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Abstract—Simultaneous attacks can cause devastating damage,
breaking down communication networks into small fragments. To
mitigate the risk and develop proactive responses, it is essential
to assess the robustness of network in the worst-case scenarios. In
this paper, we propose a spectral lower-bound on the number of
removed links to incur a certain level of disruption in terms
of pairwise connectivity. Our lower-bound explores the latent
structural information in the network Laplacian spectrum, the set
of eigenvalues of the Laplacian matrix, to provide guarantees
on the robustness of the network against intentional attacks.
Such guarantees often cannot be found in heuristic methods for
identifying critical infrastructures. For the first time, the attack-
resistant proofs of large scale communication networks against
link attacks are presented.

Index Terms—Lower-bound method; vulnerability assessment;
pairwise connectivity; spectral algorithm;

I. INTRODUCTION

Connectivity plays a vital role in network performance and
is fundamental to vulnerability assessment. The number of
connected node pairs in the network, (a.k.a pairwise connec-
tivity), lends itself as an effective measure to account for the
effect of the attacks [1], [2], [3], [4], [5], [6], [7].

Vulnerability assessment has been recently formulated as
an connectivity optimization problem called S-edge disruptor,
which finds a minimum cost links whose removal causes a
significant level () of network pairwise degradation [6]. The
[B-edge disruptor reflects the common sense that when break-
ing the network by removing links, the more links required to
be removed, the less vulnerable the network is. The [-edge
disruptor approach enables the exploration of different network
disruption levels which can be used to gain the deeper insight
into network structure and robustness in various operating
environments.

Unfortunately, the S-edge disruptor problem is NP-hard [6]
i.e. there is no efficient algorithm to solve the problem, unless
P=NP. A pseudo-approximation algorithm and mathematical
approaches for the 5-edge disruptor problems are introduced in
[6] and [5], respectively. Although those methods can provide
performance guarantees, they are only applicable for small and
medium networks of few thousand nodes. For larger networks,
we have to rely on heuristics which can have arbitrary bad
worst-case performance. Hence, there is a lack of methods to
provide robustness proofs against intentional attacks for large
networks.

In this paper, we analyze the network spectrum, the eigen-
values of the Laplacian matrix, to give a lower-bound for
the minimum size of a $-edge disruptor, thus, give a certifi-
cate on the robustness of the network. Our spectral bound
is formulated as an optimization problem of the Laplacian
eigenvalues, which are known to contain rich information
about the topological structure [8].

Since exact measurement for the (-edge disruptor is not
available in general, our lower-bound can be coupled with
upper bound methods' to narrow down the range for ac-
tual vulnerability/robustness of the network. We emphasize
that while upper bounds for -edge disruptor (or any other
minimization problem) can be designed easily, techniques
for deriving lower-bound is much scattered in literature. Our
contributions are summarized as follows.

o We introduce a new spectral lower-bound for the $-edge
disruptor problem in form of an eigenvalue optimization
problems. At the same time, we enrich the literature on
lower-bound techniques.

o We present two efficient methods to compute the pro-
posed lower-bound: 1) the Lagrange multiplier method
and 2) the dynamic programming algorithm. Moreover,
the Lagrange multiplier method can derive the lower-
bound with only a small number of smallest eigenvalues.
This is important for large networks where computing
the whole network spectrum is both time and memory
consuming.

o We perform experiments on different network types and
real large-scale networks to demonstrate the quality of
the proposed lower-bound and quantify the robustness of
the studied networks against intentional attacks.

Related work. Many existing works on network vulnerabil-
ity assessment mainly focus on the local centrality measure-
ments to differentiate between critical links and nodes and
the others, see [9], [6]. Other global graph measures have
also been proposed to assess network vulnerability. These
measures are mainly functions of graph properties, such as the
diameter, global clustering coefficient, etc. [3], [10]. Matisziw
and Murray [9] first proposed the pairwise connectivity as
an effective measurement and use mathematical programming
to solve for exact solutions. Arulselvan et al. later define

'Each heuristic to find 8-edge disruptor is an upper bound for the problem



the Critical Node/Edge problem problems, which the main
objective is to identify top %k nodes/links whose removal
minimize the pairwise connectivity in the residual network,
and provide NP-completeness proofs and integer programming
formulations. However, the run-time for exact solutions scale
exponentially with the network size.

