IMPROVING EFFICIENCY, SECURITY AND PRIVACY OF THE INTERNET OF THINGS—FROM RFID TO NETWORKED TAGS

By

MIN CHEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2016
To my parents
ACKNOWLEDGMENTS

Firstly, I would like to express sincere gratitude to my advisor, Dr. Shigang Chen, for his continuous support, guidance, and understanding throughout my graduate study at University of Florida. He is an incredible advisor, a passionate scientist, a terrific person, and also a good friend. His consistent support and encouragement helped me overcome many difficulties during my Ph.D. study. I could not have imagined having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank Dr. Sartaj Sahni, Dr. Yuguang Fang, Dr. Ye Xia and Dr. Ahmed Helmy for having served my committee. Their insightful comments and encouragement were greatly helpful for my Ph.D. study.

I would also like to thank the fellow students and researchers in our research group for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the fun we have had in the last five years. They are Ming Zhang, Tao Li, Yan Qiao, Wen Luo, Zhen Mo, Yian Zhou, You Zhou, Ziping Cai, Jia Liu, Youlin Zhang and Olufemi Odegbile.

Thanks also go to my friends at University of Florida. They are Lin Qi, Huiyuan Zhang, Yan Deng, Shuang Lin, Long Yu, Ning Zhao, Yang Chen, Xi Tao, Yi Xu, Chang Liu, Jie He, Kun Li, Meng Wang, Shuying Wang, Kaikai Liu and Zhenxing Pan. They make my whole experience at University of Florida memorable.

Finally, I would like to thank my family for their unconditional love, support and understanding during the last five years.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... 4

LIST OF TABLES ... 9

LIST OF FIGURES ... 10

ABSTRACT .. 12

CHAPTER

1 INTRODUCTION ... 15

1.1 The Internet of Things and RFID Technologies 15

1.2 Tag Search in Large RFID Systems ... 16

1.3 Lightweight Cipher Design for Resource-Constrained Devices 17

1.4 Lightweight Anonymous Authentication Protocol Design for RFID Systems 18

1.5 Networked Tags-Enhancement to RFID tags 19

1.6 Outline of the Dissertation ... 20

2 EFFICIENT TAG SEARCH IN LARGE RFID SYSTEMS 21

2.1 System Model and Problem Statement 21

2.1.1 System Model .. 21

2.1.2 Time Slots ... 21

2.1.3 Problem Statement ... 22

2.2 Related Work ... 24

2.2.1 Tag Identification .. 24

2.2.2 Polling Protocol .. 25

2.2.3 CATS Protocol ... 25

2.3 A Fast Tag search Protocol Based on Filtering Vectors 26

2.3.1 Motivation .. 27

2.3.2 Bloom Filter ... 27

2.3.3 Filtering Vectors ... 28

2.3.4 Iterative Use of Filtering Vectors 29

2.3.5 Generalized Approach .. 31

2.3.6 Values of m_i .. 33

2.3.7 Iterative Tag Search Protocol ... 36

2.3.7.1 Phase one ... 36

2.3.7.2 Phase two .. 36

2.3.8 Cardinality Estimation ... 37

2.3.9 Additional Filtering Vectors .. 38

2.3.10 Hardware Requirement .. 38

2.4 ITSP Over Noisy Channel .. 39

2.4.1 ITSP with Noise on Forward Link 39
2.4.2 ITSP with Noise on Reverse Link .. 41
 2.4.2.1 ITSP under random error model (ITSP-rem) 42
 2.4.2.2 ITSP under burst error model (ITSP-bem) 43
2.5 Performance Evaluation ... 44
 2.5.1 Performance Metric ... 44
 2.5.2 Performance Comparison ... 44
 2.5.3 False Positive Ratio ... 47
 2.5.4 Performance Evaluation under Channel Error 48
 2.5.4.1 Performance of ITSP-rem and ITSP-bem 48
 2.5.4.2 False positive ratio of ITSP-rem and ITSP-bem 52
 2.5.4.3 Signal loss due to fading channel 52
2.6 Summary ... 52

3 A LIGHTWEIGHT CIPHER FOR RFID SYSTEMS 54
 3.1 Security Model .. 54
 3.1.1 System Model ... 54
 3.1.2 Adversary Model .. 55
 3.2 Related Work .. 55
 3.3 Cipher design .. 56
 3.3.1 Motivation ... 56
 3.3.2 Design Details .. 58
 3.3.2.1 Initialization ... 58
 3.3.2.2 Derived keys generated by the reader 58
 3.3.2.3 Base key update by the reader 59
 3.3.2.4 Design rationale .. 60
 3.3.2.5 Indicator for the tag .. 61
 3.3.2.6 Formats of message blocks 62
 3.3.3 Two-Phase Communications .. 63
 3.3.3.1 Phase one .. 64
 3.3.3.2 Phase two .. 64
 3.3.4 Randomness Analysis ... 65
 3.3.4.1 Randomness .. 65
 3.3.4.2 Gap length ... 68
 3.3.5 Hardware Cost for Tag Implementation 69
 3.4 Simulations ... 70
 3.4.1 Frequency Test ... 70
 3.4.2 Gap Test ... 72
 3.5 Security Analysis of Pandaka ... 74
 3.5.1 Ciphertext Only Attack .. 74
 3.5.2 Known Plaintext Attack .. 74
 3.5.3 Time-Memory-Data Tradeoff Attack 75
 3.5.4 Tradeoff among Throughput, Security, and Hardware Cost 75
 3.6 Summary ... 75
LIGHTWEIGHT ANONYMOUS RFID AUTHENTICATION

