
COP2800 Homework #2 Assignment Spring 2013

YOUR NAME:___ DATE: ______________

LAST FOUR DIGITS OF YOUR UF-ID: ___ ___ ___ ___ Please Print Clearly (Block Letters)

Date Assigned: 31 January 2013 IN CLASS

Date Due: 15 February 2013 E-SUBMISSION of Parts II and III

This homework assignment must be completed by you alone. You may not copy from others,

and you may not copy code from the Internet, textbook, or other sources.

However, you may study with others or read your textbook to determine general solutions. Then

you must complete the problems as your own work, not copying others’ work.

Questions about this homework should be addressed to your TA first. You can find your TA’s email,

office hours, etc. at the class website: http://www.cise.ufl.edu/~wchapman/COP2800/officehours.html

This homework has three parts: (I) Vocabulary Questions, (II) Regular Program, (III) Advanced

Program. There is no penalty for guessing.

Part I. Vocabulary Questions [10 points total]

Vocabulary: (terms you need to know to discuss the subject intelligently) – Define the following

terms using 1-3 sentences (and a diagram, if needed): [2 points each]

a. Datatypes (in Java)

b. Typecasting (in Java)

c. Compilation

d. Java Virtual Machine (JVM)

e. Subclass / Superclass (in Java)

Part II. Regular Program [20 points total]

TASK: Create a Java Program that filters numbers to determine what interval they are in,

how many numbers per interval; and prints the interval bounds and number counts. This

is designed to make you think, so all the code is not provided. You have to do more work here…

PROGRAMMING PROCEDURE:

(1) Use the following pseudocode (this is not Java code) as the basis for making a Java Class called

NumberFilter, with method FindBin. Note that comments are in green typeface, and reserved

keywords are in bold blue typeface, and bold red typeface shows where you should insert your

name and code. The text that you will output to the screen is shown in brown typeface.

Use your text editor (Notepad++) to

generate a file called "Part1.txt". Include

this file in the ZIP file along with the code

for Parts II and III.

You must have in the upper right-hand

corner: (i) “COP2800-S13-HW2-PartI”,

(ii) your name, and (iii) last four digits of

your UFID.

http://www.cise.ufl.edu/~wchapman/COP2800/officehours.html

COP2800 Homework #2 Assignment Spring 2013

(2) Enter the Java code that you make from the example below.

(3) Save your code in file “NumberFilter.java” (save frequently to avoid work loss), then compile

using the Java tools that you downloaded to your laptop computer. Make sure it runs.

// Pseudocode for COP2800 Assignment #2: Number Filtering Program

// Objective: Filter a number into one of NBINS bins(number line intervals)

// Designed and Coded by: <your name> Date: 15 Feb 2013

 Declare a public class called NumberFilter

 Ex: public class NumberFilter {

public NumberFilter ()

{

}

 Make an integer array of bins structured as Bins[1..NBINS, 3]

Ex: int Nbins = 3;

 float[][] Bins = new float[Nbins][3];

o This array should be available to all subclasses and their methods in the class

NumberFilter .

o The first dimension of the array (from 1 to NBINS) indexes the bin, e.g., with variable i

o The next dimension of the array references the lower bound (LB), upper bound (UB) and

count of numbers in the i
th
 bin (count).

o For Part II of this assignment, the array values will be as follows:

 Lower Bound Upper Bound Initial Value of “count”
 Bins[0,0] = -10.0f; Bins[0,1] = 0.0f; Bins [0,2] = 0.0f;

 Bins[1,0] = 1.0f; Bins[1,1] = 10.0f; Bins [1,2] = 0.0f;

 Bins[2,0] = 11.0f; Bins[2,1] = 25.0f; Bins [2,2] = 0.0f;

 Declare a public int method for the NumberFilter class called FindBin

o This method will accept a number (say, x) as an argument

 Ex: public static int FindBin(float x) { …code here… }

o This method will return the integer bin index bin_number that the number x fits into

o The method will be structured and its code will work as shown in the follow p-code:

