_FNL_INIT

OR_EXIT_FNL_REGISTER_RCVR

(memberId, OR_RCVR_FN_CB)

OR_RCVR_FN_CB

Once a Onion reaches exit funnel as final
destination and originator assigns a mem-
ber id for that path. exit funnel passes
futher iincoming data to that member if
it has registered already.

(memberId, sesnId and data)

OR_EXIT_FNL_REPLY_REQ

(memberId, sesnId and data)

Figure 5: Execution Flow among Application/Receiver Proxy and Exit Funnel

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 7 of 13

Design Flexibility
The software design allows users to decouple Onion Proxy and Exit Funnel from the host

machines to dedicated proxy servers.

APP1

Application Proxy

Onion Proxy

Sending Host

APP2
APP

n
……
…

Onion Proxy

Proxy Server

Exit Funnel

APP1 APP2
APP

n
……
…

Recipient Host

Exit Funnel

Proxy Server

Design Provisions scope of decupling these components
and running then in dedicated proxy servers

Figure 6 - Design Flexibility

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 8 of 13

Packet Structure
Each layer of an onion will be of the format shown below. In this version of the
implementation, the format shown in figure 7 is used. Each member of the network
generates a Diffie-Hellman shared secret using the public key of each such member which
may occur in the path involving itself and the other member. In this version of the software,
even the onion layer is encrypted using such a shared secret which comes with a flaw. An
intermediate node can link the key to the sender of the onion. Therefore, this scheme of
encryption can not be used. Instead, conventional PKCS as suggested by Goldschlag et al. is
suggested. The proposed packet format for a layer of an onion is as shown in figure 8. An 8
byte MAC will be part of the onion layer.

Challenge Text (9) Back F(1) Forw F(1) Next Member Id(2)

Back F Key(16)

Forw F Key(16)

Exp Time(4)

49 bytes

Figure 7 - Packet Format for a Single Onion Layer

Back F: Backward crypting function, Back F key: Key for backward cryption, Forw F: Forward crypting

function, Forw F key: Key for forward cryption, Exp Time: Expiration time for the Onion, Next

member id: Member id of the next hop in the path, MAC: Message Authentication Code

Back F(1) Forw F(1)
Next

Member
Id(2)

Back F Key(16)

Forw F Key(16)

Exp Time(4)

48 bytes

MAC(8)

Figure 8 - Proposed Packet Format for a Single Onion Layer for Future Use

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 9 of 13

A typical packet in this version of the project is of the structure shown in figure 9. But it
comes with a flaw. The MAC field is just a place holder. A single MAC can not be used in a
OR network as the source does the encryption for each node in between. The challenge text
is not desirable because of the same reason as mentioned above. Therefore a modified
packet structure as shown in figure 10 is proposed for future use.

Challenge Text (9) VCId(4) Cmd(1) Type(1) Len(2)

Payload(760)

MAC(8)

785 bytes

Figure 9 – Packet used in this implementation

The proposed packet structure has a MAC for each node in the route and is valid only for
DATA commands. The MAC is generated using (forward function, key) or (backward function
key, key) pair. The source will generate the MACs for each intermediate node and place it
after the payload field in the order of the intermediate routers of the packet starting with
the immediate next router. A router is going to use the first MAC after the payload field,
shift the entire 1520 – (760 + 8 + 4 + 1+ 1 + 2) = 744 bytes to the left and add 8 bytes
padding at the end.