4 System Model and Security Model

4.1 System Model

4.2 Related Work

4.2.1 Non-Tree based Protocols

4.2.2 Tree based Protocols

4.3 A Strawman Solution

4.3.1 Motivation

4.3.2 A Strawman Solution

4.4 Dynamic Token based Authentication Protocol

4.4.1 Motivation

4.4.2 Overview

4.4.3 Initialization Phase

4.4.4 Authentication Phase

4.4.5 Updating Phase

4.4.6 Randomness Analysis

4.4.7 Discussion

4.4.8 Potential Problems of TAP

4.5 Enhanced Dynamic Token based Authentication Protocol

4.5.1 Resistance Against Desynchronization and Replay Attacks

4.5.2 Resolving Hash Collisions

4.5.3 Discussion

4.6 Security Analysis

4.7 Numerical Results

4.7.1 Effectiveness of Multi-Hash Scheme

4.7.2 Token-Level Randomness

4.7.3 Bit-Level Randomness

4.8 Summary

5 IDENTIFYING STATE-FREE NETWORKED TAGS

5.1 System Model and Problem Statement

5.1.1 State-Free Networked Tags

5.1.2 Networked Tag System

5.1.3 Problem Statement

5.1.4 System Model

5.2 Related Work

5.3 Contention-based ID Collection Protocol (CICP) for Networked Tag Systems

5.3.1 Motivation

5.3.2 Request Broadcast Protocol (RBP)

5.3.3 ID Collection Protocol (ICP)

5.4 Serialized ID Collection Protocol (SICP)

5.4.1 Motivation

5.4.2 Overview
5.4.3 Biased Energy Consumption

5.4.4 Serial Numbers

5.4.5 Parent Selection

5.4.6 Serialization at Tier Two

5.4.7 Recursive Serialization

5.4.8 Frame Size

5.4.9 Load Factor Per Tag

5.5 Evaluation

5.5.1 Simulation Setup

5.5.2 Children Degree and Load Factor

5.5.3 Performance Comparison

5.5.4 Performance Tradeoff for SICP

5.6 Summary

6 FUTURE WORK

6.1 Missing-Tag Identification Using Physical-Layer Signals

6.2 Anonymous Category-Level Joint Tag Estimation

7 CONCLUSION

REFERENCES

BIOGRAPHICAL SKETCH
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Notations</td>
<td>22</td>
</tr>
<tr>
<td>2-2</td>
<td>The initial values of m_i</td>
<td>35</td>
</tr>
<tr>
<td>2-3</td>
<td>The optimized values of m_i</td>
<td>36</td>
</tr>
<tr>
<td>2-4</td>
<td>Performance comparison of tag search protocols. CR means a tag identification protocol with collision recovery techniques. $</td>
<td>Y</td>
</tr>
<tr>
<td>2-5</td>
<td>Performance comparison of tag search protocols. CR means a tag identification protocol with collision recovery techniques. $</td>
<td>X</td>
</tr>
<tr>
<td>2-6</td>
<td>Performance comparison. $</td>
<td>Y</td>
</tr>
<tr>
<td>2-7</td>
<td>Performance comparison. $</td>
<td>Y</td>
</tr>
<tr>
<td>2-8</td>
<td>Performance comparison. $</td>
<td>Y</td>
</tr>
<tr>
<td>2-9</td>
<td>Performance comparison. $</td>
<td>X</td>
</tr>
<tr>
<td>2-10</td>
<td>Performance comparison. $</td>
<td>X</td>
</tr>
<tr>
<td>2-11</td>
<td>Performance comparison. $</td>
<td>X</td>
</tr>
<tr>
<td>3-1</td>
<td>Cost estimations for typical cryptographic hardware.</td>
<td>70</td>
</tr>
<tr>
<td>3-2</td>
<td>Comparison of lightweight ciphers in terms of hardware complexity.</td>
<td>71</td>
</tr>
<tr>
<td>3-3</td>
<td>Statistics for Pandaka with $L = 8$ and Grain×8.</td>
<td>72</td>
</tr>
<tr>
<td>3-4</td>
<td>Statistics for Pandaka with $L = 16$ and Grain×16.</td>
<td>72</td>
</tr>
<tr>
<td>4-1</td>
<td>Key table for the preliminary design.</td>
<td>81</td>
</tr>
<tr>
<td>4-2</td>
<td>Key table stored by the central server for TAP.</td>
<td>85</td>
</tr>
<tr>
<td>4-3</td>
<td>Key table stored by the central server for ETAP.</td>
<td>93</td>
</tr>
<tr>
<td>4-4</td>
<td>The sample size m_s is 500, and the acceptable confidence interval of the success proportion is $[0.97665, 1].$</td>
<td>103</td>
</tr>
<tr>
<td>5-1</td>
<td>The values of D_i with $R = 3r$</td>
<td>126</td>
</tr>
<tr>
<td>5-2</td>
<td>The values of L_i with $R = 3r$ and $l = 10$</td>
<td>126</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2-1</td>
<td>Bloom filter and filtering vectors</td>
<td>29</td>
</tr>
<tr>
<td>2-2</td>
<td>Iterative use of filtering vectors</td>
<td>30</td>
</tr>
<tr>
<td>2-3</td>
<td>Generalized approach</td>
<td>32</td>
</tr>
<tr>
<td>2-4</td>
<td>Relationship between search time and (P_{REQ}). Parameter setting: (</td>
<td>Y</td>
</tr>
<tr>
<td>2-5</td>
<td>False positive ratio after running the ITSP</td>
<td>47</td>
</tr>
<tr>
<td>2-6</td>
<td>False positive ratio by the ITSP of 500 runs</td>
<td>49</td>
</tr>
<tr>
<td>2-7</td>
<td>False positive ratio after running ITSP-rem, ITSP-bem and CATS</td>
<td>51</td>
</tr>
<tr>
<td>2-8</td>
<td>False negatives due to signal loss in time-varying channel</td>
<td>53</td>
</tr>
<tr>
<td>3-1</td>
<td>Generation of derived keys</td>
<td>59</td>
</tr>
<tr>
<td>3-2</td>
<td>One-bit left circular shift</td>
<td>60</td>
</tr>
<tr>
<td>3-3</td>
<td>Illustration of two bits that initially belong to the same flipping group moving to different flipping groups.</td>
<td>61</td>
</tr>
<tr>
<td>3-4</td>
<td>A ((N + 2))-bit indicator</td>
<td>62</td>
</tr>
<tr>
<td>3-5</td>
<td>Different formats of message blocks</td>
<td>63</td>
</tr>
<tr>
<td>3-6</td>
<td>Overall format of transmitted message blocks</td>
<td>63</td>
</tr>
<tr>
<td>3-7</td>
<td>State transitions of one bit</td>
<td>65</td>
</tr>
<tr>
<td>3-8</td>
<td>State transitions of two bits</td>
<td>66</td>
</tr>
<tr>
<td>3-9</td>
<td>Frequency test for randomness</td>
<td>73</td>
</tr>
<tr>
<td>3-10</td>
<td>Gap test for randomness</td>
<td>74</td>
</tr>
<tr>
<td>4-1</td>
<td>A hierarchical distributed RFID system</td>
<td>77</td>
</tr>
<tr>
<td>4-2</td>
<td>Three steps of token-based mutual authentication</td>
<td>82</td>
</tr>
<tr>
<td>4-3</td>
<td>A hash table used by TAP</td>
<td>85</td>
</tr>
<tr>
<td>4-4</td>
<td>The Structure of a (b)-bit indicator</td>
<td>86</td>
</tr>
<tr>
<td>4-5</td>
<td>Left plot: Generating a new token using the base tokens and the selector. Right plot: Generating a new indicator using the base indicators and the selector.</td>
<td>87</td>
</tr>
</tbody>
</table>
4-6 Our scheme against desynchronization attack. 95
4-7 Two-step verification mechanism of ETAP. 95
4-8 An example of using multiple hash functions to reduce collisions. 96
4-9 A toy example of hash table used by ETAP. Each slot stores both hash index and tag index. 97
4-10 Number of slots needed to guarantee every token is mapped to a singleton slot when different numbers of hash functions are used. 101
4-11 Ratio of tests that have no hash collision when \(r = 10 \). 101
4-12 Frequency tests for tokens and indicators generated by ETAP 102
5-1 State transition diagram of the RBP protocol. 112
5-2 An example of a spanning tree built by RBP. 114
5-3 At any time, there exists only one node that is active in collecting IDs from its lower-tier neighbors. 116
5-4 Left Plot: a roughly balanced spanning tree; Right Plot: a biased spanning tree. 117
5-5 A tag may choose its parent from multiple candidates, where arrows represent ID transmissions (or broadcast). 118
5-6 \(T' \) sets \(T \) as its parent. 119
5-7 An illustration of a network with three tiers of tags. 125
5-8 Left Plot: maximum children degree in the spanning tree. Right Plot: maximum load factor of tags in the spanning tree. 129
5-9 Performance comparison between CICP and SICP. 130
5-10 Left Plot: maximum number of bits sent by any tag in the system. Right Plot: maximum number of bits received by any tag in the system. 130
5-11 Execution time and energy cost of SICP with respect to \(\lambda \), when \(N = 5000 \). 131
6-1 Two physical-layer snapshots and the corresponding differential filter. 133
6-2 Two virtual bitmaps \(VB(cid_1) \) and \(VB(cid_2) \) are built on top the mask bitmap \(B \) for categories \(cid_1 \) and \(cid_2 \), respectively. The bit in grey is shared by both virtual bitmaps. 133
The Internet of Things (IoT) is a new networking paradigm for cyber-physical systems that allow physical objects to collect and exchange data. Generally, every physical object in the Internet of things needs to be uniquely identified by some auto-ID technologies. Radio Frequency Identification (RFID) tags have been widely used as object identifiers for IoT. The widespread use of RFID tags in IoT brings about new issues on efficiency, security, and privacy, which in turn opens up new research opportunities. In this dissertation, our objective is to design RFID protocols to improve the efficiency, security, and privacy of the IoT.

Our first work focuses on the tag search problem in large RFID systems. We want to improve the time efficiency of the tag search process so that it will not interfere with other normal inventory operations. We design a new technique called filtering vector, which can significantly reduce the transmission overhead during search process, thereby shortening search time. Based on this technique, we propose an iterative tag search protocol. Some tags are filtered out in each round and the search process will eventually terminate when the result meets a given accuracy requirement. Moreover, we extend our protocol to work under noisy channel. The simulation results demonstrate that our protocol performs much better than the best existing work.

In our second work, we design a lightweight cipher for resource-constrained devices, particularly low-cost RFID tags, to protect the exchanged messages. Common security
mechanisms that are hardware-intensive do not suit resource-constrained devices. Therefore, we want to design more lightweight ones that require less hardware. Traditional cryptography generally assumes that the communicating entities have similar capability. This is not true for asymmetric systems (e.g., RFID systems) where a significant capability gap exists between the two communicating entities. In this work, we make a radical shift from traditional cryptography, and design a novel cipher called Pandaka, in which most workload is pushed to the more powerful devices (e.g., RFID readers). As a result, Pandaka is particularly hardware-efficient for the resource-constrained devices. We perform extensive simulations and security analysis to evaluate the Pandaka.

