
Design and Representation of
Complex Objects in Database Systems

Lin Qi, Huiyuan Zhang and Markus Schneider
University of Florida

Department of Computer & Information Science & Engineering
Gainesville, Florida, USA

{lqi, huiyuan, mschneid}@cise.ufl.edu

ABSTRACT
In recent decades, applications like geospatial, genomic, and
multimedia have made use of very large and diverse applica-
tion objects such as spatial networks and protein structures.
These objects are complex in the sense that they are highly
structured and of variable size. Storing, accessing and ma-
nipulating them in a standard and efficient manner is very
challenging. The state-of-the-art solutions handle such ob-
jects by using file system formats like HDF and XML, se-
rialization technique like Protocol Buffers and BLOB data
type in databases. However, specialized file format solutions
lack any well established database system features, and nei-
ther a uniform concept nor mechanisms exist for supporting
complex objects for BLOBs. In this article, a novel and
database-friendly framework of specifying and interpreting
complex objects is proposed. Empirical studies have shown
that our approach outperforms prevailing methods with ef-
ficient processing time and less storage consumption.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications –
data mining, spatial databases and GIS

General Terms
Theory, Design, Performance

Keywords
Complex object, database system, big data

1. INTRODUCTION
The problem of handling large, variable-length and highly

structured complex objects can be found in a wide range
of applications such as spatial computing and spatial data
analytics. Examples of such objects include biological se-
quence data, genomic data, multimedia data, imaging data
and geospatial data. The demand of logical representation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Copyright 2015 ACM ISBN 978-1-4503-3967-4/15/11 $15.00
DOI: http://dx.doi.org/10.1145/2820783.2820842.

efficient updating, fast transmitting, and space-saving fea-
tures are increasingly important for complex applications,
especially in a database context.

Traditional database management systems (DBMS) are
well suited to store and manage large, unstructured alphanu-
meric data. However, storing and manipulating large, struc-
tured application objects at the low byte level as well as pro-
viding operations on them are hardly supported [2]. Specific
file systems such as Extensible Markup Language (XML) [4]
and Hierarchical Data Format (HDF) [6] define a set of rules
for encoding documents. Those documents are in textual or
binary data format, which is human-readable or machine-
readable, are very suitable for describing objects with com-
plex logical structure. However, due to the nature of markup
languages, the contents of an object is not encapsulated in
the file but rather stored in textual format, leading to a large
size which is not ideal for reading or writing. Distributed
file systems such as Hadoop [13] focus on data distribution,
mapping and reduction, and do not provide explicit support
for complex object management. On the other hand, seri-
alization techniques like Protocol Buffers [3] enjoys efficient
transmission and data manipulation. However, they are not
intended for a smooth integration into database systems.
A widely accepted approach of handling complex data in
databases is to model and implement them as values of ab-
stract data types (ADT) in a type system, or algebra, which
is then embedded into an extensible DBMS and its query
language [2].

In order to address the above problems, we propose a
novel and generic method called Complex Object Specifica-
tion (COS) in this article. COS is a flexible, efficient and
automated mechanism for specifying and processing highly
structured data. The design goals for COS emphasize agility
and performance. It includes two parts: first, a specifi-
cation language that provides grammars and rules to de-
scribe structured objects; second, it also includes a parser
that generates source code from the various sources based
on corresponding structural interpretations. COS provides
an interface to describe the structure of complex objects at
the conceptual level.

The remaining parts of this article are organized as fol-
lows. Section 2 describes relevant research related to com-
plex object data storage and management. The COS frame-
work is introduced in detail in Section 3. Section 4 presents
empirical results of our proposed approach compared with
three other widely used methods. Finally, Section 5 con-
cludes the paper and discuss potential working direction.

