A Bayesian Method for Guessing the Extreme Values in a Data Set

Mingxi Wu, Chris Jermaine

University of Florida
September 2007
Outline

- Problem definition
- Example applications
- A Bayesian approach
- Experiment and conclusion
Problem definition

Given a rank k and a finite data set D (each data point in D maps to a real value)

Problem:

Can we use a random sample without replacement from D to predict the k^{th} largest/smallest value in the entire data set?
Problem definition (cont.)

Running Example:

\[k = 2; \ D = \{1, 2, 3, 4, \ldots, 79, \ldots, 98, 10^5, 10^6\} \]
\[S = \{1, 3, 79\} \]

Can we use \(S \) to predict \(10^5 \)?

- Very hard when \(D \) is the result set of applying an arbitrary function (such as selection predicate) to each record in a database
Outline

☑ Problem definition
☐ Example applications
☐ A Bayesian approach
☐ Experiment and conclusion
Example Applications

- Data mining
 - Outlier detection
 - Top-k patterns mining

- Database management
 - Min/max online aggregation
 - Top-k query processing
 - Query optimization
 - Distance join

- Any research with keywords
 - Top/kth/max/min/rank/extreme...
Outline

☑ Problem definition
☑ Example applications
☐ A Bayesian approach
☐ Experiment and conclusion
A Natural Estimator

Running Example:

\(k=2; \ D=\{1,2,3,4\ldots 79\ldots 98,10^5,10^6\} \)
\(S=\{1,3,79\} \)

Can we use \(S \) to predict \(10^5 \)?

Best “guess” with just \(S \).

\[
\frac{k}{|D|} = \frac{k'}{|S|} \rightarrow k' = \left(\frac{k}{|D|} \times |S| \right) \rightarrow k' = \left(\frac{2}{100} \times 3 \right) = 1
\]
A Natural Estimator

Running Example:

\[k = 2; \ D = \{1, 2, 3, 4, \ldots, 79, \ldots, 98, 10^5, 10^6\} \]

\[S = \{1, 3, 79\} \]

Can we use \(S \) to predict \(10^5 \)?

- Best “guess” with just \(S \).

\[
\frac{k}{|D|} = \frac{k'}{|S|} \rightarrow k' = \left\lfloor \frac{k}{|D|} \times |S| \right\rfloor \rightarrow k' = \left\lfloor \frac{2}{100} \times 3 \right\rfloor = 1
\]

Our estimator is the \((k')^{th}\) largest value in the sample \(S \)
A Natural Estimator (cont.)

- In general, \((k')^{th}\) largest in \(S\) may be much smaller (or even larger) than \(k^{th}\) largest in \(D\).
- The relationship between \((k')^{th}\) largest in \(S\) and \(k^{th}\) largest in \(D\) varies from data set to data set.
- **Key strategy** is that we want to characterize the distribution of ratio \(k^{th}/(k')^{th}\).
A Natural Estimator (cont.)

- Given distribution on the ratio of $k^{th}/(k')^{th}$, deriving bounds on k^{th} largest value in D becomes easy
 - For example, if there is 95% chance the ratio is between l and h, then there is 95% chance the k^{th} largest in D is between $l \times (k')^{th}$ and $h \times (k')^{th}$
Characterize the Ratio $k^{th}/(k')^{th}$

Running Example:

$k=2; \ D=\{1,2,3,4...79...98,10^5,10^6\}$

$k'=1; \ S=\{1,3,79\}$

- Imagine D is the query result set obtained by applying an arbitrary function $f()$ to a database
- Impossible to predict the ratio of $10^5/79$
- Without any knowledge about $f()$, we can’t bias 79 to larger values
- But with some domain (prior) knowledge and a sample of $f()$, we may reasonably guess the behaviors of $f()$
Characterize the Ratio $k^{th}/(k')^{th}$ (cont.)