The third work is to design a lightweight anonymous authentication protocol for RFID systems. The widespread use of tags raises a privacy concern: They make their carriers trackable. To protect the privacy of the tag carriers, we need to invent new mechanisms that keep the usefulness of tags while doing so anonymously. Many tag applications such as toll payment require authentication. Since low-cost tags have extremely limited hardware resource, we propose an asymmetric design principle that pushes most complexity to more powerful RFID readers. Instead of implementing complicated and hardware-intensive cryptographic hash functions, our authentication protocol only requires tags to perform several simple and hardware-efficient operations to generate dynamic tokens for anonymous authentication. The theoretic analysis and randomness tests demonstrate that our protocol can ensure the privacy of the tags. Moreover, our protocol reduces the communication overhead and online computation overhead to $O(1)$ per authentication for both tags and readers, which compares favorably with the prior art.

Finally, we study the problem of identifying networked tags. Traditional RFID technologies allow tags to communicate with a reader but not among themselves. By enabling peer communications between nearby tags, the emerging networked tags represent a fundamental enhancement to today’s RFID systems. They support applications in
previously infeasible scenarios where the readers cannot cover all tags due to cost or physical limitations. To prolong the lifetime of networked tags and make identification protocols scalable to large systems, energy efficiency and time efficiency are most critical. Our investigation reveals that the traditional contention-based protocol design will incur too much energy overhead in multihop tag systems. Surprisingly, a reader-coordinated design that significantly serializes tag transmissions performs much better. In addition, we show that load balancing is important in reducing the worst-case energy cost to the tags, and we present a solution based on serial numbers.
1.1 The Internet of Things and RFID Technologies

The Internet of Things (IoT) [1] is a new networking paradigm for cyber-physical systems that allow physical objects to collect and exchange data. In the Internet of Things, physical objects and cyber-agents can be sensed and controlled remotely across existing network infrastructure, which enables the integration between the physical world and computer-based systems and therefore extends the Internet into the real world. IoT can find numerous applications in smart housing, environmental monitoring, medical and health care systems, agriculture, transportation, etc. Because of its significant application potential, IoT has attracted a lot of attention from both academic research and industrial development. Generally, every physical object in the Internet of things needs to be augmented with some auto-ID technologies such that the object can be uniquely identified. Radio Frequency Identification (RFID) [2] is one of most widely used auto-ID technologies. The widespread use of RFID tags in IoT brings about new issues on efficiency, security, and privacy that are quite different from those in traditional networking systems [3, 4], which in turn opens up new research opportunities. In this dissertation, our objective is to design RFID protocols to help improve the efficiency, security, and privacy of the IoT.

RFID technologies have been pervasively used in numerous applications, such as inventory management, supply chain, product tracking, transportation, logistics and toll collection [5–23]. According to a market research conducted by IDTechEx [24], the market size of RFID has reached $8.89 billion in 2014, and is projected to rise to $27.31 billion after a decade. Typically, an RFID system consists of a large number of RFID tags, one or multiple RFID readers, and a backend server. Today’s commercial tags can be classified into three categories: (1) passive tags, which are powered by the radio wave from an RFID reader and communicate with the reader through backscattering; (2) active tags, which are powered by their own energy sources; and (3) semi-active tags, which
use internal energy sources to power their circuits while communicating with the reader through backscattering. As specified in EPC Class-1 Gen-2 (C1G2) protocol [2], each tag has a unique ID identifying the object it is attached to. The object can be a vehicle, a product in a warehouse, an e-passport that carries personal information, a medical device that records a patient’s health data, or any other physical object in IoT. The integrated transceiver of each tag enables it to transmit and receive radio signals. Therefore, a reader can communicate with a tag over a distance as long as the tag is located in its interrogation area. However, communications amongst RFID tags are generally not feasible due to their low transmission power. The emerging networked tags [25, 26] bring a fundamental enhancement to RFID tags by enabling tags to communicate with each other. The networked tags are integrated with energy-harvesting components that can harvest energy from surrounding environment.

1.2 Tag Search in Large RFID Systems

Given a set of wanted tag IDs, the tag search problem is to identify the wanted tags in an RFID system [27, 28]. Note that there may exist other tags that do not belong to the set. To meet the stringent delay requirements of real-world applications, time efficiency is a critical performance metric for the RFID tag search problem. For example, it is highly desirable to make the search quick in a busy warehouse as lengthy searching process may interfere with other activities that move things in and out of the warehouse. The only prior work studying this problem is called CATS [29], which however does not work well under some common conditions (e.g., if the size of the wanted set is much larger than the number of tags in the coverage area of the reader).

We propose a fast tag search method based on a new technique called filtering vectors. A filtering vector is a compact one-dimension bit array constructed from tag IDs, which can be used not only for tag filtration, but also for parameter estimation. Using the filtering vectors, we design, analyze, and evaluate a novel iterative tag search protocol, which progressively improves the accuracy of search result and reduces the time of each
iteration to a minimum by using the information learned from previous iterations. Given an accuracy requirement, the iterative protocol will terminate once the search result meets the accuracy requirement. We show that our protocol performs much better than the CATS protocol and other alternatives that we use for comparison. We then extend our protocol to work under noisy channel and demonstrate that the increase in its execution time due to channel error is modest.

1.3 Lightweight Cipher Design for Resource-Constrained Devices

With the ubiquitous use of RFID technology in not only industries but also our daily life, security problems become a big concern. The security threats on an RFID system include information leakage, denial of service (DoS), tag forgery, unauthorized access to tag memory content, snooping, etc[30]. Security issues in different applications may be different. In this work, we focus on establishing secure channels between readers and tags to avoid information leakage [15]. Because the wireless channel between a reader and a tag is exposed to surrounding environment, it is easy for a malicious adversary to eavesdrop on their communications.

The biggest challenge for implementing cryptographic protocols in RFID systems is that tags are extremely resource-constrained devices. It is the low price that triggers the explosive growth in use of RFID tags, which in turn limits their capabilities in computation, storage and power supply. Generally speaking, a UHF passive tag now costs about 10-50 cents [31]. It is infeasible to directly implement existing sophisticated cryptographic primitives like DES, AES, or RSA on low-cost tags. New cryptographic algorithms specially designed for those low-cost tags are on great demand, which leads to a new branch of cryptography called lightweight cryptography.

This work provides a new lightweight secret-key cryptography design for systems where significant asymmetry exists between the communicating parties. Take RFID systems as an example. Considering the significant capability gap between readers and tags, they should play different roles in a cryptographic protocol. We propose to push
complicated tasks to the powerful readers while leaving the tags as simple as possible. Based on this idea, we design a novel lightweight cipher called Pandaka. It does not need a general-purpose processing unit. The tags only need to perform three simple operations: bitwise XOR, one-bit left circular shift, and bit flip, while all other work is done by the readers. We present extensive analysis and simulation results to evaluate Pandaka.

1.4 Lightweight Anonymous Authentication Protocol Design for RFID Systems

The proliferation of tags in their traditional ways makes their carriers trackable. Should future tags penetrate into everyday products and be carried around (oftentimes unknowingly), people’s privacy would become a serious concern. A typical tag will automatically transmit its ID in response to the query from a nearby reader. If we carry tags in our pockets or by our cars, these tags will give off their IDs to any readers that query them, allowing others to track us. As an example, for a person whose car carries a tag (automatic toll payment [23] or tagged plate [32]), he may be unknowingly tracked over years by toll booths or others who install readers at locations of interest to learn when and where he has been. To protect the privacy of tag carriers, we need to invent ways of keeping the usefulness of tags while doing so anonymously.

Many RFID applications such as toll payment require authentication. A reader will accept a tag’s information only after authenticating the tag and vice versa. Anonymous authentication should prohibit the transmission any identifying information, such as tag ID, key identifier or any fixed number that may be used for identification purpose. As a result, there comes the challenge that how can a legitimate reader efficiently identify the right key for authentication without any identifying information of the tag?

The importance and challenge of anonymous authentication attract much attention from the RFID research community. Many anonymous authentication protocols have been proposed. However, all prior work has some potential problems, either incurring high computation or communication overhead, or having security or functional concern.
Moreover, most prior work, if not all, employs cryptographic hash functions, which requires considerable hardware\cite{33}, to randomize authentication data in order to make the tags untrackable. The high hardware requirement makes them not suited for low-cost tags with limited hardware resource. Hence, designing anonymous authentication protocols for low-cost tag remains an open and challenging problem\cite{34}.

In this work, we make a fundamental shift from the traditional design paradigm for anonymous RFID authentication \cite{35}. First, we release the resource-constrained RFID tags from implementing any complicated functions (e.g., cryptographic hashes). Since the readers are not needed in a large quantity as tags do, they can have much more hardware resource. Therefore, we follow the asymmetry design principle to push most complexity to the readers while leaving the tags as simple as possible. Second, we develop a novel technique to generate random tokens on demand for anonymous authentication. Our protocol only requires $O(1)$ communication overhead and online computation overhead per authentication for both readers and tags, which is a significant improvement over the prior art. Hence, our protocol is scalable to large RFID systems. Finally, extensive theoretic analysis, security analysis, simulations and statistical randomness tests are provided to verify the effectiveness of our protocol.

