An Adaptive Approximation Algorithm for Community
Detection in Dynamic Scale-free Networks

Thang N. Dinh, Nam P. Nguyen, and My T. Thai
Dept. of Comp. & Info. Sci. & Eng.
University of Florida, Gainesville, Florida 32611
Email: {tdinh, nnguyen, mythai} @cise.ufl.edu

Abstract—We introduce A®CS, an adaptive framework with
approximation guarantees for quickly identifying community
structure in dynamic networks via maximizing Modularity Q.
Our framework explores the advantages of power-law distri-
bution property, is scalable for very large networks, and more
excitingly, possesses approximation factors to ensure the quality
of its detected community structure. To the best of our knowl-
edge, this is the first framework that achieves approximation
guarantees for the NP-hard modularity maximization problem,
especially on dynamic networks. To certify our approach, we
conduct extensive experiments in comparison with other adaptive
methods on both synthesized networks with known community
structures and real-world traces including ArXiv e-print citation
and Facebook social networks. Excellent empirical results not
only confirm our theoretical results but also promise the practical
applicability of A>CS in a wide range of dynamic networks.

Index Terms—Adaptive approximation algorithm, Commu-
nity structure, Modularity, Social networks;

I. INTRODUCTION

Many complex networks in practice, despite their diversity
in physical infrastructures and internal interactions, appear to
display some ubiquitous features, such as the small-world and
scale-free phenomena [15], the power-law degree distribution,
i.e., the fraction of nodes having degree k is proportional
to k=7 where v is the exponent parameter [2][3], and more
importantly, the property of containing community structure.
That is, they contain multiple groups of nodes with more in-
teractions within a group and less connections among groups.
For instance, a community in biology networks often consists
of proteins, genes or subunits with functional similarity. In
online social networks (OSNs), a community can be illustrated
as a group of users having a common interest, such as music,
movies or photography. Community detection, as a result, is
the classification of network nodes into communities so that
the network’s natural structure is properly displayed. Detecting
this special structure finds itself extremely useful in deriving
social-based solutions for many network problems, such as
forwarding and routing strategies in communication networks
[81, [17], [11], or sybil defense [19], [18].

Complex networks in reality, such as OSNs, often evolve
heavily over time and frequently experience topological
changes during their evolution. In the sense of OSNs, such
as Facebook, Twitter or Google+, these changes are often
introduced by users joining in or leaving a particular group
or community, by friends and friends connecting together, or
by new people making friend with each other. Though any of

these events seems to have a little effect on the local structure
of the network on one hand; the network dynamics over a long
period of time on the other hand, may significantly transform
the current community structure to a totally different one, thus
raises a natural need of reidentification. However, the rapid and
unpredictably changing topologies of these networks makes it
an extremely complicated yet challenging problem.

Several approaches have been suggested for community
structure detection in dynamic networks [17][13][14][7]. How-
ever, they encounter the following crucial limitations: (1)
their execution time is not proportional to only the network
changes. As a result, they are not capable for very large scale
social networks, and more important (2) they do not possess
any performance guarantee to ensure the quality of detected
communities. This is the most challenging feature one can ask
for an algorithm of this kind since local adaptive procedures
may not be able to reflect changes in network topology over
a long duration, as observed in [17]. In addition, most of
these methods do not take advantage of power-law distribution,
which also is a common property of complex networks.

In this paper, we propose A3CS, an adaptive algorithm with
approximation guarantee for quickly identifying community
structure in OSNs via maximizing Modularity - a widely
accepted measure in community detection field [12]. The ex-
citing features that differentiate A>CS from the other adaptive
algorithms are (1) it possess approximation factors to ensure
the quality of the detected community structures, and (2) it
explores the advantages of power-law distribution, is scalable
for very large networks and can be easily extended to directed
networks with the same performance guarantee. In particular,
A3CS is optimal up to a constant factor p ~ c (47('1)1) when the
network’s power exponent v > 2, which is the most popular
scenario [9][3]. To the best of our knowledge, our proposed
algorithm is the first approach that achieves approximation
guarantees for the NP-hard Modularity maximization problem
[5], especially on dynamic networks. Finally, we conduct
extensive experiments in comparison with other methods on
both synthesized networks with known community structures
and real-world traces including ArXiv e-print citation and
Facebook social networks. Excellent empirical results not
only confirm our theoretical results but also the practical
applicability of our proposed framework A3CS in a wide range
of OSN .