1520 bytes

VCId(4) Cmd(1) Type(1) Len(2)

Payload(760)

MAC(8) MAC(8) ……. MAC(8) Padding

Figure 10 – Proposed Packet for Future Use

VCId: Virtual Circuit Id, Cmd: Command Identifier, Type: Traffic type indicating delay tolerant or not
Len: Payload length, MAC: Message Authentication Code, Padding: random data stream

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 10 of 13

Configuration File (at the absence of an ORCS)
The absence of ORCS generates a requirement of a configuration file from which each

member can read memberId, IP, port and public key. The file content look like the following:

Figure 11 - Configuration file content

Code Layout

Figure 12 – Code Layout

Steps to Run
1. Go to project root.
2. Do make clean and make.
3. Open four terminals.
4. Start the program by choosing a role. The following commands are relevant when

the configuration file shown above is used.
src/m_onion_routing role=sender port=3000 logfile=’DirPath’/or_snd_log.txt
nwkLayoutFile=’DirPath’/NeighborRoutingTable.txt

src/m_onion_routing role=router port=3001 logfile=’DirPath’/or_router1_log.txt
nwkLayoutFile=’DirPath’/NeighborRoutingTable.txt

src/m_onion_routing role=router port=3002 logfile=’DirPath’/or_router2_log.txt
nwkLayoutFile=’DirPath’/NeighborRoutingTable.txt

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 11 of 13

src/m_onion_routing role=receiver port=3003 logfile=’DirPath’/or_rcvr_log.txt
nwkLayoutFile=’DirPath’/NeighborRoutingTable.txt

5. The sender needs to be launched at the end as the connections are TCP based.
6. After launching the sender will send an onion, establish a VC based path and send

the handshake message:
"I am ur anonymous friend. Accept Greetings."
The recipient responds by sending handshake response:
"Hello anonymous friend. Greetings accepted."

7. After this sender process launces a command line app with the following options:
Try Someting...
 a. Replay Onion
 b. Send a delay tolerant msg
 c. Send a delay intolerant msg
 d. Inject dummy/padding messages

8. User can try different options from the above list.

LOC and Test Result
Sl. No. File name LOC

1 or_main.c 909

2 or_time.c 162

3 or_util.c 541

4 or_log.c 121

5 or_common.c 765

6 or_os_helper.c 152

7 or_mem_util.c 54

8 or_test.c 129

9 or_sender.c 244

10 or_receiver.c 65

11 or_router.c 1134

12 or_application_proxy.c 331

13 or_onion_proxy.c 1409

14 or_exit_funnel.c 622

15 or_security_module.c 676

16 or_time.h 22

17 or_util.h 30

18 or_log.h 28

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 12 of 13

19 or_common.h 318

20 or_os_helper.h 11

21 or_mem_util.h 11

22 or_sender.h 9

23 or_receiver.h 11

24 or_router.h 33

25 or_application_proxy.h 16

26 or_onion_proxy.h 20

27 or_exit_funnel.h 44

28 or_security_module.h 27

29 or_config.h 35

30 or_types.h 358

 Total 8287

 Effective excluding comments and essential separating

lines (not less than)

7500

Test Case 1

On an average how many dummy messages are required to inject for a message to reach to

the destination through 2 (2-1) threshold pool mix.

Result:

No of
sender's
message

Threshold pool mix
(n[pool]-s[threshold])

 Average No.
of Dummy
messages

No of trials

1 (2-1) 2.3 10 (3, 1, 1, 2, 3, 1, 2, 2, 6, 2)

2 (2-1) 3 5 (6, 3, 2, 3, 1)

1 (3-1) 4 10 (2, 3, 3, 12, 5, 0, 9, 4, 1, 1)

2 (3-1) 5 5(8, 17, 2, 5, 3)

1 (3-2) 6.4 10 (3, 7, 1, 15, 1, 1, 11, 7, 3, 15)

2 (3-2) 7 5(6, 10, 6, 4, 9)

Test Case 2

Replay an Onion.

Result:

Onion rejected by first router.

Owner: Gyanranjan Hazarika
UFID: 63889154

Page 13 of 13

Test Case 3

Send 50 delay intolerant messages to recipient.

Result:

All messages acknowledged by recipient.

Test Case 4

Send multiple back to back delay tolerant messages to recipient.

Result:

Result covered by results of Test Case 1.

 *********************END**********************