1.5 Networked Tags-Enhancement to RFID tags

The emerging networked tags promise to bring a fundamental enhancement to RFID tags by enabling tags to communicate with each other. An example of such tags is a new class of ultra-low-power energy-harvesting networked tags designed and prototyped at Columbia University \cite{25, 26}. Tagged objects that are not traditionally networked, e.g., warehouse products, books, furniture, and clothing, can now form a network\cite{36}, which provides great flexibility in applications. Consider a large warehouse where a great number of readers and antennas must be deployed to provide full coverage. Not only is this costly, but obstacles and piles of tagged objects may prevent signals from penetrating into every corner of the deployment, causing a reader to fail in accessing some of the tags. This
problem will be solved if the tags can relay transmissions toward the otherwise-inaccessible reader. More broadly, with emergence of the Internet of Things [36], we envision that networked tags will play an important role as an enhancement to the current RFID technologies.

The new feature of networked tags opens up new research opportunities. This work focuses on the tag identification problem, which is to collect the IDs of all tags in a system [37]. This is the most fundamental problem for RFID systems, but has not been studied in the context of networked tags, where one can take advantage of the networking capability to facilitate the ID collection process, e.g., collecting IDs of tags that are not within the reader’s coverage. Beyond the coverage of the readers, the networked tags are powered by batteries or rechargeable energy sources that opportunistically harvest solar, piezoelectric, or thermal energy from surrounding environment [26, 38]. Energy efficiency is a first-order performance criterion for operations carried out by networked tags.

1.6 Outline of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 presents an efficient tag search protocol based on filtering vectors. Chapter 3 proposes a lightweight stream cipher for resource-constrained devices such as low-cost RFID tags. Chapter 4 address the anonymous authentication problem in RFID systems. We design a lightweight anonymous authentication protocol with \(O(1)\) overhead for both readers and tags. Chapter 5 studies the problem of identifying state-free networked tags. Chapter 6 proposes some future work we will work on. Chapter 7 draws the conclusion.

CHAPTER 2
EFFICIENT TAG SEARCH IN LARGE RFID SYSTEMS

2.1 System Model and Problem Statement

2.1.1 System Model

We consider an RFID system consisting of one or more readers, a backend server, and a large number of tags. Each tag has a unique 96-bit ID according to the EPC global Class-1 Gen-2 (C1G2) standard [2]. A tag is able to communicate with the reader wirelessly and perform some computations such as hashing. The backend server is responsible for data storage, information processing, and coordination. It is capable of carrying out high-performance computations. Each reader is connected to the backend server via a high speed wired or wireless link. If there are many readers (or antennas), we divide them into non-interfering groups and the protocol proposed in this chapter (or any prior protocol) can be performed for one group at a time, with the readers in that group executing the protocol in parallel. The readers in each group can be regarded as an integrated unit, still called a reader for simplicity. Many works regarding multi-reader coordination can be found in literature [39], [40], [41].

In practice, the tag-to-reader transmission rate and the reader-to-tag transmission rate may be different and subject to the environment. For example, as specified in the EPC global Class-1 Gen-2 standard, the tag-to-reader transmission rate is 40kbps – 640 kbps in the FM0 encoding format or 5kbps – 320kbps in the Miller modulated subcarrier encoding format, while the reader-to-tag transmission rate is about 26.7kbps – 128kbps. However, to simplify our discussions, we assume the tag-to-reader transmission rate and the reader-to-tag transmission rate are the same, and it is straightforward to adapt our protocol for asymmetric transmission rates.

2.1.2 Time Slots

The RFID reader and the tags in its coverage area use a framed slotted MAC protocol to communicate. We assume that clocks of the reader and all tags in the RFID system are
Table 2-1. Notations

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Set of wanted tags</td>
</tr>
<tr>
<td>Y</td>
<td>Set of tags in the RFID system</td>
</tr>
<tr>
<td>W</td>
<td>Intersection of X and Y, i.e., $W = X \cap Y$</td>
</tr>
<tr>
<td>X_i</td>
<td>Set of remaining candidate tags in X, i.e., search result at the beginning of the i^{th} round of our protocol;</td>
</tr>
<tr>
<td>Y_i</td>
<td>Set of remaining candidate tags in Y at the beginning of the i^{th} round of our protocol</td>
</tr>
<tr>
<td>U_i</td>
<td>Difference between X_i and W, i.e., $U_i = X_i - W$</td>
</tr>
<tr>
<td>V_i</td>
<td>Difference between Y_i and W, i.e., $V_i = Y_i - W$</td>
</tr>
<tr>
<td>$</td>
<td>\cdot</td>
</tr>
<tr>
<td>$h(\cdot)$</td>
<td>A uniform hash function</td>
</tr>
<tr>
<td>$FV(\cdot)$</td>
<td>Filtering vector of a set</td>
</tr>
</tbody>
</table>

synchronized by the reader’s signal. During each frame, the communication is initialized by the reader in a request-and-response mode, namely, the reader broadcasts a request with some parameters to the tags and then waits for the tags to reply in the subsequent time slots.

Consider an arbitrary time slot. We call it an empty slot if no tag replies in this slot, or a busy slot if one or more tags respond in this slot. Generally, a tag just needs to send one-bit information to make the channel busy such that the reader can sense its existence. The reader uses ‘0’ to represent an empty slot with an idle channel and ‘1’ for a busy slot with a busy channel. The length of a slot for a tag to transmit a one-bit short response is denoted as t_s. Note that t_s can be set larger than the time of one-bit data transmission for better tolerance of clock drift in tags. Some prior RFID work needs another type of slots for transmission of tag IDs, which will be introduced shortly.

2.1.3 Problem Statement

Suppose we are interested in a known set of tag IDs $X = \{x_1, x_2, x_3, \cdots\}$, each $x_i \in X$ is called a *wanted tag*. For example, the set may contain tag IDs on a certain type of products under recall by a manufacturer. Let $Y = \{y_1, y_2, y_3, \cdots\}$ be the set of tags within the coverage area of an RFID system (e.g., in a warehouse). Each x_i or y_i represents a tag ID. The tag search problem is to identify the subset W of wanted tags
that are present in the coverage area. Namely, $W \subseteq X$. Since each tag in W is in the coverage area, $W \subseteq Y$. Therefore, $W = X \cap Y$. We define the intersection ratio of X and Y as

$$R_{INTS} = \frac{|W|}{\min\{|X|, |Y|\}}. \quad (2-1)$$

Exactly finding W can be expensive if X and Y are very large. It is much more efficient to find W approximately, allowing small bounded error [29] — all wanted tags in the coverage area must be identified, but a few wanted ones that are not in the coverage may be accidentally included.\(^1\)

Our solution performs iteratively. Each round rules out some tags in X when it becomes certain that they are not in the coverage area (i.e., Y), and it also rules out some tags in Y when it becomes certain that they are not wanted ones in X. These ruled-out tags are called non-candidate tags. Other tags that remain possible to be in both X and Y are called candidate tags. At the beginning, the search result is initialized to all wanted tags X. As our solution is iteratively executed, the search result shrinks towards W when more and more non-candidates are ruled out.

Let W^\ast be the final search result. We have the following two requirements:

1. All wanted tags in the coverage area must be detected, namely, $W \subseteq W^\ast$.

2. A false positive occurs when a tag in $X - W$ is included in W^\ast, i.e., a tag not in the coverage area is kept in the search result by the reader.\(^2\) The false positive ratio is the probability for any tag in $X - W$ to be in W^\ast after the execution of a search protocol. We want to bound the false positive ratio by a pre-specified system requirement P_{REQ}, whose value is set by the user. In other words, we expect

$$\frac{|W^\ast - W|}{|X - W|} \leq P_{REQ}. \quad (2-2)$$

\(^1\) If perfect accuracy is necessary, a post step may be taken by the reader to broadcast the identified IDs. As the wanted tags in the coverage reply after hearing their IDs, those mistakenly-included tags can be excluded due to non-response to these IDs.

\(^2\) The nature of our protocol guarantees that all tags in $Y - W$ are not included in W^\ast.