Related work. The design and employment of adaptive

algorithms to detect network community structure have at-
tracted a lot of attention recently, and many methods have been
proposed in the literature. For instance, algorithms based on
optimizing local gained modularity [17], based on nonnegative
matrix factorization [14], by compression of network modules
[8] or by finding groups of nodes that have significant statisti-
cal features in the network [13]. However, designing adaptive
algorithms that possess approximation ratios to guarantee their

performance has not much been studied.
II. PRELIMINARIES

A. Network Model

A network is represented by an undirected unweighted
graph G = (V, E) with n = |V| vertices and m = |E| edges.
The adjacency matrix of G is denoted by A = (A;;), where
A;; = 1if 4 and j share an edge and A;; = 0 otherwise.
We also denote the degree of vertex ¢, the number of edges
incident at 4, by k;.
B. Community structure and Quality Measurement

Given a community structure C = {C',Cs,...,C;} where

C; C V is the it community in the network, the modularity
[16], denoted by @, is defined as

1 iy

- A — . 1
QC) =5 Z(5=)8 M
where 0;; = 1 if ¢ and j are in the same community, and
0 otherwise. The modularity values can be either positive or
negative and the higher modularity values indicate stronger
community structure. The maximizing modularity problem

asks to find a division which maximize the modularity value.

C. Dynamic network model

A dynamic network G is represented by a series of time de-
pendent network snapshots G = {G(©) G ... G(*)}, where
G® = (V) E®) is the snapshot of the network at the time
point 0 < ¢ < s. The change between two consecutive snap-
shots G and G*~1) is denoted by AG®) = (AV) AE®)
where AV = V® g V=1 and AE® = E®) g B-1),
Here, the notation © denotes the symmetric difference between
two sets. Equivalently, the dynamic network can also be given
by the original snapshot G(°) and the subsequence changes in
the network i.e. G = (GO, AGM), ..., AG®).

Adaptive Community Detection Problem. (ACD) Given a
dynamic network G = (GO, AG™M ... AG®)), we need to
find community structure in each network snapshot adaptively.
That is the community structure at time point ¢ is detected
base on the community structure at the time point ¢t — 1 and
the change in the network AG®) rather than recomputing the
community structure in the snapshot G®) from scratch.

D. Adaptive Approximation Algorithm.

Adaptive Algorithm. In an adaptive algorithm, the new
solution is found by updating the current solution according to
the changes only, rather than recomputing a new solution from
scratch. An adaptive algorithm processes the input changes
in a serial fashion, assuming these changes arrive in batch
whereas an offline algorithm is provided with the whole
network information in the first place (for example, community
detection in a static network).

Adaptive Approximation Algorithm. In a p-adaptive approx-
imation algorithm, the solution at any time point ¢ will be
within a factor p times the optimum objective value, provided
the whole input from beginning to the time point ¢ available at
once. For example, a p-adaptive approximation algorithm for
the ACD problem will find at any time point £ a community
structure with modularity at least pQgtp)t, where Q((;;)t is the
maximum modularity of any community structure in G*). The
factor p is called the adaptive approximation factor, and is less
than one for maximization problems and greater than one for
minimization problems.

III. A3CS: ADAPTIVE ALGORITHM FOR
COMMUNITY STRUCTURE IN DYNAMIC NETWORKS

In this section, we present A®CS, the adaptive algorithm
to detect community structure in dynamic networks together
with its analysis on time complexity and several heuristics to
further enhance the algorithm.