Table 1: Comparison of Different Approaches on Handling and Managing Complex Objects

Criteria File System Tables BLOBs Standalone OO Extension COS
1. Abstraction X X
2. Generality X
3. Proprietary X X
4. Domain-specific operation definition X X X
5. Query support X X X X X
6. Extendibility X X X
7. Efficient random access X X

2. RELATED WORK
Complex objects storage and management is an important

research topic over recent years [1, 12, 11, 10]. Researchers
are seeking opportunities and possible ways to handle com-
plex application objects in DBMS to better manage and
manipulate data in an organized and efficient manner. A
data model born in database environment can also enjoy the
advantages provided by database systems like concurrency
controls, transaction processing, querying optimization, and
recovery. The most prevailing and natural way of storing
complex structured data is to make use of tables and BLOBs
in traditional DBMS. Any hierarchical structure within an
object can be incorporated in tables using a separate at-
tributed column that maintains cross-referenced tuples with
their primary keys. However, the main drawback of this
method is that the overall abstract concept of the object is
lost, i.e., the internals of a single complex object are spread
over several tables. This is known as abstraction problem.
This may lead to the fact that expensive joins are required
to bring object information together.

Another trend in the database research stream is the de-
velopment of new DBMS prototypes as standalone (or semi-
standalone) data management solutions. These include sys-
tems such as SciDB [8], PostGIS [5], and BSSS [9]. Most of
the systems offer low-level byte range operations for update
and insertion and can handle variable-length byte sequences.
However, these systems do not preserve or maintain struc-
tural information and are unable to provide dedicated and
random access to sub-components.

Our proposed solution, the COS framework, takes in real
application data and generate serialized yet formatted byte
stream. It provides a generic specification of the complex
structures of an object by using a specially designed de-
scription language. The specifications are then stored in a
.cos file which will then be compiled into accessor classes
and utilization functions that interpret the input data and
perform serialization. The COS framework preserves the
structural information of the object and can provide oper-
ation definitions from a high level perspective. It can also
be extended to perform as the bridge between real data and
DBMS. Table 1 provides a summary of existing approaches
and out proposed solution across identified problems and
important criteria.

3. COMPLEX OBJECT SPECIFICATION
Blocks and properties are typically used to describe com-

plex structures. Properties are basic elements and have no
further inner structure. Blocks can still be ”divided” into
smaller structures including properties or lower-level blocks.

A tree representation is a useful tool to describe hierarchical
information. However, it is not machine friendly. A com-
puter system cannot read the tree representation and con-
struct the corresponding complex object easily as there is
no standardized tree representation rules in both texts and
patterns. In order to give a more precise description and to
make it understandable to computers, a formal specification
is required. Therefore, we propose a generic Complex Object
Specification Language (COSLang) to describe the hierarchi-
cal structure of application objects.

Since properties and blocks are the two main basic ele-
ments to compose a highly structured object, we need an
elegant way to describe them as well as preserve their struc-
tural information simultaneously. In COSLang, the defini-
tion of a property involves five parts shown in Figure 1 in
order to capture enough information represented by a single
property.

Tag Attribute Type Identifier DefaultValue

0 16 Hidden

Optional

Required

Figure 1: Format of property in COSLang

Tags are automatically assigned to each property and are
used to identify different properties of data in serialized for-
mat of data. The field Attribute is an important prefix for a
certain property. It is used to describe the nature, or certain
features, of a specific property. There are five pre-defined
attributes: list, optional, unique, description, and obsolete.
Type is a required field in the property definition. COSLang
provides five basic built-in types: int, double, string, bool and
bytestr. In addition to these scalar value types, developers
are allowed to create user defined blocks (UDBs) to register
new types. Identifier serves as the ”name” of the property.
DefaultValue assigns a default value to the property if no
specific data is fed. This is an optional field.

An example of a property definition is as follows:

// Definition of property X_Corr and Name in COSLang
[description("X coordinate")] double X_Corr = 0.0;
[optional][description("Point name")] string name;

Next, we will introduce the format of a block definition in
COSLang. As shown in Figure 2, each block definition comes
with a block attribute, an identifier as well as a ”body” part.
The hierarchical structure of the block is represented by the
components inside the body definition. Generally, a simple

block (as in Figure 2(1)) consists of a series of properties.
For example, a Point type is composed by three coordinates
in the 3D plane and each coordinate is a property of the
point. Furthermore, there are blocks (as in Figure 2(2))
that consist of more complex structures with nested blocks
defined on its deeper structure level. For instance, a Segment
is a spatial line segment connecting two points. Note that
each point object is also a block.