23
Notations used in this chapter are given in Table 2-1 for quick reference.

2.2 Related Work

2.2.1 Tag Identification

A straightforward solution for the tag search problem is identifying all existing tags in Y. After that, we can apply an intersection operation \(X \cap Y \) to compute \(W \). EPC C1G2 standard assumes that the reader can only read one tag ID at a time. Dynamic Framed Slotted ALOHA (DFSA) [42–46] is implemented to deal with tag collisions, where each frame consists of a certain number of equal-duration slots. It is proved that the theoretical upper bound of identification throughput using DFSA is approximately \(\frac{1}{e} \) tags per slot (\(e \) is the natural constant), which is achieved when the frame size is set equal to the number of unidentified tags [47]. As specified in EPC C1G2, each slot consists of the transmissions of a QueryAdjust or QueryRep command from the reader, one tag ID, and two 16-bit random numbers: one for the channel reservation (collision avoidance) sent by the tags, and the other for ACK/NAK transmitted by the reader. We denote the duration of each slot for tag identification as \(t_l \). Therefore, the lower bound of identification time for tags in Y using DFSA is

\[
T_{DFSA} = e \times |Y| \times t_l. \tag{2-3}
\]

One limitation of the current DFSA is that the information contained in collision slots is wasted. A number of recent papers [48–53] focus on Collision Recovery (CR) techniques, which enable the resolution of multiple tag IDs from a collision slot. Benefiting from the CR techniques, the identification throughput can be dramatically improved up to 3.1 tags per slot in [52]. Suppose the throughput is \(\upsilon \) tags per slot after adopting the CR techniques. The lower bound for identification time is

\[
T_{CR} = \frac{|Y|}{\upsilon} \times t_l. \tag{2-4}
\]
Note that after employing the CR techniques the real duration of each slot can be longer than t_l. The reason is that the reader may need to acknowledge multiple tags and the tags may need to send extra messages to facilitate collision recovery.

2.2.2 Polling Protocol

The polling protocol provides an alternative solution to the tag search problem. Instead of collecting all IDs in Y, the reader can broadcast the IDs in X one by one. Upon receiving an ID, each tag checks whether the received ID is identical to its own. If so, the tag transmits a one-bit short response to notify the reader about its presence; otherwise, the tag keeps silent. Hence, the execution time of the polling protocol is

$$T_{Polling} = |X| \times (t_{id} + t_s),$$

(2.5)

where t_{id} is the time cost for the reader to broadcast a tag ID.

The polling protocol is very efficient when $|X|$ is small. However, it also has serious limitations. First, it does not work well when $|X| \gg |Y|$. Second, the energy consumption of tags (particularly when active tags are used) is significant because tags in Y have to continuously listen to the channel and receive a large number of IDs until its own ID is received.

2.2.3 CATS Protocol

To address the problems of the tag identification and polling protocols, Zheng et al. propose a two-phase protocol named Compact Approximator based Tag Searching protocol (CATS) [29], which is the most efficient solution for the tag search problem to date.

The main idea of the CATS protocol is to encode tag IDs into a Bloom filter and then transmit the Bloom filter instead of the IDs. In its first phase, the reader encodes all IDs of wanted tags in X into a L_1-bit Bloom filter, and then broadcasts this filter together with some parameters to tags in the coverage area. Having received this Bloom filter, each tag tests whether it belongs to the set X. If the answer is negative, the tag is a non-candidate and will keep silent for the remaining time. After the filtration of
phase one, the number of candidate tags in Y is reduced. During the second phase, the remaining candidate tags in Y report their presence in a second L_2-bit Bloom filter constructed from a frame of time slots t_s. Each candidate tag transmits in k slots that it is mapped to. Listening to channel, the reader builds the Bloom filter based on the status of the time slots: ‘0’ for an idle slot where no tag transmits, and ‘1’ for a busy slot where at least one tag transmits. Using this Bloom filter, the reader conducts filtration for the IDs in X to see which of them belong to Y, and the result is regarded as $X \cap Y$.

With a pre-specified false positive ratio requirement P_{REQ}, the CATS protocol uses the following optimal settings for L_1 and L_2:

$$L_1 = |X| \log_{\phi} \left(-\frac{\alpha |X|}{\beta |Y| \ln P_{REQ}} \right), \quad (2.6)$$

$$L_2 = \frac{|X|}{\ln \phi} \left(\ln P_{REQ} - \frac{\alpha}{\beta} \right), \quad (2.7)$$

where ϕ is a constant that equals 0.6185, α and β are constants pertaining to the reader-to-tag transmission rate and the tag-to-reader transmission rate, respectively. In CATS, the authors assume t_s is the time needed to delivering one-bit data, and $\alpha = \beta$, i.e., the reader-to-tag transmission rate and the tag-to-reader transmission rate are identical. Therefore, the total search time of the CATS protocol is:

$$T_{CATS} = (L_1 + L_2) \times t_s$$

$$= |X| \left(\log_{\phi} \left(\frac{-|X|}{|Y| \ln P_{REQ}} \right) + \frac{\ln P_{REQ} - 1}{\ln \phi} \right) \times t_s. \quad (2.8)$$

2.3 A Fast Tag search Protocol Based on Filtering Vectors

In this section, we propose an Iterative Tag Search Protocol (ITSP) to solve the tag search problem in large-scale RFID systems. We will ignore channel error for now and delay this subject to Section 2.4.
2.3.1 Motivation

Although the CATS protocol takes a significant step forward in solving the tag search problem, it still has several important drawbacks. First, when optimizing the Bloom filter sizes L_1 and L_2, CATS approximates $|X \cap Y|$ simply as $|X|$. This rough approximation may cause considerable overhead when $|X \cap Y|$ deviates significantly from $|X|$.

Second, it assumes that $|X| < |Y|$ in its design and formula derivation. In reality, the number of wanted tags may be far greater than the number in the coverage area of an RFID system. For example, there may be a huge number $|X|$ of tagged products that are under recall, but as the products are distributed to many warehouses, the number $|Y|$ of tags in a particular warehouse may be much smaller than $|X|$. Although CAT can still work under conditions of $|X| \gg |Y|$, it will become less efficient as our simulations will demonstrate.

Third, the performance of CATS is sensitive to the false positive ratio requirement P_{REQ}. The performance deteriorates when the value of P_{REQ} is very small. While the simulations in [29] set $P_{REQ} = 5\%$, its value may have to be much smaller in some practical cases. For example, suppose $|X| = 100,000$, and $|W| = 1,000$. If we set $P_{REQ} = 5\%$, the number of wanted tags that are falsely claimed to be in Y by CATS will be up to $|X - W| \times P_{REQ} = 4,995$, far more than the 1,000 wanted tags that are actually in Y.

We will show that an iterative way of implementing Bloom filters is much more efficient than the classical way that the CATS protocol adopts.

2.3.2 Bloom Filter

A Bloom filter is a compact data structure that encodes the membership for a set of items. To represent a set $S = \{e_1, e_2, \cdots, e_n\}$ using a Bloom filter, we need a bit array of length l in which all bits are initialized to zeros. To encode each element $e \in S$, we use k hash functions, h_1, h_2, \cdots, h_k, to map the element randomly to k bits in the bit array, and set those bits to ones. For membership lookup of an element b, we again map the
element to \(k \) bits in the array and see if all of them are ones. If so, we claim that \(b \) belongs to \(S \); otherwise, it must be true that \(b \notin S \). A Bloom filter may cause false positive: a non-member element is falsely claimed as a member in \(S \). The probability for a false positive to occur in a membership lookup is given as follows [54, 55]:

\[
P_B = \left(1 - \left(1 - \frac{1}{l} \right)^{kn} \right)^k \approx \left(1 - e^{-kn/l} \right)^k. \tag{2.9}
\]

When \(k = \ln 2 \times \frac{l}{n} \), \(P_B \) is approximately minimized to \(\left(\frac{1}{2} \right)^k = \left(\frac{1}{2} \right)^{\ln 2 \frac{l}{n}} \). In order to achieve a target value of \(P_B \), the minimum size of the filter is \(-\ln \frac{P_B}{(\ln 2)^2} n\).

CATS sends one Bloom filter from the reader to tags and another Bloom filter from tags back to the reader. Consider the first Bloom filter that encodes \(X \). As \(n = |X| \), the filter size is \(-\ln \frac{P_B}{(\ln 2)^2} |X|\). As an example, to achieve \(P_B = 0.001 \), the size becomes \(14.4 \times |X| \) bits. Similarly, the size of the second filter from tags to the reader is also related to the target false-positive probability.

Below we show that the overall size of the Bloom filter can be significantly reduced by reconstructing it as filtering vectors and then iteratively applying these vectors.