A. Algorithm Descriptions

A3CS, presented in Algorithm 1, is a meta-algorithm that
first calls A-Base algorithm to find the community structure
C9) of the first network snapshot G(©), then iteratively finds
community structure C'®) at time point ¢ by invoking the A-
Adaptive algorithm (Algorithm 3). The two algorithms A-
Base and A-Adaptive construct the community structure via
assigning values for two arrays label[i] and follow]i].

Algorithm 1. A3CS - Adaptive Approx. Alg. for CS
1. ¢© = A-Base(G?)

2. for t =110 s do

3. C¢® = A-Adaptive(C 1, AG™)

The meaning of label and array is as follow. Each node @
is labeled with either leader, follower, or unlabeled (also
denoted with @&). For a node i labeled with follower,
followli] is the name of the leader that i follows. Precisely,
we have three cases a) follow[i] = i if label[i] = leader
b) follow[i] = j # i if label[i] = follower & i follows j,
otherwise ¢) follow[i] = label[i] = (. At any time point ¢,
the community structure is given by the union of two types of
communities: 1) all followers that follow the same leader are
assigned into the same community; and 2) each unlabeled node
forms a singleton community of size one. At the heart of the
proposed algorithms, the assigned labels satisfy the important
properties stated in the following lemma.

Lemma 1: At the end of the algorithms A-Base and A-
Adaptive, the following properties hold.

1. All low-degree nodes i.e., nodes with degree at most dy for
some predefined constant dy > 0, are labeled either with
leader or follower.

2. All followers are low-degree nodes.

3. Each leader is followed by at least one follower; and each
follower follows exactly one leader. Thus followers will
not follow each other or unlabeled nodes.

The intuition to this lemma will be explained through the
presentation of A-Base and A-Adaptive.

Algorithm 2. A-Base

1. labelli] = @, follow[i] = @ Vi =1..n

2. Sorted nodes in non-decreasing order of degree.
3. for each vertex ¢ with k; < dgo do

4. if label[i] = @ then

5 FOLLOW_NEIGHBOR()

6. Return C*) = (follow)

A-Base. (Alg. 2) This algorithm finds the community
structure of G'(°) via labeling nodes in the network. Nodes are
first sorted in a non-decreasing order of degree, and then, each
low-degree and unlabeled node 7 selects one of its neighbors
to follow using the FOLLOW_NEIGHBOR algorithm, (Alg. 4a) in
which the label[i] and the follow]i] are assigned accordingly.
We can verify that all the properties in Lemma 1 hold at the
end of A-Base.

Algorithm 3. A-Adaptive (C(*~1, AG™)

1. for each edge (u,v) € AE® do

2 Update degree of nodes u and v

3. for each vertex ¢ appears in AG® do

4. if (ki < do) & (labelli] = &) then

5. FOLLOW_NEIGHBOR(i)

6. elseif (k; > do) & (label[i] = follower) then
7. UNFOLLOWC(i)

8. Return CY = (follow)

A-Adaptive. (Alg. 3) This algorithm finds the community
structure at time point ¢ based on C*~1) and AG® - the
previous community structure and the changes in the network.
After updating the node degrees (lines 1 to 2), the algorithm
checks all nodes that appear in AG(®) and corrects all possible
“mis-labeling” caused by the degree changes. Two cases of
“mis-labeling” are 1) low-degree but unlabeled nodes resulted
from removing edges (or adding new nodes), and 2) follower
nodes with degree higher than dy resulted from adding new
edges/nodes. The two “mis-labeling” cases are corrected using
FOLLOW_NEIGHBOR and UNFOLLOW algorithms, as shown in
lines 4 to 7.