- Workload in DB gives abundant domain knowledge
 - each query corresponds to a data set in the same domain
 - some queries may result in $f()$ values that are typically small, with few outliers boost k^{th} largest
 - some queries may result in $f()$ values that are tightly distributed around its mean; k^{th} and $(k')^{th}$ are very close
- When a new query is asked, we guess which type of "typical" queries by a few $f()$ samples
- A model is needed to classify the queries
Characterize the Ratio $k^{th}/(k')^{th}$ (cont.)

Workload in DB gives abundant domain knowledge. Each query corresponds to a data set in the same domain. Some queries may result in $f()$ values that are typically small, with few outliers boost k^{th} largest. Some queries may result in $f()$ values that are tightly distributed around its mean; k^{th} and $(k')^{th}$ are very close.

When a new query is asked, we guess which type of “typical” queries by a few $f()$ samples. A model is needed to classify the queries.

Key Question:
What aspect of the queries we want to model, in order to describe different distributions of $k^{th}/(k')^{th}$?
Importance of the Histogram Shape of a Query Result Set

Setup: 4 data sets with different histogram shapes; $|D|=10,000$, $k=1$

Experiment: repeat sampling 500 times, sample size 100, $k'=1$, get the avg ratio $k^th/(k')^th$

![Histograms with ratios](image)

- **Ratio:** 3.07
- **Ratio:** 1.06
- **Ratio:** 4.45
- **Ratio:** 1.01
Importance of the Histogram Shape of a Query Result Set

Setup: 4 data sets with different histogram shapes; |D|=10,000, k=1

Experiment: repeat sampling 500 times, sample size 100, k'=1, get the avg ratio \(\frac{k^{th}}{(k')^{th}} \)

- **Ratio:** 3.07
- **Ratio:** 1.06
- **Ratio:** 4.45
- **Ratio:** 1.01
Importance of the Histogram Shape of a Query Result Set

Conclusion: We need to model the histogram shape!

- Histogram shape of the query result set affects the ratio of $k^{th} / (k')^{th}$
- Scale does not matter
First Step to Define the Model

- Now, we want a model to capture the histogram shape of a query result set.
- Before deriving the math, it is beneficial to think how the model will work.
 - Since if we know how the model works, we can find an appropriate probability density function to describe the model.
Our Generative Model

- Assume there is a set of histogram shapes; each shape has a weight w_i, where $\sum w_i = 1$
- To generate a data set
 1. A biased die (w_is) is rolled to determine by which shape pattern the new data set will be generated
 2. An arbitrary scale is selected to define the magnitude of the items in the data set
 3. The shape and the scale are used to instantiate a $f(x \mid \text{shape, scale})$ distribution and we repeatedly sample from this distribution to produce the data set
Our Generative Model (cont.)

- The initial set of weights \((w_i)\) are our *prior distribution*
 - Indicating our belief that how likely a new query result set’s histogram shape will match each shape pattern
Bayesian Approach

Problem: prior weights cannot give enough info

- One histogram shape may indicate that our estimator \((k')^{th}\) is close to the extreme value \(k^{th}\)
- One histogram shape may indicate that our estimator \((k')^{th}\) is far from the extreme value \(k^{th}\)

Question: How do we determine which histogram shape we are experiencing once we have sampled \(S\)?
Bayesian Approach (cont.)

- We can rely on a principled Bayesian approach
 - Can combine the informative prior with the sample taken from the new data set
- After a sample of new data set is taken, we use it to update the prior weights, the updated weights are our *posterior distribution*
 - Incorporate the new evidence to determine the current histogram shape
 - Place more weight on the most probably shape
 - The updated weights w_i's are used for bounding extreme value
Overview of Bayesian Framework

1. Build Prior Model: a set of weighted histogram shapes

2. Update Prior Model with Sample: adjusting prior weight of each shape to better describe the new data set’s histogram shape