We first proposed the assessing vulnerability methods in
form of optimization problems [J-edge/vertex disruptor in
[6]. The paper presents NP-hardness of [-edge/vertex dis-
ruptor problems, an O (logl'5 n) pseudo-approximation algo-
rithm for 3-edge disruptor, and an O (log nloglogn) pseudo-
approximation algorithm for S-vertex disruptor. The proposed
pseudo-approximation algorithms are of theoretical interests
as they provide performance guarantees.

Bissias et al. [1], [2] study the problem of bounding the
damage under link attacks. However, the provided methods ei-
ther require solving costly semidefinite programming problem
[1] or involving weak bounds due to the presence of partitions
with negative sizes [2].

Organization. We briefly present terminologies and prob-
lem definitions in Section II. In Section III, we introduce the
spectral lower-bound for the the S-disruptor problem together
with two methods to compute the lower-bound. Experimental
results on different network models and real network instances
are obtained in Section IV. Finally, we conclude the paper in
Section V.

II. MODEL AND DEFINITIONS

We abstract our general network model as a graph G =
(V,E), where V = {v1,v2,...,v,} refers to a set of nodes
and E refers to a set of links. Each edge (v;,v;) € E has
a removal cost ¢;; > 0 (and ¢;; = 0 if (v;,v;) ¢ E). For
convenience, we also denote the number of nodes and links
by n and m, respectively.

Since the main purpose of network lies in connecting all
the interacting elements in the network, we study on the
overall pairwise connectivity, which is defined as the number
of connected vertex pairs in G. If GG is an undirected graph,
a vertex pair (u,v) € V x V is connected iff there exists a
path between u and v. We denote the pairwise connectivity of
a graph G by P(G). Apparently, the pairwise connectivity is
maximized at (Z) when G is a (strongly) connected graph.

The [-edge disruptor is defined in [6] as follows.

p-edge disruptor. Given 0 < 5 < 1, a subset Eg C E
in G = (V,FE) is a -edge disruptor if the overall pairwise
connectivity of G[E'\ Eg], obtained by removing E3 from G,
is no more than 3(7}). In the B-edge disruptor problem, we
aim to find a minimum cost S-edge disruptor.

Laplacian Matrix and Its Eigenvalues. Let A = {c¢;;} be
the weighted adjacency matrix and D be the degree matrix,
defined as the diagonal matrix with the weighted degrees
dy,ds, . ..,d, on the diagonal, where d; = Zj Cij.

The unnormalized graph Laplacian matrix [11] is defined as

L=D-A

The matrix L is symmetric and positive semi-definite, since

for every vector x € R™ we can verify that
'Ly = % Z cij(w; —x5)* > 0. (D
i,j=1
A direct consequence is that L has n non-negative, real-valued
eigenvalues A\; < Ao < ... < \,. In addition, the smallest
eigenvalue of \; is zero and the corresponding eigenvector is
the constant one vector 1 [11].

The second smallest eigenvector Ay is known as the alge-
braic connectivity of the graph and can be used to describe
many properties of graphs [11]. For example, the graph G is
connected if and only if A\ > 0. For 3-edge disruptor problem,
the following lower-bound can be derived from A,.

Lemma 1: For any connected graph G, we have

2

where OPT 3 denotes the minimum size of a 3-edge disruptor.

However, the bound provided in Eq. 2 is rather loose, as
the value of Ao is often very close to zero (for example
when bridges, edges whose deletion increases the number of
connected components, are presented in the networks.) This
motivates us to study higher eigenvalues beyond A, to design
stronger bound for the -edge disruptor problem.