Algorithm 4a. FOLLOW_NEIGHBOR(i)

1. labelli] = follower
2. if 35 € N(¢) : label[j] # follower then
3. if label[j] = @ then label[j] = leader

4 follow[i] = j

5. else

6. Select a random j € N (%)

7 UNFOLLOW(j)

8 follow[i] = j,label[j] = leader
9. Update the modularity value.

FOLLOW_NEIGHBOR. (Alg. 4a) This is the fundamental pro-
cedure in A3cs. Given a node ¢, the algorithm identifies
a neighbor j so that ¢ can follow j without violating the
properties of Lemma 1. Lines 3 and 4 explore the case when
we can find a non-follower neighbor j of <. When all neighbors
of ¢ are followers, we first use the UNFOLLOW algorithm to
make a neighbor j of ¢ unlabeled or labeled it with leader,
and only then we can let ¢ follow j (lines 6 to 8).

Algorithm 4b. UNFOLLOW(i)
Let j = followli], label[i] = &

if j has no followers then
if k; < do then
follow[j] = i, label[j] = follower
labelli] = leader

else label[j] = @
Update the modularity value.

NN kR L=

UNFoLLow. (Alg. 4b) As briefly mentioned, the algorithm
UNFOLLOW is invoked when we need to stop a node i from

following its current leader j. This can usually be done by
simply unlabeling ¢. The interesting case happens when i is
the only follower of j and unlabeling ¢ will make j a leader
without followers (opposing the third property in Lemma 1).
We handle this case by either unlabeling j or swapping ¢ and
7’s labels together with making j follow ¢ (lines 3 to 6).

B. Time complexity

We can verify that FOLLOW_NEIGHBOR(:) and UNFOLLOW(4)
both take O(k;) times. In the worst case, the A-Base touches
all nodes in G©); thus the time complexity of A-Base is given
below.

Lemma 2: The time complexity of A-Base (Alg. 2) is
OV + |E©)).

Similarly, A-Adaptive will touch all nodes in AG® in the
worst case. Thus we have the following time complexity.

Lemma 3: A-Adaptive (Alg. 3) has a linear time complex-
ity w.rt. the total degree of nodes in AG")

The time complexity of A-Adaptive , the adaptive part of
A3CS, is highly desirable and we probably cannot hope for
an adaptive algorithm with better time complexity. The time
complexity does not involve any global parameters such as
|V®)|, the number of nodes or |E(*)|, the number of edges
in the network at time point ¢. This is extremely helpful in
very large networks of billion of nodes/edges in which the
changes only happen within a small local part of the network.
In comparison, existing methods for dynamic community
structure [14], [13] involve at least Q(|[V®)| + |E®)) time
complexities whenever the community structure need to be
updated. Hence they are far more time-consuming than an
adaptive algorithm such as A3CS and QCA [17].

C. Parameter Selection & Further Optimization

1) Automatic selection of dy: Selecting parameter dy is
an important part of A3CS. For the analysis of the adaptive
approximation ratio in subsection III-A, it is sufficient to select
dy as a large constant that relies only on +. In an actual imple-
mentation of the algorithm, dy should be selected to maximize
modularity () within A-Base. This can be done by trying all
possible values of do from 1 to ng = |V(?)], and selecting
dy that maximizes (). This approach can be done without
increasing time complexity of A-Base. Recall that nodes are
sorted in a non-decreasing order of their degrees. Therefore,
if we first set dg = ng and apply FOLLOW_NEIGHBOR on all
unlabeled nodes, we will eventually iterate through all possible
values of dy. All we need to do is to remember the vertex 4 that
associates with the maximum modularity and select dy = k;.

Lemma 4: Automatic selection of the best dy can be done
in O(|V)] 4 |E))).

2) Further Optimization: We can further optimize the
A3CS algorithm without changing its properties stated in
Lemma 1. First, we can derandomize the selection of neigh-
bor inside FOLLOW_NEIGHBOR by selecting the neighbor that
maximizes the local modularity gain. Second, each community
can be abstracted into a single meta-node whose degree equals
the total degree of nodes inside that community to obtain an
abstract network [4], [8]. We then apply local search [16] on
the abstracted network to increase the overall modularity.