Ex: // Step 0: Local variable declarations

 boolean found = false;

 int i, bin_number;

// Step 1: Copy the argument of the method

 x = <argument_of_the_method_FindBin> ;

// Step 2: Loop through all the bins

 for i = 0 to (NBINS – 1) do:

 { if (x >= Bins[i, 1]) && (x <= Bins[i, 2])

 { Bins[i, 3]++;

 found = true;

 bin_number = i; }

 }

COP2800 Homework #2 Assignment Spring 2013

 // Step 3: If the number is found, then output the bin number

 // and output the bin count, then return

 if (found)

 {System.out.println(“Bin number=”, bin_number);

 System.out.println(“Bin count=”,

 Bins[bin_number, 3]); }

 else

 {System.out.println(“Number ”, x,“ not in any bin”);}

 return bin_number;

 (In this case, the bin count will be one (1), because we have tested only one number.)

 Make a test routine (Test.java) that will test the correct operation of the NumberFilter class

with method FindBin (this is up to you to design and code).

After you have designed, entered, compiled, and tested your code, then do the following:

(4) Make sure your code runs correctly by using multiple test cases.

(5) Submit your code electronically with your solution to Part III, as described below.

Part III. Advanced Program [40 points total]

Programming with Arrays and Typecasting. Perform the following steps:

(1) Create the following structure with BetterNumberFilter, and a Test2 class, as described below.

Subclass: BetterNumberFilter is a subclass of the class NumberFilter that extends

NumberFilter and uses the array Bins from Part II.

Method 1: FindBin You do not need to redefine this method, as it is inherited from

NumberFilter that you developed in Part II.

Method 2: ScanArray with method Scan that loops through a float input array a,

and applies FindBin to each value in the input array.

Pseudocode for this method follows:

 public static void ScanArray(float [] a) {

 int j,result

 for j = 0 to a.length do:

 { result = FindBin(a[j]);}

 }

Method 3: PrintOutput loops through the number of bins and prints the count of

numbers in each bin (i.e., Bins[i,3]).

Class: Test2 (i) inputs an array to ScanArray, (ii) calls ScanArray to scan

through the values in the array, where ScanArray applies

FindBin to each value, accumulating the number of counts per

COP2800 Homework #2 Assignment Spring 2013

interval. (iii) After the loop exits, then Test2 calls PrintOut to

print the bin index (e.g., 1 through NBINS) and the count of

numbers that were found to be in that bin (i.e., Bins[i,3]).

(2) Be careful about the way your methods are invoked… [Hint: Remember how we invoked

class.method in Assignment #1.]

(3) Document your code fully (as in the example in Part II). Compile your code and get it running.

(4) Document your code fully (as in the example in Part II). Compile your code and get it running,

then test it thoroughly to be sure it works before you submit your code.

Part IV. Extra Credit (write on paper, submit in class) [10 points each]

EC-1. What function does the code described in Part III perform? Describe exactly how it

works (full credit only for detailed description).

EC-2. What limitations does the Bins array in Part III impose on detecting numbers? (Hint:

If we were sorting integers into bins instead of using floats as input, how would this question

be answered?) Under what three conditions would the program not sort all floating point

numbers (i.e., real numbers) with the existing Bins array?

Electronic Submission of Parts II and III. Put all files you created in Parts I through III in a

single ZIP file. Your ZIP file should contain all the files specified in Parts I through III. Submit

this ZIP file electronically per the instructions at:

http://www.cise.ufl.edu/~wchapman/COP2800/submit

Grading: Code does not compile or run = 0 points.

 Code compiles but does not run = < 20 percent of points.

 Code runs but wrong results = 21 to 50 percent of points.

 Code runs with correct results but no documentation (e.g., green comments in Part II)

 = 51 to 70 percent of points.

 Code compiles and runs, correct results, documentation present

 = 71 to 100 percent of points.