2.3.3 Filtering Vectors

A Bloom filter can also be implemented in a segmented way. We divide its bit array into \(k \) equal segments, and the \(i^{th} \) hash function will map each element to a random bit in the \(i^{th} \) segment, for \(i \in [1...k] \). We name each segment as a filtering vector (FV), which has \(l/k \) bits. The following formula gives the false-positive probability of a single filtering vector, i.e., the probability for a non-member to be hashed to a ‘1’ bit in the vector:

\[
P_{FV} = 1 - \left(1 - \frac{1}{l/k} \right)^n \approx 1 - e^{-kn/l}. \tag{2.10}
\]

Since there are \(k \) independent segments, the overall false-positive probability of a segmented Bloom filter is

\[
P_{FP} = (P_{FV})^k \approx \left(1 - e^{-kn/l} \right)^k, \tag{2.11}
\]
Figure 2-1. Bloom filter and filtering vectors

which is approximately the same as the result in (2.9). It means that the two ways of implementing a Bloom filter have similar performance. The value P_{FP} is also minimized when $k = \ln 2 \times \frac{l}{n}$. Hence, the optimal size of each filtering vector is

$$\frac{l}{k} = \frac{n}{\ln 2},$$

which results in

$$P_{FV} \approx \frac{1}{2}.$$ \hspace{1cm} (2-13)

Namely, each filtering vector on average filters out half of non-members.

Fig. 2-1 illustrates the concept of filtering vectors. Suppose we have two elements a and b, two hash function h_1 and h_2, and an 8-bit bit array. First, suppose $h_1(a) \mod 8 = 1$, $h_1(b) \mod 8 = 7$, $h_2(a) \mod 8 = 5$, $h_2(b) \mod 8 = 2$, and we construct a Bloom filter for a and b in the upper half of the figure. Next, we divide the bit array into two 4-bit filtering vectors, and apply h_1 to the first segment and h_2 to the second segment. Since $h_1(a) \mod 4 = 1$, $h_1(b) \mod 4 = 3$, $h_2(a) \mod 4 = 1$, $h_2(b) \mod 4 = 2$, we build the two filtering vectors in the lower half of the figure.

2.3.4 Iterative Use of Filtering Vectors

In this work, we use filtering vectors in a novel iterative way: Bloom filters between the reader and tags are exchanged in rounds; one filtering vector is exchanged in each round, and the size of filtering vector is continuously reduced in subsequent rounds, such that the overall size of each Bloom filter is much reduced.
Below we use a simplified example to explain the idea, which is illustrated in Fig. 2-2: Suppose there is no wanted tag in the coverage area of an RFID reader, namely, $X \cap Y = \emptyset$. In round one, we firstly encode X in a filtering vector of size $|X|/\ln 2$ through a hash function h_1, and broadcast the vector to filter tags in Y. Using the same hash function, each candidate tag in Y knows which bit in the vector it is mapped to, and it only needs to check the value of that bit. If the bit is zero, the tag becomes a non-candidate and will not participate in the protocol execution further. The filtering vector reduces the number of candidate tags in Y to about $|Y| \times P_{FV} \approx |Y|/2$. Then a filtering vector of size $|Y|/2 \ln 2$ is sent from the remaining candidate tags in Y back to the reader in a way similar to [29]: Each candidate tag hashes its ID to a slot in a time frame and transmit one-bit response in that slot. By listening to the states of the slots in the time frame, the reader constructs the filtering vector, ‘1’ for busy slots and ‘0’ for empty slots. The reader uses this vector to filter non-candidate tags from X. After filtering, the number of candidate tags remaining in X is reduced to about $|X| \times P_{FV} \approx |X|/2$. Only the candidate tags in X need to be encoded in the next filtering vector, using a different hash function h_2. Hence, in the second round, the size of the filtering vector from the reader to tags is reduced by half to $|X|/(2 \ln 2)$, and similarly the size of the filtering vector from tags to the reader is also reduced by half to $|Y|/(4 \ln 2)$. Repeating the above process, it is
easy to see that in the i_{th} round, the size of the filtering vector from the reader to tags is $|X|/(2^{i-1} \ln 2)$, and the size of the filtering vector from tags to the reader is $|Y|/(2^i \ln 2)$.

After K rounds, the total size of all filtering vectors from the reader to tags is

$$\frac{1}{\ln 2} \sum_{i=1}^{K} \frac{|X|}{2^{i-1}} < \frac{2|X|}{\ln 2},$$

(2-14)

where $\frac{2|X|}{\ln 2}$ is an upper bound, regardless of the number K of rounds (i.e., regardless of the requirement on the false-positive probability). It compares favorably to CATS whose filter size, $-\frac{\ln P_B}{(\ln 2)^2} |X|$, grows inversely in P_B, and reaches $14.4 \times |X|$ bits when $P_B = 0.001$ in our earlier example.

Similarly, the total size of all filtering vectors from tags to the reader is

$$\frac{1}{\ln 2} \sum_{i=1}^{K} \frac{|Y|}{2^i} < \frac{|Y|}{\ln 2},$$

(2-15)

and $P_{FP} = (P_{FV})^K \approx (\frac{1}{2})^K$. We can make P_{FP} as small as we like by increasing n, while the total transmission overhead never exceeds $\frac{1}{\ln 2} (2|X| + |Y|)$ bits. The strength of filtering vectors in bidirectional filtration lies in their ability to reduce the candidate sets during each round, thereby diminishing the sizes of filtering vectors in subsequent rounds and thus saving time. Its power of reducing subsequent filtering vectors is related to $|X - W|$ and $|Y - W|$. The more the numbers of tags outside of W, the more they will be filtered in each round, and the greater the effect of reduction.

2.3.5 Generalized Approach

Unlike the CATS protocol, our iterative approach divides the bidirectional filtration in tag search process into multiple rounds. Before the i^{th} round, the set of candidate tags in X is denoted as $X_i (\subseteq X)$, which is also called the search result after the $(i - 1)^{th}$ round. The final search result is the set of remaining candidate tags in X after all rounds are completed. Before the i^{th} round, the set of candidate tags in Y is denoted as $Y_i (\subseteq Y)$.

Initially, $X_1 = X$ and $Y_1 = Y$. We define $U_i = X_i - W$ and $V_i = Y_i - W$, which are the
tags to be filtered out. Because W is always a subset of both X_i and Y_i, we have

\begin{align}
|U_i| &= |X_i| - |W| \\
|V_i| &= |Y_i| - |W|.
\end{align}

Instead of exchanging a single filtering vector at a time, we generalize our iterative approach by allowing multiple filtering vectors to be sent consecutively. Each round consists of two phases. In phase one of the i^{th} round, the RFID reader broadcasts a number m_i of filtering vectors, which shrink the set of remaining candidate tags in Y from Y_i to Y_{i+1}. In phase two of the i^{th} round, one filtering vector is sent from the remaining candidate tags in Y_{i+1} back to the reader, which uses the received filtering vector to shrink its set of remaining candidates from X_i to X_{i+1}, setting the stage for the next round. This process continues until the false positive ratio meets the requirement of P_{REQ}.

The values of m_i will be determined in the next subsection. If $m_i > 0$, multiple filtering vectors will be sent consecutively from the reader to tags in one round. If $m_i = 0$, no filtering vector is sent from the reader in this round. When this happens, it essentially allows multiple filtering vectors to be sent consecutively from tags to the reader (across multiple rounds). An illustration is given in Fig. 2-3.
2.3.6 Values of m_i

Let K be the total number of rounds. After all K rounds, we use X_{K+1} as our search result. There are in total K filtering vectors sent from tags to the reader. We know from subsection 2.3.3 that each filtering vector can filter out half of non-members (in our case, tags in $X - W$). To meet the false positive ratio requirement P_{REQ}, the following constraint should hold

$$(P_{FV})^K \approx \left(\frac{1}{2}\right)^K \leq P_{REQ}. \quad (2-17)$$

Hence, the value of K is set to $\lceil -\frac{\ln P_{REQ}}{\ln 2} \rceil$. (We will discuss how to guarantee meeting the requirement P_{REQ} in Section 2.3.9.)