III. SPECTRAL LOWER-BOUND FOR LINK ASSESSMENT

OPT; > ﬂ)\g(n —1) )

In this section, we derive a lower-bound on size of -
edge disruptor using higher eigenvalues of the Laplacian
matrix L. We first formulate the lower-bound as an eigenvalue
optimization problem. Then two methods with different trade-
off between time and quality are introduced to compute the
lower-bound.

Let EZ; be an optimal -edge disruptor and s7 > s5 > ... >
sy, be the sizes of the connected components after removing
E;; from the network. Then we can relate OPTg to the size
of the components via the following lemma.

Lemma 2: [12] Let a k-partition of a graph be a division
of the vertices into k disjoint subsets containing s; > so >

. > sy vertices. Let F, be the set of edges whose two
vertices belong to different subsets. Let \; < Ay < ... < A,
be the k smallest eigenvalues of the Laplacian matrix plus any
diagonal matrix U such that the sum of all the elements of U
is zero. Then

k
1
‘Ecut| Z 5 E 51)\1
i=1

Thus, we have OPTg = |Ej| > 1377 sfAi. Here we
allow imaginary subsets of size zero and assume w.l.o.g. that
k = n. Note that s7, ..., s;, are not known without finding E7.
Thus, we consider all possible values of {s1,...,s,} which
infer network partitions of pairwise connectivity at most 3 (’2’) ,
and get the minimum of the sum %Z?Zl s;\; as a lower-
bound on OPTg.

Formally, our spectral lower-bound on OPTp is given by
solving the following quadratic programming (QP) optimiza-
tion problem.
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minimize 7 ; SiAi 3)
subject to Z si=mn @)
i—1
> (3) <8() )
i=1
si€{0,1,...,n} 6)

Theorem 1: Let Qg be the optimal objective of the QP
problem (8-11) and OPT 3 be the minimum /-edge disruptor
of graph G = (V,E). Then, Q3 < OPTj for g € [0,1].
Moreover, the equality holds when =0 or 5 =1

Proof: As discussed in the previous paragraph, the sizes
of connected components after removing optimal -edge dis-
ruptor satisfy all constraints (4-6). Hence, Qg < OPTj for
all 8 € [0,1]. We continue with the tightness of the bound at
extreme cases when 5 =0 and 5 = 1.

Cnase B = 0: all subsets are of size one. Hence, ()1 =

1 1
%Z)\i = §Trace(L) = 5(2|E|) = |E|. The only way to
=1

cut all pairs in the network is to cut all edges. In other words,
Qo = OPTy = [E|.

Case § = 1: in order to achieve the maximum connectivity
(g), there must be a single partition in the network and the
optimal disruptor cutting no edges. That is s; = n and s; =
0 Vi > 1. Since A\ = 0, it follows that Q; = 0= OPT;. ®

Since s; are integral values, we propose a dynamic pro-
gramming algorithm to compute the spectral bound in next
subsection.

A. Dynamic Programming Method

We first describe the optimal solution structure for the
optimization problem in (8-11).
Lemma 3: There exists an optimal solution s* of QP(3-6)
such that s7 > s5 > ... > s7.
Proof: Let s* = {s7,s5,...,s%} be an optimal solution
of QP(8-11). Denote inv(s*) the number of inversions of m*
i.e. such pairs of indices (7, j) that i < j such that s} > s7.
If inv(s*) = 0, then s} > s3,> ... > s, otherwise there
exists a pair ¢ < j and s; > s7. Construct s’ by swapping s}
and s} inside s*. Then, s’ is a feasible solution of QP(8-11)
and the objective increases an amount s;\; + s7A; — (s7A; +
s7A;j) = (87 —s7)(Aj—A:) > 0. Thus, we obtain a new optimal
solution with less the number of inversions. Repeat the process
at most (g), that is the maximum number of inversions in s*,
we finally obtain an optimal solution with no inversions. That
optimal solution shall satisfy the lemma’s condition. ]
For k <1 < nand p < 3(}), define Ly (l,p) to be the
minimum spectral bound obtained by first k£ subsets that the
total sizes is [ and the total pairwise connectivity is at most

p. That is
k
Z S; < D
‘ 2) "~
=1

= min
s(k) cNk

Lx(l,p) {s“‘f)TA““) 8™ =1,

Algorithm 1 ILB(G, 5)
1: Compute \q,..., A\,
+00,

if p < prin(l, k)
Al = O, if p> pmax(lv k)

