PCPs and Inapproxiability CIS 6930

Sep 15, 2009

Lecture MAX k-FUNCTION SAT

Lecturer: Dr. My T. Thai Scribe: Thang N. Dinh

Problem 1 Given n Boolean variables x_1, x_2, \ldots, x_n and m functions f_1, \ldots, f_m each of which is a function of k of the boolean variables, find a truth assignment to x_1, \ldots, x_n that maximizes the number of functions satisfied. Here k is a fixed constant (not part of input).

Lemma 1 There exists a constant k for which there is a polynomial-time reduction from SAT to MAX k-FUNCTION SAT that transforms a boolean formula ϕ to an instance I of MAX k-FUNCTION SAT such that:

- If ϕ is satisfiable, OPT(I) = m and
- If ϕ is not satisfiable, then $OPT(I) < \frac{1}{2}m$

Proof: Note that a E3SAT formula φ on m clause can be seen as a set of m k-functions where k=3. Hence, the Theorem 3 on GAP-MAX-E3SAT_{1,s} is a stronger result than this lemma. In other words, the proof presented here is actually a subpart of the proof of the Theorem 3.

We first show that there is a polynomial time reduction from an instance G of SAT to an instance I of MAX k-FUNCTION SAT. Since SAT \in NP, there is a verifier $V \in PCP(clogn,q)$ for SAT where c,q are fixed constants. Given a proof π , for each possible random string r define boolean function f_r as the restriction of acceptance/rejection of V to the corresponding q bits. Set k=q and I consists of f_r for all possible random strings r. Each function consists of at most q bits (variable). Moreover, there are at most n^c different random string r, we have at most poly(n) number of functions f_r . Therefore, I is an instance of MAX k-FUNCTION SAT with size at most poly(n). Second, we prove that the reduction satisfies the two conditions:

- Completeness. If $G \in SAT$, there exists a proof π such that $\text{Prob}[V(G, \pi) = YES] = 1$. Thus, π is also a truth assignment satisfies all m k-functions.
- Soundness. If $G \in SAT$, for every proof π , $Prob[V(G,\pi) = YES] < \frac{1}{2}$. Thus there are always less than $\frac{1}{2}m$ satisfied functions i.e. $OPT(I) < \frac{1}{2}m$.

References

[1] V.V. Vazirani, Approximation Algorithms, Springer, 2001.

MAX k-FUNCTION SAT-1