Optional

Required

Block Attribute Identifier

{

}

Definition of property_1;

Definition of property_2;

…

Block Attribute Identifier

{

}

Definition of property_1;

…

Block Attribute Identifier

{

}

Definition of property_13;
…

Block Attribute Identifier

{

}

(1)

(2)

Figure 2: Format of (1) simple block (2) nested block
in COSLang

3.1 Complex Object Specification Parser
In the previous section, we have introduced the basic con-

cepts and schema of COSLang. However, being a specifica-
tion language, it is not capable of handling and manipulating
the input stream. In order to perform as the bridge between
the programming language and the real data, a Complex Ob-
ject Specification Parser (COSParser) has been devised to
help object designers.

COSParser COSLang

Compilation

.cos files

Access classes

and utilities

Application data

Sensor data

Input stream Output stream

Formatted and

serialized data

COS

Figure 3: COS Architecture

The architecture of COS is shown in Figure 3. The role of
COSParser is to parse the logical structure defined in .cos
files based on COSLang and generate access classes as well
as utility functions in programming languages such as C++
and Java etc.

The overall COS platform provides many advantages over
file systems such as XML and HDF in the following ways:

• Light: specification language and COSParser are sep-
arated from real data, thus the framework itself works
as a plugin toolkit;

• extensible: new properties or blocks can be added to
.cos files without breaking the old code and application
program, also called backwards-compatibility ;

• Consistent: it is not allowed to edit the code gener-
ated from the parser. Any change needs to be per-
formed in .cos files and then reflects to data access
classes through compilation, which ensures the consis-
tency between the specification file and the code.

• Flexible: most of the formats are self-describing; at-
tributes provide a powerful yet clean way of imposing
restrictions.

4. PERFORMANCE EVALUATION
In this section, we evaluate our COS framework perfor-

mance by comparing it with three other file systems for
handling structured objects. Currently we are actively im-
plementing the database integration parts. From our ex-
perimental results, the COS framework can achieve more
efficient running times for object creation and random read
operations. It also consumes less storage compared with
other prevailing approaches.

Experimental Setup. Among the freely available net-
work maps data, OpenStreetMap (OSM) [7] is a compre-
hensive collection of road network data. We will be using
the nodes inside those networks to generate one complex
application object for evaluation.

In our testing datasets, the file sizes representing the net-
works range from 14 MB to 2.5 GB with 52,251 nodes and
12,003,566 nodes respectively. We are going to compare our
COS framework with Text, XML and HDF file systems w.r.t.
(1) object data creation time, (2) size of structured data
stream, (3) read and write performance. In addition, we
will also include the time spent on generating corresponding
API code based on specifications in .cos file in our object
creation. The testing environment is the Windows 8 sys-
tem with Intel i7-4770 3.4 GHz CPU and 16 GB RAM with
stable working state.

The four networks, from small to large, are Gainesville
city, Alachua county, Orlando city and Florida state road
networks shown in Table 2.

Table 2: Number of Nodes in Network Datasets

Gainesville Alachua County Orlando Florida State
52,251 979,605 1,272,803 12,003,566

The Text method is a plain approach that writes data into
textual documents with basic point indexes and no compres-
sion.

The first set of experiments is to measure the genera-
tion time of object data of different algorithms based on
the dataset. In this experiment, we model all points within
the point set as properties of one complex object. The gen-
eration times are shown in Table 3 in seconds. The time
spent on loading the datasets is excluded.

From the results we can see that with the increment of
the dataset, the time spent on generating object data is also
increasing. The Text approach enjoys a steady increasing
in generation time with high positive correlation based on
data size. The trend for XML approach is similar but with
much more time. As for the COS framework, it achieves the
best results among the four approaches across all datasets.
As mentioned in Section 3, the structure of the complex

Table 3: Generation Time of Object Data

Time (seconds) Text XML HDF5 COS
Gainesville 0.046 0.676 0.775 0.009
Alachua County 0.783 9.307 0.801 0.138
Orlando 1.311 16.177 0.813 0.216
Florida State 11.698 157.833 0.995 0.907

object is pre-defined in a .cos file so that the generation step
becomes easier and light. By loading the incoming data, the
complex object is incrementally built in an efficient manner.
In addition, the concept of data chunks is a perfect match
with our streamlining strategy.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