3: fork=1ton

for[=1ton

for p = pmin(l7 k') to min {5(2),pmax(17 k)}

. £k71(l7p)7
6: Ek(hp)—mm{ Li(l—kp—14+k) +3F X\
if Lot (n,8(3)) = Lx (0, 8(5))
8- return [Ly, (n, 3(5))]
return [L,, (n, 8(3))]

Then the optimal objective value QP(3-6) shall be given by
Qs = La(n.5(3)).

By Lemma 3, we pay attention only to partitions satisfying
S§1 > 89 > ...> S,. We now derive the recursive formula for
L, (1, k) based on the sub-optimal structure of the QP problem.
Consider two possible cases of s

e S = 0: There are at most k& — 1 partitions whose sizes

sum up to . Hence, for this case L£(I,k) = Lr_1(l,p).

20 Ly(l,p) =

AN

~

N

e S, >0:Sinces; >89 >...>58, >0.Lets; =s5,—1>
0, the vector § = {31, 8o, ..., 83 } satisfies simultaneously
the following

k k k
Z)\igi = Z)\ZSZ — Z)\l
i=1 =1 i=1

v :Zl .
; 9 —; 9 —s+1

Li(l,p) = min {

00, lfp < pmin(l7k)

Al = 0, lfp > pmax(la k)

Therefore, in this case L (l,p) = Lx(I —k,p— 1+ k) +
Li-1(l,p),

! but in decreasing order of k. The base cases for £, (I, k) are

(7

where puin (1, k) = (") (1 mod &) + (Y") (k — 1 mod k)
nected components, respectively.

k
=3 <52> —l4+k<p—Il+k
=1
Zf:l Ai
In summary, we have
Ll —kp—1+k)+3F N }
We compute value of £, (I, k) in increasing order of p and
as follow.
£k (lap) = {
and puax(l, k) = (é) that are the minimum and maximum
pairwise connectivity of a graph with [ vertices and &k con-
Theorem 2: Optimal solutions of QP(3-6) can be found in
O(n*) time and O(n?) space.

}



Thus, the spectral bound can be computed in polynomial
time. However, the high time complexity of the dynamic
programming algorithm prevents the method from being ap-
plied to large networks. Moreover, the dynamic programming
algorithm requires computing the whole set of eigenvalues of
the networks, which is both time and memory consuming.
We continue with an approximation of the spectral bound that
achieves (almost) the same lower-bound quality in significantly
less time.

B. Lagrange Multipliers Method

We relax the integral conditions on s; to obtain the follow-
ing relaxation of the QP, rewritten in vector notation.

1
minimize 3 sTA ()
subject to  ||s|ly —n =0, )
sl — As <0, (10)
5> 0, (11)

where Ag = fn(n — 1) +n and |.|| denotes the Euclidean
norm.
The Lagrange multiplier is then

1
L(s,xt,w) = 58" A+ x(lIslh = n) + v(lIs]l5 — Ap) —w

where w = (w1,...,wy,) > 0 is a positive multiplier vector.
Notice that the problem is a convex optimization problem
with differentiable objective and constraint functions and it
satisfies the Slater’s condition with s = (1,1,...,1)T [13].
Hence, the following Karush—Kuhn-Tucker (KKT) conditions
provide the necessary and sufficient conditions for optimality

1
Vs£=§)\+x+2¢s—w =0

VL= lslli —n

VL= |sll3 - Ag
T

w's =
s, ), w 2

Algorithm 2 LMB(G, 3)

I t=12/8]. g+ [Bn(n—1)+n

2: Compute Aq,..., A\

3: fork=1ton

4: if £ > t then

5 t = min{2¢,n}

6: Compute Ay, ..., A

7: Compute ¢ as in Eq. 19.