D. Performance Guarantee in Power-law Networks

In this subsection we consider power-law networks with
the power exponents 7 > 2. This network class covers a
wide range of scale-free networks of interest, since the power
exponents y in known scale-free networks typically satisfy
2 < 7 < 3 [3][1][9]. The performance of the A3CS algorithm
in networks with power-law degree sequences is stated in the
following theorem.

Theorem 1: For scale-free networks with v > 2, the mod-
ularity value of community structure C'*) at time point t,

discovered by A3CS is at least g(C»y(z)l) — €. Thus, A3CS is a

(Cé(z)l) — e) -adaptive approximation algorithm for the ACD
problem, where € > 0 is an arbitrary small constant.

According to Newman and Girvan [10], modularity values
between 0.3 and 0.7 indicate a strong community structure
and higher values are rare. For scale-free networks with v >
Yo ~ 2.23, by Theorem 1, the modularity value is at least 0.3.
Large scale-free networks with v = 2.48, e.g., the Internet at
router and intra-domain level, will have community structure
with the modularity at least ggjg; ~ 0.5, which means A3CS
is a %—adaptive approximation algorithm in that case.

Remarks. The simplicity of A2CS enables its extension
to directed networks with only subtle changes. As long as
the in-degree (or the out-degree) sequence follow a power-law
distribution, we can obtain the adaptive approximation factor.
The key difference to the undirected case is that we either
follow only incoming links or only outgoing edges. As the
consequence, the adaptive approximation factor is reduced by
half. In addition, the algorithm can be easy implemented in
a distributed manner which is a huge advantage for ad-hoc
networks.

IV. EXPERIMENTAL RESULTS

In this section, we first validate the performance our A3CS
on different synthesized networks with known community
structures (or groundtruths), and then present the empirical
results on popular real world traces arXiv eprint citation [6]
and Facebook social networks [18]. To certify the perfor-
mance of our algorithms, we compare A3CS to other adaptive
community detection methods including (1) QCA framework
suggested by Nguyen et al. [17], (2) FacetNet algorithm
proposed by Lin et al. [14], (3) MIEN algorithm proposed
by Dinh et al. [8], and (4) OSLOM method suggested by
Lancichinetti et al. [13].

A. Results on synthesized networks

Setup. We use the well-known LFR benchmark [12] to
generate 40 networks with 10 snapshots. Parameters are: the
number of nodes N = {1000, 5000}, the mixing parameter
= {0.1,0.3} controlling the overall sharpness of the commu-
nity structure. To quantify the similarity between the identified
communities and the ground truth, we adopt a well known
measure in Information Theory called Normalized Mutual
Information (NMI) [12]. We want to demonstrate (1) quality of
communities detected by A3CS (and other methods) through
NMI scores, and (2) the modularity values achieved by ACS
in comparison with those of the ground truths.

Results. The NMI and Modularity values are reported
in Figs. 1 and 2, respectively. NMI and modularity values
obtained by A3CS, in general, are very high and competitive
with those of OSLOM and QCA, while are much better than
those produced by MIEN and FacetNet methods. In average,
NMI scores achieved by A3CS are only about 5% lag behind
QCA and OSLOM, and are from 16.1% and 24.8% better
than FacetNet and MIEN on networks with N = 2500 and
N = 5000 nodes, respectively. Moreover, the performance of
FacetNet and MIEN seems to be unstable as their NMI scores
degrade quickly, especially when the network community
structure becomes stochastic and unclear (as ¢ = 0.3 in
subfigures 1b and 1d). The NMI scores of our framework, on
the other hand, appear to stay wealthy, even when p = 0.3.
This implies that network communities revealed by our A3CS
framework are highly similar to those contained in the ground
truths, and also are highly competitively with those obtained
by other methods.

