On Modularity Clustering

Presented by:
Group III
(Ying Xuan, Swati Gambhir & Ravi Tiwari)

Modularity

• A quality index for clustering a graph G=(V,E)

$$q(C) := \sum_{C \in C} \left[\frac{\left| E(C) \right|}{m} - \left(\frac{\left| E(C) \right| + \sum_{C' \in C} \left| E(C, C') \right|}{2m} \right)^{2} \right]$$

This is equivalent to:

$$q(C) := \sum_{C \in C} \left[\frac{\left| E(C) \right|}{m} - \left(\frac{\sum_{v \in C} \deg(v)}{2m} \right)^{2} \right]$$

Contribution of the Paper

- Integer Linear Program Formulation
- Fundamental Observations & Counterintuitive Behavior
- NP- Completeness of Maximizing Modularity Problem
- A Greedy Algorithm
- Optimality Results

Maximizing Modularity via Integer Linear programming

Given a graph G=(V,E), n=|V| nodes, n^2 decision variables $X_{uv} = \{0,1\}$

$$Max: q(C) := \frac{1}{2m} \sum_{(u,v) \in V^2} \left[E_{uv} - \frac{\deg(u) \deg(v)}{2m} \right] X_{uv}$$

St:

$$\forall u: X_{uu} = 1$$

$$\forall u, v : X_{uv} = X_{vu}$$

$$\forall u, v, w : X_{uv} + X_{vw} - 2X_{uw} \le 1$$

$$\forall u, v : X_{uv} \in \{0,1\}$$

Fundamental Observations

If G is an undirected and un-weighted graph and C is a clustering then:

$$-1/2 \le q(c) \le 1$$

- When all the edges are inter-cluster q(C)=-1/2, eg: Bipartite graph G=(X:Y,E) with cluster X and Y
- When all the clusters cliques with no inter-cluster edges q(C)=1, when number of clusters are infinite

Fundamental Observations(Contd)

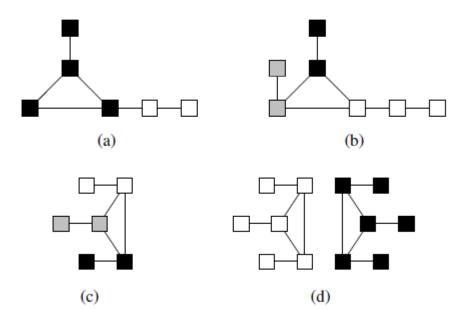
Clustering with maximum modularity has no cluster with single node having degree 1.

Fundamental Observations(Contd)

In clustering with maximum modularity each cluster consist of a connected sub-graph

Counterintuitive Behavior

- Non-locality
- Sensitivity to Satellite
- Scaling Behavior



NP-Completeness

• Problem 1(Modularity):

Given a graph G and a number K is there a clustering C of G, for which q(C) > = K

• Problem 2(3-Partition):

Given 3k positive integers numbers a_1, a_2, \ldots, a_{3k} such that the sum $\sum_{i=1}^{3k} a_i = kb \text{ and } b/4 < a_i < b/2 \text{ for an integer } \mathbf{b} \text{ and for all } i=1,2,\ldots 3k \text{ is there a partition of these numbers into } k \text{ sets, such that the numbers in each set sums upto } b$?

- An instance $A = \{a_1, a_2, ..., a_{3k}\}$ of 3-Partition can be transformed in to an instance (G(A), K(A)) of Modularity
- G(A) has a clustering with modularity at least K(A), if and only if a_1, a_2, \ldots, a_{3k} can be partitioned into k set of sum $b = \frac{1}{k} \sum_{i=1}^{3k} a_i$

- Construct a graph G(A) with k cliques $H_1, H_2, ..., H_k$ of size $a = \sum_{i=1}^{3k} a_i$ each.
- For each element $a_i \in A$ introduce a single element node. And connect it to a_i nodes in each of the k cliques.
- Each member of clique is connected to exactly one element node.
- Each clique node has degree a, each element node $a_i \in A$ has a degree $\mathbf{ka_i}$.
- The number of edges in G(A) is m=(k/2)a(a+1)