8: Compute Dék), and Cék) as in Eqgs. 20, and 21

9: if > 0and Cy” > 0) or (k = n) then

10: return (Dgf)}

11: end for

Let k max{i | s, > 0}. By Lemma 3 and the
complementary slackness wTs =0, wehave s; > 0 fori < k,
thus, s; =0 Vi >k and w; =0 V5 < k.

Denote s®) = {s1,s5,...,5,} and A®) =
{A1,A\2,..., A}, the KKT condition can be simplified
to

1
Vowl = 5)&’” + x4 28 =0, i<k (12
1
Vil =ghi+x—wi=0, i>k  (13)
VL =s®|; —n=0, (14)
VyL = [sM5 - As =0, (15)
s®) > 0,4 > 0,0k =0 (16)

For each value of k, we can solve for values of s; and check if
all s; > 0. The other unknowns can be found as follows. First,
substitute the constraint (14) into the sum of the constraints
(12) to obtain y in terms of ).

no [AM]L
=24 — 1
X ki/J % (17)
Therefore, we can derive s(*) from (12) as
(k) AR\ 1
k) _ 1 [A™ AN 1 18
SUERT ( 1k 1) (18)

+ Substituting the above equation into the condition (15) and

8 solving for v, we have

sMZ-Ag=0
| 2 B

N [ABE AR 1 AL n?
16 16k )y Pk
1/2
1 [ [IA®]2 = [XA®))12/k
@¢4C I3 = X1/ 1)
Ap =
The objective is then
® _ 1 aryw _ AP AR Ay T
Dy =gs AT = T 1 2
_ HA(k)Hl B 1 ®)2 HA(k)H% 1/2 B ,nj 1/2
e (P R I VPR

(20)

Since A; < A2 < ... < An, Eq. 18 implies that s{* > s{") >
> sffk). Hence, in order to satisfy s(*) > 0, it is sufficient

that
A\ 1
A I N
*( 4)w—0

Theorem 3: The size of a (-edge disruptor is lower-
bounded by

Ay
4k

n

k) — (k) _
B =% T g

21

Dg

min

o | > 0}
nZanz/Aﬁ{ s 1G5 >0y,

where Dék) and Cék) are given by Egs. 20 and 21.
The steps to solve the relaxation of the QP is summarized in
the Algorithm 2 (LMB Algorithm).

Time complexity. The LMB algorithm spends its major
time on computing the eigenvalues. This can be done with
Implicitly Restarted Lanczos Method which has worst-case



time complexity O(mKh + nK2h + K3h) where K is the
number of eigenvalues to be computed, and h is the number
of iterations for the eigenvalue algorithm to converge [14].
Given the eigenvalues, the rest of LMB takes only O(n) time
in the worst-case.

The number of required eigenvalues K is small in our
algorithm. At beginning, the algorithm computes ¢ = [2/[]
smallest eigenvalues and the number of computed eigenvalues
is double each time if necessary. In our experiments, the
number of needed eigenvalues is 2/5 in most cases. For
example, to bound the number of necessary links whose
removal disrupts 90% pairwise connectivity we only need
to compute about 20 smallest eigenvalues of the Laplacian
matrix. We found the LMB algorithm to be scalable, taking
linear time with respect to the number of nodes and edges.

C. Time and quality trade-off

On one hand, the ILB algorithm (Algorithm 1) provides
a better bound than that of the LMB algorithm. The reason
is that ILB solves for exact solutions of the QP while LMB
only targets a relaxation of the QP. However, the difference
between the output of two algorithms is negligible small and
either zero or one 2 in our experiments.

On the other hand, the LMB has much more practical time
complexity. The ILB has high time complexity O(n*) and can
only applied for network up to few thousand nodes. In contrast,
LMB takes only linear time to compute its competitive bound.
Overall for small and medium networks, one can apply ILB
algorithm (or other mathematical approaches [5]) to compute
the lower-bound, however, for large networks LMB remains
the only choice.

IV. EXPERIMENTAL RESULTS

We compute our spectral lower-bound for both synthetic and
real-world networks and compare the results with the optimal
results whenever possible.