Next, we discuss how to set the values of m_i, $1 \leq i \leq K$, in order to minimize the execution time of each round. We use $FV(\cdot)$ to denote the filtering vector of a set. In phase one of the i^{th} round, the reader builds m_i filtering vectors, denoted as $FV_{i1}(X_i)$, $FV_{i2}(X_i)$, \cdots, $FV_{im_i}(X_i)$, which are consecutively broadcasted to the tags. From (2–12), we know the size of each filtering vector is $|X_i|/\ln 2$. After the filtration based on these vectors, the number of remaining candidate tags in Y_{i+1} is on average

$$|Y_{i+1}| \approx |V_i| \times (P_{FV})^{m_i} + |W|$$

$$\approx |V_i| \times (1/2)^{m_i} + |W|$$

$$= |V_i|/2^{m_i} + |W|. \quad (2-18)$$

In phase two of the i^{th} round, the tags in Y_{i+1} use a time frame of $\frac{1}{\ln 2} \times |Y_{i+1}|$ slots to report their presence. After receiving the responses, the reader builds a filtering vector, denoted as $FV_i(Y_{i+1})$. After the filtration based on $FV_i(Y_{i+1})$, the size of the search result X_{i+1} is on average

$$|X_{i+1}| \approx |U_i| \times P_{FV} + |W|$$

$$\approx |U_i|/2 + |W|$$

$$= (|X_i| + |W|)/2. \quad (2-19)$$
We denote the transmission time of the i^{th} round by $f(m_i)$. In order to make a fair comparison with CATS, we utilize the parameter setting that conforms with \[29\]. Therefore, $f(m_i) = \frac{1}{\ln 2} \times m_i \times |X| \times t_s + \frac{1}{\ln 2} \times |Y| \times t_s$, which is set to be:

$$f(m_i) = \frac{t_s}{\ln 2} (m_i |X_i| + |V_i|/2^{m_i} + |W|). \tag{2-20}$$

To find the value of m_i that minimizes $f(m_i)$, we take the first order derivative and set the right side to zero.

$$\frac{df(m_i)}{dm_i} = \frac{t_s}{\ln 2} (|X_i| - \ln 2|V_i|/2^{m_i}) = 0 \tag{2-21}$$

Hence, the value of $f(m_i)$ is minimized when

$$m_i = \frac{\ln\ln 2|V_i|/|X_i|)}{\ln 2}. \tag{2-22}$$

Because m_i cannot be a negative number, we reset $m_i = 0$ if $\frac{\ln\ln 2|V_i|/|X_i|)}{\ln 2} < 0$.

Furthermore, m_i must be an integer. If $\frac{\ln\ln 2|V_i|/|X_i|)}{\ln 2}$ is not an integer, we round m_i either to the ceiling or to the floor, depending on which one results in a smaller value of $f(m_i)$.

For now, we assume that we know $|W|$ and $|Y|$ in our computation of m_i. Later we will show how to estimate these values on the fly in the execution of each round of our protocol. Initially, $|X_1| (= |X|)$ is known. $|V_1|$ can be calculated from (2–16). Hence, the value of m_1 can be computed from (2–22). After that, we can estimate $|Y_2|$, $|X_2|$, and $|V_2|$ based on (2–18), (2–19), and (2–16), respectively. From $|X_2|$ and $|V_2|$, we can calculate the value m_2. Following the same procedure, we can iteratively compute all values of m_i for $1 \leq i \leq K$.

We find it often happens that the m_i sequence has several consecutive zeros at the end, that is, $\exists p < K$, $m_i = 0$ for $i \in [p, K]$. In this case, we may be able to further optimize the value of m_p with a slight adjustment. We first explain the reason for $m_p = 0$:

It costs some time for the reader to broadcast a filtering vector in phase one of the p^{th} round. It is true that this filtering vector can reduce set Y_p, thereby reducing the frame
Table 2-2. The initial values of m_i.

<table>
<thead>
<tr>
<th>m_1</th>
<th>m_2</th>
<th>m_3</th>
<th>m_4</th>
<th>m_5</th>
<th>m_6</th>
<th>m_7</th>
<th>m_8</th>
<th>m_9</th>
<th>m_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

size of phase two in the p^{th} round. However, if the time cost of sending the filtering vector cannot be compensated by the time reduction of phase two, it will be better off to remove this filtering vector by setting $m_p = 0$. (This situation typically happens near the end of the m_i sequence because the number of unwanted tags in the remaining candidate set Y_p is already very small.) But if all values of m_i in the subsequent rounds (after m_p) are zeros, increasing m_p to a non-zero value m'_p may help reduce the transmission time of phase two of all subsequent rounds, and the total time reduction may compensate more than the time cost of sending those m'_p filtering vectors.

Consider the transmission time of these $(K - p + 1)$ rounds as a whole, denoted by $G(m'_p, p)$. It is easy to derive

$$G(m'_p, p) = \left(\frac{m'_p}{\ln 2}|X_p| + \frac{K - p + 1}{\ln 2} \left(\frac{|V_p|}{2^{m'_p}} + |W|\right)\right) t_s. \quad (2-23)$$

To minimize $G(m'_p, p)$, we have

$$m'_p = \begin{cases}
0 & \text{if } \gamma < 0 \\
\gamma & \text{if } \gamma \geq 0
\end{cases} \quad (2-24)$$

where $\gamma = \frac{\ln(\ln 2(K-p+1)|V_p|/|X_p|)}{\ln 2}$. As a result, m_p is updated to m'_p, while other $m_i, i \neq p$, remains unchanged.

Here, we give an example to illustrate how to calculate the values of m_i. Suppose $|X| = 5,000$, $|Y| = 50,000$, $|W| = 500$, and $P_{REQ} = 0.001$, so $K = \lceil \frac{-\ln 0.001}{\ln 2} \rceil = 10$. Using (2-22), we can calculate the values from m_1 to m_{10}. The result is listed in Table 2-2. There is a sequence of zeros from m_7 to m_{10}. Thus, we can make an improvement using (2-24), and the optimized result is shown in Table 2-3.
Table 2-3. The optimized values of m_i.

<table>
<thead>
<tr>
<th>m_1</th>
<th>m_2</th>
<th>m_3</th>
<th>m_4</th>
<th>m_5</th>
<th>m_6</th>
<th>m_7</th>
<th>m_8</th>
<th>m_9</th>
<th>m_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2.3.7 Iterative Tag Search Protocol

Having calculated the values of m_i, we can present our iterative tag search protocol (ITSP) based on the generalized approach in Section 2.3.5. The protocol consists of K iterative rounds. Each round consists of two phases. Consider the i^{th} round, where $1 \leq i \leq K$.

2.3.7.1 Phase one

The RFID reader constructs m_i filtering vectors for X_i using m_i hash functions. According to (2-12), we set the size L_{X_i} of each filtering vector as

$$L_{X_i} = \frac{1}{\ln 2} \times |X_i|.$$ \hspace{1cm} (2-25)

The RFID reader then broadcasts those filtering vectors one by one. Once receiving a filtering vector, each tag in Y_i maps its ID to a bit in the filtering vector using the same hash function that the reader uses to construct the filter. The tag checks whether this bit is ‘1’. If so, it remains a candidate tag; otherwise, it is excluded as a non-candidate tag and drops out of the search process immediately. The set of remaining candidate tags is Y_{i+1}.

If the filtering vectors are too long, the reader divides each vector into blocks of a certain length (e.g., 96 bits) and transmits one block after another. Knowing which bit it is mapped to, each tag only needs to record one block that contains its bit.

From (2-13), we know that the false positive probability after using m_i filtering vectors is $(P_{FV})^{m_i} \approx (1/2)^{m_i}$. Therefore, $|Y_{i+1}| \approx |V_i| \times (P_{FV})^{m_i} + |W| \approx |V_i|/2^{m_i} + |W|$.

2.3.7.2 Phase two

The reader broadcasts the frame size $L_{Y_{i+1}}$ of phase two to the tags, where

$$L_{Y_{i+1}} = \frac{1}{\ln 2} \left(|V_i|/2^{m_i} + |W|\right).$$ \hspace{1cm} (2-26)
After receiving $L_{Y_{i+1}}$, each tag in Y_{i+1} randomly maps its ID to a slot in the time frame using a hash function and transmits a one-bit short response to the reader in that slot. Based on the observed state (busy or empty) of the slots in the time frame, the reader builds a filtering vector, which is used to filter non-candidates from X_i.

The overall transmission time of all K rounds in the ITSP is

$$T_{ITSP} = \sum_{i=1}^{K} (m_i \times L_{X_i} + L_{Y_{i+1}}) \times t_s. \quad (2-27)$$

2.3.8 Cardinality Estimation

Recall from Section 2.3.6 that we must know the values of $|X_i|$, $|W|$ and $|V_i|$ to determine m_i, L_{X_i} and $L_{Y_{i+1}}$. It is trivial to find the value of $|X_i|$ by counting the number of tags in the search result of the $(i - 1)^{th}$ round. Meanwhile, we know $|V_i| \approx |V_{i-1}|/2^{m_i-1}$, and $|V_1| = |Y_1| - |W|$. Therefore, we only need to estimate $|W|$ and $|Y_1|$.