Gainesville_City Alachua_County Orlando_City Florida_State

Fi
le

 s
iz

e
(k

b)

Text
XML
HDF5
COS

Figure 4: Storage Size Comparison

The next experiment is to evaluate the file size that con-
tains the complex object. The size of files determines the
efficiency of data transmission in a local environment as well
as in distributed systems. In our experiment, file sizes are
measured in the unit of kb (kilo-bytes) shown in Figure 4.

Random read is an important operation as the applica-
tions might be frequently asking for data for different com-
ponents of the complex object. This operation is performed
10,000 times for each round of testing. The captured time
is taken as the average time and measured in milliseconds.
The results are shown in Figure 5.

 1

 10

 100

 1000

Gainesville_City Alachua_County Orlando_City Florida_State

R
an

do
m

 S
in

gl
e

R
ea

d
Ti

m
e

(m
s) Text

XML
HDF5
COS

Figure 5: Random Read Time Comparison

The XML approach spent the largest amount of time on
random read. As for the COS framework, the random read
operation is extremely efficient due to that the structural
indexing information, i.e., a tag map, is stored inside the

headers of each page of data. Given the data request, COS
can quickly locate the pages that contain this data, and then
provide direct access to the data inside those pages based
on the tag map information. The time spent on random
reading from all datasets is around 5 ms and even for the
largest dataset, it takes less than 10 ms.

5. CONCLUSION AND FUTURE WORK
In this paper, we provide a novel solution to store and

manage complex application objects by proposing a new
mechanism for handling structured objects inside DBMSs.
The design goals for COS emphasize agility and performance.

The future work will include a careful implementation of
the integration of the COS framework into DBMS. This
needs to be done in a general sense so that COS can be
applied independently of different DBMSs. In addition, the
current COS framework processes the object data sequen-
tially. The potential parallel computation techniques should
be designed for complex object data management to further
lift the efficiency.

6. REFERENCES
[1] Li-Ju Chen, Ying C Guo, Xin S Mao, Bo Yang, and

Hua Zhang. Managing a complex object in a cloud
environment, June 3 2014. US Patent App.
14/294,908.

[2] T. Chen, A. Khan, M. Schneider, and
G. Viswanathan. iblob: Complex object management
in databases through intelligent binary large objects.
In 3rd Int. Conf. on Objects and Databases
(ICOODB), pages 85–99, 2010.

[3] http://en.wikipedia.org/wiki/Protocol Buffers.
Wikipedia - protocol buffer.

[4] http://en.wikipedia.org/wiki/XML. Wikipedia - xml.

[5] http://postgis.net. Postgis.

[6] https://www.hdfgroup.org. Hdf group.

[7] http://www.openstreetmap.org. Openstreetmap.

[8] http://www.paradigm4.com. Scidb.

[9] B. Hwang, I. Jung, and S. Moon. Efficient storage
management for large dynamic objects. In System
Architecture and Integration 20th EUROMICRO
Conference, pages 37–44. 1994.

[10] Lin Qi and Markus Schneider. Monet: Modeling and
querying moving objects in spatial networks. In 3rd
ACM SIGSPATIAL Int. Workshop on GeoStreaming
(IWGS), pages 48–57, 2012.

[11] Markus Schneider, Shen-Shyang Ho, Malvika Agrawal,
Tao Chen, Hechen Liu, and Ganesh Viswanathan. A
moving objects database infrastructure for hurricane
research: Data integration and complex object
management. In Proceedings of the Earth Science
Technology Forum, 2011.

[12] Alex Simpkins and Emanuel Todorov. Complex object
manipulation with hierarchical optimal control. In
Adaptive Dynamic Programming And Reinforcement
Learning (ADPRL), 2011 IEEE Symposium on, pages
338–345. IEEE, 2011.

[13] Tom White. Hadoop: The definitive guide. ” O’Reilly
Media, Inc.”, 2012.