A. Synthetic Networks

We generate the synthetic networks following well-known
complex network models. All networks have 100 nodes and
around 300 edges. The details of those networks are as follows.

e Erdos-Reyni: A random graph of 100 vertices and 300
edges following the Erdos-Reyni model [15].

« Barabsi-Albert: A power-law model using preferential
attachment mechanism [10].

e Small world: A random graph following Watts and
Strogatz model [16]. The dimension of the lattice is set
to be 3 and the rewiring probability is 0.3.

The optimal solutions are found with the integer programming
using the sparse metric technique in [5]. The technique in [5] is
also applied to compute the lower-bound given by solving the
linear programming. The results produced by ILB and LMB
algorithms are identical (after rounded up) and plotted under
the same name “spectral bound”. All algorithms were run on a

2Both algorithms round up their results to the nearest integers.

PC with Intel Xeon 2.93 Ghz processor and 12 GB memory.
The integer programming (IP) and the linear programming
(LP) are solved with the mathematical optimization package
GUROBI 4.5.

The minimum number of links whose removal causes cer-
tain level of disruption, are shown in Fig. 1. For all three
different networks, solving LP gives good lower-bound on the
minimum number of links to remove. The spectral bounds
are much worse than the LP bounds in the random and
small-world networks; however, the spectral bound closely
approaches the LP bounds and the optimal solution when the
network has the power-law topology of the Barabasi model.

As shown in Fig. 2, there is a big gap between the running
time of the spectral bound and those of LP and IP. Note that
all the spectral bound are computed at once, i.e., the provided
running time is the total running time over all different values
of 5. Even though the running time of the spectral bound is
still thousand of times faster than LP and IP.

Overall, while IP is best used for small networks, and LP
can be used for medium networks of few thousand nodes,
the only feasible method to compute the lower-bound in large
networks is the spectral bound. One of the attractive aspect of
the LMB spectral bound, described in the Alg. 2, is that the
algorithm can be easily implemented in a distributed manner.
The most time-consuming part of the algorithm is to compute
the few smallest eigenvalues. This can be done distributedly
with the existing mathematical software [17].

TABLE I: Sizes of the investigated networks and the corre-
sponding running time to compute the lower-bound
| CAIDA AS  Oregon AS P2P Gnutella

Vertices 8,020 11,174 22,663
Edges 36,406 23,410 109, 386
Time (s) 1530.1 321.0 207.9

B. Real-world Datasets

We compute the spectral lower-bounds for real networks are
shown in Fig. 3. Neither LP nor IP can run on these networks
due to both time and memory limits. The studied networks are

o Gnutella P2P: Gnutella peer-to-peer network from from
Aug. 25, 2002 [18]. Nodes represents hosts in the network
and edges are the connections between the Gnutella hosts.

o Oregon AS: AS peering information inferred from Ore-
gon route-views between Mar. 31 and May 26, 2001 [18].

o« CAIDA AS: The CAIDA AS Relationships Datasets,

from September 17, 2007 [18].
The lower-bounds in Fig. 3 indicates that it is difficult to

destroy major connectivity in communication networks. For
examples, even after removing 369 links at least 50% node
pairs in the CAIDA AS network stay connected; and to bring
down the connectivity level in the Gnutella P2P network to
15% one has to destroy at least 960 links. Due to low edge
density, the Oregon AS network tends to be more vulnerable
than the other two networks. Nevertheless, uterly disrupting
the connectivity in the network to 5% level would require
removing more than 763 links.
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networks found with the LMB algorithm.

V. CONCLUDING REMARKS

Assessing network for topological vulnerabilities is an im-
portant and challenging problem. We present in this paper a
spectral lower-bound method for the link vulnerability assess-
ment problem, S-edge disruptor. The new lower-bound method
is useful in both comparing the vulnerability of different
networks and providing guarantees for other heuristics assess-
ment methods. In addition, the Lagrange multiplier method
to compute the lower-bound requires only a portion of the
eigenvalues and is applicable for large-scale networks.
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