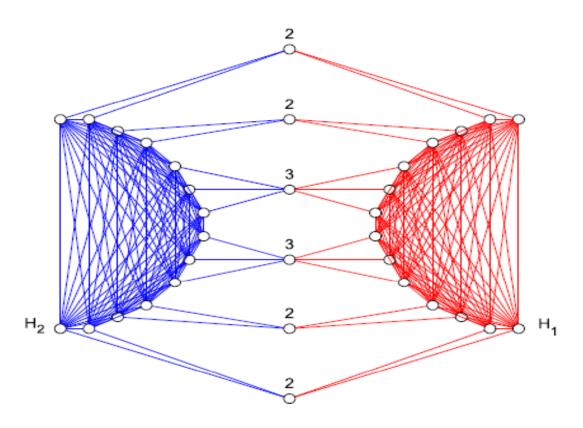


Fig. 2. An example graph G(A) for the instance $A = \{2, 2, 2, 2, 3, 3\}$ of 3-Partition. Node labels indicate the corresponding numbers $a_i \in A$.

Lemma 4.1:In maximum modularity clustering of G(A) none of the cliques $H_1, H_2, ..., H_k$ split.

- Clustering C splits a clique $H \in \{H_1, H_2, ..., H_k\}$.
- $\{C_1, C_2, ... C_r\} \in C$ are clusters that contains the nodes of H.
- n_i is the number of nodes of H contained in cluster C_i
- $m_i = |E(C_i)|$ is the number of edges between nodes in C_i .
- f_i is the number of edges between the nodes of H and C_i .
- d_i is the sum of degree of all nodes in C_i .

The contribution of $\{C_1, C_2, ... C_r\} \in C$ to q(C) is:

$$\frac{1}{m} \sum_{i=1}^{r} m_i - \frac{1}{4m^2} \sum_{i=1}^{r} d_i^2$$

Rearranging nodes in $\{C_1, C_2, ... C_r\} \in C$ into clusters $C', C_1', C_2', ... C_r'$ such that:

- C'contains the nodes of H
- And each C_i' contains the remaining nodes of C_i

• The contribution of $C', C_1', C_2', \dots C_r'$ to q(C') is given as

$$\frac{1}{m} \sum_{i=1}^{r} \left(m_i + \sum_{j=i+1}^{r} n_i n_j - f_i \right) - \frac{1}{4m^2} \left(a^4 + \sum_{i=1}^{r} (d_i - n_i a)^2 \right) .$$

Setting $\Delta := q(C') - q(C)$, we obtain

$$\Delta = \frac{1}{m} \left(\sum_{i=1}^{r} \sum_{j=i+1}^{r} n_{i} n_{j} - f_{i} \right)$$

$$+ \frac{1}{4m^{2}} \left(\left(\sum_{i=1}^{r} 2d_{i} n_{i} a - n_{i}^{2} a^{2} \right) - a^{4} \right)$$

$$= \frac{1}{4m^{2}} \left(\left(4m \sum_{i=1}^{r} \sum_{j=i+1}^{r} n_{i} n_{j} - 4m \sum_{i=1}^{r} f_{i} \right)$$

$$+ \left(\sum_{i=1}^{r} n_{i} \left(2d_{i} a - n_{i} a^{2} \right) - a^{4} \right) .$$

• Substituting $2\sum_{i=1}^{r} \sum_{j=i+1}^{r} n_i n_j = \sum_{i=1}^{r} \sum_{j\neq i} n_i n_j$ and $m = \frac{k}{2} a(a+1)$

$$\Delta = \frac{a}{4m^2} \left(-a^3 - 2k(a+1) \sum_{i=1}^r f_i + \sum_{i=1}^r n_i \left(2d_i - n_i a + k(a+1) \sum_{j \neq i} n_j \right) \right)$$

$$\geq \frac{a}{4m^2} \left(-a^3 - 2k(a+1) \sum_{i=1}^r f_i + \sum_{i=1}^r n_i \left(n_i a + 2kf_i + k(a+1) \sum_{j \neq i}^r n_j \right) \right)$$