In terms of modularity, the values obtained by A3CS, QCA
and OSLOM methods are very similar to each other and
differ insignificantly from those of the ground truths, whereas
the values attained by MIEN and FacetNet are much lower,
especially on networks with unclear community structure of
u = 0.3. In average, the modularity values of A3CS tend to
tangle with those of QCA while NMI scores are just about 2%-
3% less than the ground truths. Note that the good behaviors
of OSLOM and QCA are not really surprising since they are
current best adaptive algorithms for dynamic networks; how-
ever, the highly competitively performance A3CS is indeed
very impressive and strongly encouraged, especially when
A3CS is the adaptive algorithms with approximation ratios to
guarantee its performance. Moreover, as we will show next,
our A3CS is more scalable for larger networks than QCA or
OSLOM methods as it is significantly less time consuming.
These experiments on generated network conclude the quality
of communities detected by A3CS and give us the confidence
to its behavior in real-world traces.

B. Results on real-world traces

We next present the results of A3CS algorithms on real
world dynamic traces including arXiv e-print citation [6], and
Facebook social networks [18]. Due to the lack of community
ground truths corresponding to these traces, we report the
performance of the aforementioned algorithms in reference
to the static method proposed by Blondel et al. [4], whose
goal also aims to optimize () and whose performance has
been verified in the literature [12]. The network snapshots
are constructed following [17]. All adaptive methods take into
account that basic structure and run on the network changes
whereas the Blondel method is executed on the whole snapshot
at each time point. In this experiment, FacetNet method does
not appear to complete the tasks in a timely manner, and is
thus excluded from the plots.

1) Modularity: It reveals from Fig. 3a and 4a that in general
modularity values obtained by A3CS are highly competitive,
if not to say the highest, with those of QCA, MIEN and the
static Blondel methods, while are far better than those obtained

L Sy -4
a. 5. R

N
N

A A
02 1 1 1 OSLOM 02 OSLOM

Faceitel Faceitel —+

NS o | | | S o

N

e o e o

M

qcA
02 1 1 1 0SLOM o0z
FacetNet —+
EN

FaceiNet —+
MEN

cs ~o

o 2 4 6 8 10 o 2 4 6 8 10
Time points Time points

(a) N =1000, = 0.1 (b) N =1000, 4 = 0.3

0 2 4 6 s 10 o 2 4 6 8 10
Time points “Time points

(¢) N =5000,p =0.1 (d) N =5000,u =0.3

Fig. 1: Normalized Mutual Information (NMI) scores on synthesized networks with known communities

1

Modulariy

OsLOM
aca
FacetNet —+
MEN

A'CS B
GroundTrith .

1 1

osLoM osLoM
QcA

0z FacelNet —+ FaceiNet —+
EN MEN

A°CS - A%CS -
GroundTryth - GroundTryth -

o 2 4 6 8 10 o 2 4 6 8 10
Time points “Time points

(@) N = 1000, & = 0.1 (b) N = 1000,z = 0.3

0 2 4 6 8 10 0 2 4 6 8 10
“Time points ‘Time points

(¢c) N =5000,p=0.1 (d) N = 5000, =0.3

Fig. 2: Modularity values on synthesized networks with known communities

Blondel +
OSLOM
QCA

i‘nni
et T N
T w0l NGS o

T AReSeeedis

10 5 20 25
o0

Modularty
I
§
H
&

of communities

Blondel -+
OSLOM
QCA
MIEN
ACS o N
o 5 10 is 20 25 o 5 10 15 20 5

(a) Modularity (b) Running Time(s)

Fig. 3: Simulation results on ArXiv e-print citation network.
) i Blondel ~+
' gogg .-‘----re"."‘"""q"? ‘ 700 OST%%E .
* ggé ' 600
s Ul J
) " 300 o; .
Lo

(a) Modularity (b) Running Time(s)

Fig. 4: Simulation results on Facebook social network.
by OSLOM. In particular, the modularity values produced by
A3CS are around 97% to 100% those of Blondel method, and
from 6% to 10% higher than those of MIEN, and are up to
1.5x better than OSLOM.