3. Use the Updated Model to Confidence Bound on the Ratio of k^{th}/ $(k')^{th}$
Bayesian Framework

Step 1: Prior Shape Model

- Modified mixture of Gamma(x| \(\alpha \), \(\beta \)) distribution
- Treat scale parameter \(\beta \) as a random variable; integrate \(\beta \), the result:
 - Each mixture component probability density function (pdf) \(p \) is indexed by a shape parameter \(\alpha \)
 \[p(< M, S, N > | \alpha) = \frac{M^{\alpha-1}}{\Gamma(N)(\alpha)} S^{-N\alpha-1} \Gamma(N\alpha + 1) \]
 - The above pdf's input only requires
 - \(M \) is the productivity
 - \(S \) is the sum
 - \(N \) is the cardinality
Bayesian Framework

--- Step 1: Prior Shape Model ---

- Use $\tilde{x} = \langle M, S, N \rangle$
- The probability density function of our model becomes

$$f (\tilde{x} | \Theta) = \sum_{i=1}^{c} w_i p (\tilde{x} | \alpha_i)$$

- We use EM algorithm to learn this model from historical workload
Bayesian Framework Step 1

Why Gamma distribution?

- Gamma(α, β) distribution can produce shape with arbitrary right leaning skew
Bayesian Framework

Step 2: Update Prior Weights

- Aggregate sample to the form $\vec{x} = <M, S, N >$
- Apply Bayes rule to update weights

$$w_i' = \frac{w_i p(\vec{x} | \alpha_i)}{\sum_j w_j p(\vec{x} | \alpha_j)}$$

- The resulting pdf

$$f^*(\vec{x} | \Theta) = \sum_{i=1}^{c} w_i' p(\vec{x} | \alpha_i)$$
Bayesian Framework

Step 3: Confidence Bound Extreme Value

- Recall that each histogram shape characterizes a ratio distribution of $k^{th}/(k')^{th}$
Bayesian Framework

Step 3: Confidence Bound Extreme Value (cont.)

- Each shape has a corresponding ratio distribution.
- Step 2 gives the posterior weight w_i' for each shape pattern.
- Our model now can be perceived as someone choose a shape with a die roll biased by w_i'.
- And we do not know which shape the die roll has chosen.
- Then, the resulting ratio distribution is a mixture of each shape pattern’s ratio distribution.
- Probability of the i^{th} ratio distribution in the mixture distribution is w_i'.
Bayesian Framework

Step 3: Confidence Bound Extreme Value (cont.)

Now we have

1. The ratio distribution in a mixture form
2. Our estimator, the \((k')^{th}\) largest in the sample

We can confidence bound the \(k^{th}\) largest value
Bayesian Framework

Step 3: Confidence Bound Extreme Value (cont.)

☐ Problem left is that for a given shape, how to efficiently get its ratio distribution?

☐ We devised a method called TKD sampling (details in the paper) accomplishes this in $O(\text{num} \times k')$ time
Outline

✔ Problem definition
✔ Example applications
✔ A Bayesian approach
☐ Experiment and conclusion
Experiment Setup

- 7 real multi-dimensional data sets
- A query is created by:
 1. A tuple t is randomly selected
 2. A selectivity s is randomly picked from 5% to 20%
 3. $s \times (DB\ size)$ nearest neighbors of t are chosen as the query result set
 4. The scoring function is the randomly-weighted sum of three arbitrary attributes.
- 500 training queries & 500 testing queries
- Confidence level is set to 95%
Experiment Results

<table>
<thead>
<tr>
<th>Data sets</th>
<th>k=1</th>
<th>k=5</th>
<th>k=10</th>
<th>k=20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>0.94</td>
</tr>
<tr>
<td>CAHouse</td>
<td>0.97</td>
<td>0.99</td>
<td>0.97</td>
<td>0.96</td>
</tr>
<tr>
<td>El Nino</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Cover Type</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>KDDCup 99</td>
<td>0.92</td>
<td>0.91</td>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>Person 90</td>
<td>0.92</td>
<td>0.94</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td>Household 90</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

- The Coverage rates for 95% confidence bound, with 10% sample for various k.
Experiment Results

Increasing sample size for $k=1$ and $k=10$
Conclusion

- Defined the problem of estimating the K^{th} extreme value in a data set
- A Bayesian approach is proposed
- Experimental verification on real data
Questions