The fact that $n_i a + k f_i \le d_i$ is used

• Combining n_i and one of the $\sum_{j\neq i} n_j$

$$\begin{array}{lll} \Delta & \geq & \frac{a}{4m^2} \bigg(-a^3 - 2k(a+1) \sum_{i=1}^r f_i \bigg) \\ & + \frac{a}{4m^2} \bigg(\sum_{i=1}^r n_i \bigg(a \sum_{j=1}^r n_j + 2k f_i \\ & + ((k-1)a+k) \sum_{j \neq i}^r n_j \bigg) \bigg) \\ & = & \frac{a}{4m^2} \bigg(-2k(a+1) \sum_{i=1}^r f_i \\ & + \sum_{i=1}^r n_i \bigg(2k f_i + ((k-1)a+k) \sum_{j \neq i}^r n_j \bigg) \bigg) \\ & = & \frac{a}{4m^2} \bigg(\sum_{i=1}^r 2k f_i (n_i - a - 1)) & \text{Here, $n_i < = a-1$, so $n_i - a-1 < 0$,} \\ & + ((k-1)a+k) \sum_{i=1}^r \sum_{j \neq i}^r n_i n_j \bigg) & \text{Hence, f_i increases} \\ & + ((k-1)a+k) \sum_{i=1}^r \sum_{j \neq i}^r n_i n_j \bigg) & \text{Hence, $f_i = n_i < = a-1$,} \\ & \geq & \frac{a}{4m^2} \bigg(\sum_{i=1}^r 2k n_i (n_i - a - 1) \\ & + ((k-1)a+k) \sum_{i=1}^r \sum_{j \neq i}^r n_i n_j \bigg) & , \end{array}$$

• Rearranging and using $a \ge 3k$

$$\Delta \geq \frac{a}{4m^2} \sum_{i=1}^r n_i \left(2k(n_i - a - 1) + ((k-1)a + k) \sum_{j \neq i}^r n_j \right) + ((k-1)a + k) \sum_{j \neq i}^r n_j$$

$$= \frac{a}{4m^2} \sum_{i=1}^r n_i \left(-2k + ((k-1)a - k) \sum_{j \neq i}^r n_j \right), \text{As } n_i + \sum_{j \neq i} n_j = a$$

$$\geq \frac{a}{4m^2} ((k-1)a - 3k) \sum_{i=1}^r \sum_{j \neq i}^r n_i n_j$$

$$\geq \frac{3k^2}{4m^2} (3k - 6) \sum_{i=1}^r \sum_{j \neq i}^r n_i n_j .$$

• Assuming $k \ge 2$, we see $\Delta > 0$

Lemma 4.2: In a maximum modularity clustering of G(A), every cluster contains at most one of the cliques

$$H_1, H_2, \dots H_k$$

- Cluster **C** contains l > 1 cliques completely and some element nodes a_j with $j \in J \subseteq \{1, 2, ... 3k\}$.
- Inside l cliques la(a-1)/2 edges are covered and degree sum is $l a^2$.
- For each element node a_j , l a_j edges are covered and degree sum is $k \sum_{i \in I} a_i$.

• The contribution of C to q(C) is:

$$\frac{1}{m} \left(\frac{l}{2} a(a-1) + l \sum_{j \in J} a_j \right) - \frac{1}{4m^2} \left(la^2 + k \sum_{j \in J} a_j \right)^2$$

- Clustering C' in which C is split into C_1 , and C_2 .
- C₁' completely contains a single clique **H**.
- The contribution of C_1 and C_2 to q(C') is:

$$\frac{1}{m} \left(\frac{l}{2} a(a-1) + (l-1) \sum_{j \in J} a_j \right)$$
$$-\frac{1}{4m^2} \left(\left((l-1)a^2 + k \sum_{j \in J} a_j \right)^2 + a^4 \right)$$

• Considering the difference :

$$\begin{split} \mathsf{q} \left(\mathcal{C}' \right) - \mathsf{q} \left(\mathcal{C} \right) &= -\frac{1}{m} \sum_{j \in J} a_j \\ &+ \frac{1}{4m^2} \Big((2l-1)a^4 + 2ka^2 \sum_{j \in J} a_j - a^4 \Big) \\ &= \frac{2(l-1)a^4 + 2ka^2 \sum_{j \in J} a_j}{4m^2} \\ &- \frac{4m \sum_{j \in J} a_j}{4m^2} \\ &= \frac{2(l-1)a^4 - 2ka \sum_{j \in J} a_j}{4m^2} \\ &\geq \frac{9k^3}{2m^2} (9k-1) \\ &> 0. \end{split}$$

As k>0 for all instance of 3-Partition

Lemma 4.3: In maximum modularity clustering of G(A), there is no cluster composed of element nodes only.