2) Running time: Figures 4b and 3b describe the running
time of the three methods on the arXiv and Facebook data
sets. As shown in these figures, A2CS outperforms all other
dynamic methods as well as the static Blondel method on
the running time: it requires as much as nothing to complete
analyzing each network snapshot. MIEN and OSLOM meth-
ods consume a huge amount of time to update the network
structure as the network evolve. This reveals that, OSLOM
may not be ideal for analyzing communities on large networks
such as Facebook.

In conclusion, high NMI and modularity scores together
with extremely fast executing times on all test cases confirm
the effectiveness of our A3CS algorithm, especially when
applied to real world networks where a centralized algorithm,
or other dynamic algorithms, may not be able to detect a good

network community structure in a timely manner.
V. ACKNOWLEDGEMENT

This work is partially supported by NSF CAREER 0953284.

REFERENCES
(1]
[2]

R. Albert, H. Jeong, and A. Barabasi, “Error and attack tolerance of
complex networks,” Nature, vol. 406, 2000.

A. Barabasi, R. Albert, and H. Jeong, “Scale-free characteristics of
random networks: the topology of the world-wide web,” Physica A, vol.
281, 2000.

A. L. Barabasi, H. Jeong, Z. Nda, E. Ravasz, A. Schubert, and T. Vicsek,
“Evolution of the social network of scientific collaborations,” Physica
A: Statistical Mechanics and its Applications, vol. 311, 2002.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, 2008.

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “On modularity clustering,” IEEE Transactions on
Knowledge and Data Engineering, vol. 20, no. 2, 2008.

A. data, “www.cs.cornell.edu/projects/kddcup/datasets.html,” KDD Cup
2003, Feb 2003.

T. N. Dinh, I. Shin, N. K. Thai, M. T. Thai, and T. Znati, “A general
approach for modules identification in evolving networks,” in Dynamics
of Information Systems, M. J. Hirsch, P. M. Pardalos, and R. Murphey,
Eds. Springer New York, 2010, vol. 40, pp. 83-100.

T. N. Dinh, Y. Xuan, and M. T. Thai, “Towards social-aware routing in
dynamic communication networks,” IPCCC, 2009.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” ser. SIGCOMM ’99, *99, pp. 251-262.
M. Girvan and M. E. Newman, “Community structure in social and
biological networks.” PNAS, vol. 99, no. 12, 2002.

P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forward-
ing in delay-tolerant networks,” Mobile Computing, IEEE Transactions
on, vol. 10, no. 11, pp. 1576 —1589, nov. 2011.

A. Lancichinetti and S. Fortunato, “Community detection algorithms: A
comparative analysis,” Phys. Rev. E, vol. 80, 2009.

A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato, “Finding
statistically significant communities in networks,” PLoS ONE 6, 2011.
Y. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet: a
framework for analyzing communities and their evolutions in dynamic
networks,” WWW, 08.

M. E. J. Newman, “The Structure and Function of Complex Networks,”
SIAM Review, vol. 45, no. 2, pp. 167-256, 2003.

——, “Modularity and community structure in networks,” Proceedings
of the National Academy of Sciences, vol. 103, 2006.

N. Nguyen, T. Dinh, Y. Xuan, and M. Thai, “Adaptive algorithms
for detecting community structure in dynamic social networks,” in
INFOCOM, 2011 Proceedings IEEE, april 2011, pp. 2282 —2290.

B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in 2nd ACM SIGCOMM
Workshop on Social Networks, 2009.

H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
defending against sybil attacks via social networks,” ser. SIGCOMM
’06. New York, NY, USA: ACM, 2006, pp. 267-278.

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]

(11]

[12]
[13]

[14]

[15]
[16]

[17]

[18]

[19]