- Element node v_i , corresponds to the element a_i , which is not a part of any clique cluster. The node v_i forms a singleton cluster $\mathbf{C} = \{v_i\}$.
- C_{min} is the clique cluster, for which the sum of degrees is minimal.
- C_{\min} contains all nodes from clique H, and some other element node a_i .

• The contribution of C and C_{\min} to q(C) is:

$$\frac{1}{m} \left(\frac{a(a-1)}{2} + \sum_{j \in J} a_j \right) - \frac{1}{4m^2} \left(\left(a^2 + k \sum_{j \in J} a_j \right)^2 + k^2 a_i^2 \right)$$

• Joining C and C_{\min} to form a new cluster C', now the contribution of C' to q(C') is:

$$\frac{1}{m} \left(\frac{a(a-1)}{2} + a_i + \sum_{j \in J} a_j \right) - \frac{1}{4m^2} \left(a^2 + ka_i + k \sum_{j \in J} a_j \right)^2$$

Now,

$$\begin{split} \mathsf{q}\left(\mathcal{C}'\right) - \mathsf{q}\left(\mathcal{C}\right) &= \frac{a_i}{m} - \frac{1}{4m^2} \Bigg(2ka^2a_i + 2k^2a_i \sum_{j \in J} a_j \Bigg) \\ &= \frac{1}{4m^2} \Bigg(2ka(a+1)a_i - 2ka^2a_i \\ &\qquad -2k^2a_i \sum_{j \in J} a_j \Bigg) \\ &= \frac{a_i}{4m^2} \left(2ka - 2k^2 \sum_{j \in J} a_j \right). \end{split}$$

As for C_{\min}

$$\sum_{i \in J} a_i \le \frac{1}{k} (a - a_i) < \frac{1}{k} a$$

Hence, q(C')-q(C)>0

Theorem 4.4: Modularity is strongly NP-complete

- Polynomial time check $Modularity \in NP$
- Transformation of an instance of 3-Partition problem $A = \{a_1, a_2, ..., a_{3k}\}$ to an instance of Modularity (G(A), K(A)).
- Clustering G(A) follows the properties derived in previous lemmas.
- Any clustering yields (k-1)a inter-cluster edges, so the edge coverage is:

$$\begin{split} \sum_{C \in \mathcal{C}} \frac{|E(C)|}{m} &= \frac{m - (k-1)a}{m} \\ &= 1 - \frac{2(k-1)a}{ka(a+1)} = 1 - \frac{2k-2}{k(a+1)} \end{split}$$

- The clustering with maximum modularity must minimize $\deg(C_1)^2 + \deg(C_1)^2 + ... + \deg(C_k)^2$
- This depends upon the distribution of element nodes, for the optimum case the distribution should be as even as possible.
- In the optimum case to each cluster assign element nodes that sums to $b = \frac{1}{k}a$
- In this case the sum of degrees of element nodes in each cluster is equal to $k \frac{1}{k} a = a$.
- This yields: $\deg(C_1)^2 + \ldots + \deg(C_k)^2 \ge k(a^2 + a)^2 = ka^2(a+1)^2$

- This yields: $\deg(C_1)^2 + \ldots + \deg(C_k)^2 \ge k(a^2 + a)^2 = ka^2(a+1)^2$
- Equality holds only if an assignment of **b** is possible to every cluster.
- If the clustering C with q(C) of at least:

The clust
$$K(A) = 1 - \frac{2k-2}{k(a+1)} - \frac{ka^2(a+1)^2}{k^2a^2(a+1)^2} = \frac{(k-1)(a-1)}{k(a+1)}k$$
 clique clusters.

- The assignment of element nodes in *k* clique clusters is also the solution to the 3-Partition problem.
- Hence, this choice of K(A) the instance (G(A),K(A)) of Modularity is satisfied only if the instance A of 3-Partition is satisfied, and vice-versa.

On Modularity Clustering (part 2)

Ying Xuan

March 3, 2009

Table of contents

- NP-completeness of 2-Modularity Problem
 - k-Modularity
 - Reduction from MB3
- Q Greedy Algorithm for Maximizing Modularity
 - Greedy Algorithm
 - Ratio Analysis
- Optimality Results
 - Clique
 - Cycle

Two Intrinsic Characteristics For Community Structure Detection:

- No knowledge over the size of each community structure;
- No knowledge over the number of community structures of the input graph.

Definition

k-Modularity

Given a graph G and a number K, is there a clustering C of G into exactly/at most k clusters, for which $g(C) \geq K$?

Reduce from Minimum Bisection for Cubic Graphs.

Reduction

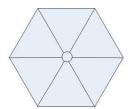
Minimum Bisection for Cubic Graphs(MB3)

Given a 3-regular graph G with n nodes and an integer c, is there a clustering into two clusters of n/2 nodes each such that it cuts at most c edges?

This problem is strongly NP-complete.

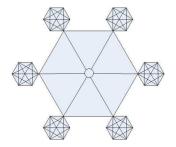
MB3 Instance

Construct a 2-Modularity instance from a MB3 Instance



2-Modularity Instance

Construct a 2-Modularity instance from a MB3 Instance



The following is to prove:

Give a bound K such that MB3 instance has a bisection cut of size at most c iff the corresponding graph has 2-modularity at least K.

Existence of such a clustering of two clusters?

Lemma 1

For every graph constructed from a MB3 instance, there exists a clustering $C = \{C_1, C_2\}$ such that q(C) > 0.

Proof:

- $C_1 = cliq(v)$ for some $v \in V$;
- $C_2 = V \setminus C_1$
- $q(C) = 1 \frac{3}{m} \frac{(n(n-1)+3)^2 + ((n-1)(n(n-1)+3))^2}{4m^2} > 0$ $(n \ge 4)$

cliq(v) are all in one cluster?

Lemma 2

For every node $v \in V$ there exists a cluster $C \in C^*$ such that $cliq(v) \subseteq C$.

Proof:

By contradiction, assume a clique cliq(v) is split into two clusters:

•
$$C' = \{C_1 \setminus cliq(v), C_2 \setminus cliq(v)\};$$

•
$$v \in C_2 \Longrightarrow \Delta \geq 0$$

•
$$v \in C_1 \Longrightarrow \Delta \geq 0$$

Clique moved into one cluster makes modularity larger.

Same size for each clusters in 2-Modularity Optimum?

Lemma 3

In C^* , each cluster contains exactly n/2 complete node cliques.

Proof:

By contradiction, assume a cluster C_1 has $I_1 \leq n/2 - 1$ cliques.

•
$$q(C^*) = \frac{m'}{m} - \frac{l_1^2(n(n-1)+3)^2}{4m^2} - \frac{(n-l_1)^2(n(n-1)+3)^2}{4m^2}$$
;

• C' := move one complete clique from C_2 to C_1 ; (lose at most 3 edges covered by inner-modularity)

$$q(C^*) = \frac{m'-3}{m} - \frac{(l_1+1)^2(n(n-1)+3)^2}{4m^2} - \frac{(n-l_1-1)^2(n(n-1)+3)^2}{4m^2};$$

• $q(\mathcal{C}') \geq q(\mathcal{C})$ (assume n to be even and $l_1 \leq \frac{n}{2} - 1$);

Strongly NP-complete

Strongly NP-completeness

A problem is said to be NP-hard in the strong sense (strongly NP-hard), if it remains so even when all of its numerical parameters are bounded by a polynomial in the length of the input.

Example: Bin Packing VS 0-1 Knapsack Problem

- Bin Packing: find a minimum integer B, such that n given items with relatively size a_1, a_2, \dots, a_n can be packed into B bins, where each bin has a given size V.
- 0-1 Knapsack Problem: given n items, each with value p_i and weight w_j for $i \in [1, n]$, maximize the total value of items that can be packed into a bag, on condition that the maximum weight carried in the bag is W. \iff can be solved by dynamic programming in O(nW) time, note that, W is not polynomial of n. Otherwise, this is not NP-hard problem.

Strongly NP-complete

Theorem 1

2-Modularity is strongly NP-complete.

Proof:

- $K = \frac{1}{2} \frac{c}{m}$;
- $\bullet \sum_{v \in C_i} deg(v) = m;$
- if $q(\mathcal{C}^*) \ge K = \frac{1}{2} \frac{c}{m} = \frac{m-c}{m} \frac{m^2}{4m^2} \frac{m^2}{4m^2}$; # of inter-cluster edges can be at most c;
- Optimum $C^* \iff$ balanced partition cutting at most c edges.

Discussion

- 2-Modularity $\leq_p k$ -Modularity?
- Corresponding algorithms?
- at least k clusters?? wired?

Contributions

- Algorithm by greedily merging clusters;
- Approximation ratio is at least 2.

Greedy Algorithm

Algorithm 1

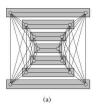
```
Input: graph G = (V, E)
Output: clustering C of G
\mathcal{C} \leftarrow \text{singletons};
symmetric matrix \Delta with \Delta_{i,j} = q(C_{i,j}) - q(C);
\triangleright C_{i,j} is by merging clusters i,j;
while |\mathcal{C}| > 1 and there exists \Delta_{i,i} > 0 do
    merge clusters i and j where \Delta_{i,j} is maximum;
    > arbitrarily select one if multiple maximum exist;
    update matrix \Delta:
```

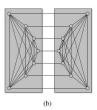
return clustering with the highest modularity

Worst Case

Theorem 2.1

No finite approximation factor for the greedy algorithm for finding clusterings with maximum modularity.





- worst case clustering: $q(C_a) = \frac{2}{n} \frac{n}{2} \cdot \frac{4n^2}{n^4} = 0$
- one better clustering: $q(C_b) = \frac{n(n-2)}{n^2} 2\frac{4n^2}{16n^2} = \frac{1}{2} \frac{2}{n} \le opt$

Lower Bound

If re-mapping modularity interval from $\left[\frac{1}{2},1\right]$ to $\left[0,1\right]$, the greedy algorithm in this instance can get an approximation ratio 2, but not for general case.

$$(q(\mathcal{C}_a) = \frac{1}{3}; \ q(\mathcal{C}_b) = \frac{2}{3})$$

Theorem 2.2

The approximation factor of the greedy algorithm is at least 2.

Optimality Results

Deal with two specific structures:

- Complete graph with *n* nodes clique;
- Simple cycle with n nodes;

Both these two structures can be abstracted to *d*-regular graph with $|E| = \frac{d|V|}{2}$

$$\to q(C) = \frac{|E(C)|}{dn/2} - \frac{1}{n^2} \sum_{i=1}^{k} |C_i|^2$$

where
$$C = \{C_1, \cdots, C_k\}$$

n-Clique

Theorem 3

Let k and n be integers, K_{kn} be the complete graph on $k \cdot n$ nodes and C a clustering such that each cluster contains exactly n elements.

$$q(\mathcal{C}) = (-1 + \frac{1}{k}) \cdot \frac{1}{kn - 1}$$

Observations:

- k > 1, $n \to \infty$, $q(\mathcal{C}) \to 0^-$;
- k = 1, q(C) = 0 is the global maximum;
- No further things??

n-Cycle (Simple 2-regular cycle with n nodes)

- Define F(x) = 1 − q(C) where x ∈ D^(k) is the vector of size for k clusters; Minimize F(x);
- $F(x) = \frac{k}{n} + \frac{1}{n^2} \sum_{i=1}^{k} x_i^2$ has global minimum at $x^* = \lfloor \frac{n}{k} \rfloor$ or $x^* = \lceil \frac{n}{k} \rceil$, i.e. evening cluster size decreases F.

n-Cycle (Simple 2-regular cycle with n nodes)

Based on these conclusions, we can have:

Lemma 2

Let C_n be a simple cycle with n nodes, $h:[1,\cdots,n]\to\mathcal{R}$ a function defined as

$$h(x) := x \cdot n + n + \lfloor \frac{n}{x} \rfloor (2n - x \cdot (1 + \lfloor \frac{n}{x} \rfloor))$$

and k^* be the argument of the global minimum of h. Then every clustering of C_n with maximum modularity has k^* clusters.

Key:

$$h(k) = F(x^*)$$

n-Cycle

Theorem 4

Let n be an integer and C_n a simple cycle with n nodes. Then every clustering C with maximum modularity has k cluster of almost equal size, where

$$k \in \left[\frac{n}{\sqrt{n+\sqrt{n}}} - 1, \frac{1}{2} + \sqrt{\frac{1}{4} + n}\right]$$

Proof:

- k is fixed by the distribution of cluster sizes with maximum modularity (even cluster size);
- with k outside this interval, function h is either monotonically increasing or decreasing;
- at most 3 possible values for large $n \longleftarrow k \in (\frac{n}{\sqrt{n}} 1, \frac{1}{2} + \sqrt{\frac{1}{4} + n}]$

Any Questions

management.com/images/ManHoldingQuestionMarkSmallCropped.jpg

^{*}http://www.hardcore-stress-