Besides serving as a filter, a filtering vector can also be used for cardinality estimation, a feature that is not exploited in [29]. Since no filtering vector is available at the very beginning, the first round of the ITSP should be treated separately: We may use the efficient cardinality estimation protocol ART proposed in [56] to estimate $|Y|$ (i.e., $|Y_1|$) if its value is not known at first. As for $|W|$, it is initially assumed to be $\min \{|X|, |Y|\}$.

Next, we can take advantage of the filtering vector received by the reader in phase two of the i^{th} ($i \geq 1$) round to estimate $|W|$ without any extra transmission expenditure. The estimation process is as follows: First, counting the actual number of ‘1’ bits in the filtering vector, denoted as N_1^*, we know the actual false-positive probability of using this filtering vector, denoted by P_i^*, is

$$P_i^* = N_1^*/L_{Y_{i+1}}, \quad (2-28)$$

because an arbitrary unwanted tag has a chance of N_1^* out of $L_{Y_{i+1}}$ to be mapped to a ‘1’ bit, where $L_{Y_{i+1}}$ is the size of the vector. Meanwhile, we can record the number of tags
in the search results before and after the i^{th} round, i.e., $|X_i|$ and $|X_{i+1}|$, respectively. We have $|X_i| = |U_i| + |W|$, $|X_{i+1}| = |U_{i+1}| + |W|$, and $|U_{i+1}| \approx |U_i| \times P^*_i$. Therefore,

$$|W| \approx \frac{|X_{i+1}| - |X_i| \times P^*_i}{1 - P^*_i}. \quad (2-29)$$

For the purpose of accuracy, we may estimate $|W|$ after every round, and obtain the average value.

2.3.9 Additional Filtering Vectors

Estimation may have error. Using the values of m_i and L_Y_i computed from estimated $|W|$ and $|Y_i|$, a direct consequence is that the actual false positive ratio, denoted as P_T, can be greater than the requirement P_{REQ}. Fortunately, from (2-28), the reader is able to compute the actual false positive ratio P^*_i, $1 \leq i \leq k$, of each filtering vector received in phase two of the ITSP. Thus, we have

$$P_T = \prod_{i=1}^{K} P^*_i. \quad (2-30)$$

If $P_T > P_{REQ}$, our protocol will automatically add additional filtering vectors to further filter X_{K+1} until $P_T \leq P_{REQ}$ (as described in Section 2.3.4).

2.3.10 Hardware Requirement

The proposed protocol cannot be supported by off-the-shelf tags that conform to the EPC Class-1 Gen-2 standard [2], whose limited hardware capability constrains the functions which can be supported. By our design, most of the ITSP protocol’s complexity is on the reader side, but tags also need to provide certain hardware support. Besides the mandatory commands of C1G2 (e.g., Query, Select, Read), in order for a tag to execute the ITSP protocol, we need a new command defined in the set of optional commands, asking each awake tag to listen to the reader’s filtering vector, hash its ID to a certain slot of the vector for its bit value, keep silent and go sleep if the value is zero, and respond in a hashed slot (by making a transmission to make the channel busy) if the value is one.
Note that the tag does not need to store the entire filtering vector, but instead only need to count to the slot it is hashed to, and retrieve the value (0/1) carried in that slot.

Hardware-efficient hash functions \cite{57, 58, 33} can be found in the literature. A hash function may also be derived from the pseudo-random number generator required by the C1G2 standard. To keep the complexity of a tag’s circuit low, we only use one uniform hash function \(h(\cdot) \), and use it to simulate multiple independent hash functions. In phase one of the \(i^{th} \) round, we use \(h(\cdot) \) and \(m_i \) unique hash seeds \(\{s_1, s_2, \cdots, s_{m_i}\} \) to achieve \(m_i \) independent hash outputs. Thus, a tag \(id \) is mapped to bit locations \((h(id \oplus s_1) \mod L_{X_i}), (h(id \oplus s_2) \mod L_{X_i}), \cdots, (h(id \oplus s_{m_i}) \mod L_{X_i}) \) in the \(m_i \) filtering vectors, respectively. Each hash seed, together with its corresponding filtering vector, will be broadcast to the tags. In phase two of the \(i^{th} \) round, the reader generates a new hash seed \(s' \) and sends it to the tags. Each candidate tag in \(Y_{i+1} \) maps its \(id \) to the slot of index \((h(id \oplus s') \mod L_{Y_{i+1}}) \), and then transmits a one-bit short response to the reader in that slot.

2.4 ITSP Over Noisy Channel

So far the ITSP assumes that the wireless channel between the RFID reader and tags is reliable. Note that the CATS protocol does not consider channel error, either. However, it is common in practice that the wireless channel is far from perfect due to many different reasons, among which interference noise from nearby equipment, such as motors, conveyors, robots, wireless LAN’s, cordless phones, is a crucial one. Therefore, our next goal is to enhance ITSP making it robust against noise interference.

2.4.1 ITSP with Noise on Forward Link

The reader transmits at a power level much higher than the tags (which after all backscatter the reader’s signals in the case of passive tags). It has been shown that the reader may transmit more than one million times higher than tag backscatter \cite{59}. Hence, the forward link (reader to tag) communication is more resilient against channel noise than the reverse link (tag to reader). To provide additional assurance against noise for
forward link, we may use CRC code for error detection. The C1G2 standard requires the
tags to support the computation of CRC-16 (16-bit CRC)[2], which therefore can also
be adopted by future tags modified for ITSP. Each filtering vector built by the reader
can be regarded as a combination of many small segments with fixed size of l_s bits (e.g.,
$l_s = 80$). For each segment, the reader computes its 16-bit CRC and appends it to end
of that segment. Those segments are then concatenated and transmitted to tags. When
a tag receives a filtering vector, it first finds the segment it hashes to and computes the
CRC of that segment. If the calculated CRC matches the attached one, it will determine
its candidacy by checking the bit in the segment which it maps to. For mismatching CRC,
the tag knows that the segment has been corrupted, and it will remain as a candidate tag
regardless of the value of the bit which it maps to.

Suppose we let $l_s = 80$, then

$$L_{X_i} = \frac{\frac{1}{\ln 2} \times |X_i|}{l_s} \times (l_s + 16) = \frac{1.2|X_i|}{\ln 2}.$$ \hspace{1cm} (2-31)

We assume the probability that the noise corrupts each segment is P_S (P_S is expected to
be very small as explained above). A corrupted segment can be thought as consisting of all
‘1’s. Hence, the false-positive probability for a filtering vector sent by reader, denoted by
P_{RT}, is roughly

$$P_{RT} \approx \frac{\frac{L_{X_i}}{96} \times P_S \times l_s + \frac{L_{X_i}}{96} \times (1 - P_S) \times l_s \times P_{FV}}{rac{L_{X_i}}{96} \times l_s}$$

$$= \frac{1 + P_S}{2}.$$ \hspace{1cm} (2-32)

We can also get

$$|Y_{i+1}| \approx |V_i| \times (P_{RT})^{m_i} + |W|$$ \hspace{1cm} (2-33)

and now (2-20) can be rewritten as

$$f(m_i) = \frac{t_s}{\ln 2} \left(1.2m_i|X_i| + \left(\frac{1 + P_{RT}}{2}\right)^{m_i} |V_i| + |W|\right).$$ \hspace{1cm} (2-34)
Therefore, $f(m_i)$ is optimized when

$$m_i = \frac{\ln[\ln 2 - \ln(1 + P_{RT})|V_i|/1.2|X_i|]}{\ln 2 - \ln(1 + P_{RT})}. \quad (2-35)$$

2.4.2 ITSP with Noise on Reverse Link

Now let us study the noise on the reverse link and its effect on the ITSP. Since the backscatter from a tag is much weaker than the signal transmitted by the reader, the reverse link is more likely to be impacted by noise.

First, channel noise may corrupt a would-be empty slot into a busy slot. The original empty slot is supposed to be translated into a ‘0’ bit in the filtering vector by the reader; if a candidate tag is mapped to that bit, it is ruled out immediately. However, if that slot is corrupted and becomes a busy slot, the corresponding bit turns into ‘1’; a tag mapped to that bit will remain a candidate tag, thereby increasing the false-positive probability of the filtering vector.

Second, noise may also occur during a busy slot. Although the noise and the transmissions from tags may partially cancel each other in a slot if they happen to reach the reader in opposite phase, it is extremely unlikely that they will exactly eliminate each other. As long as the reader can still detect some energy, regardless of its source (it may even come from the noise), that slot will be correctly determined as a busy slot, and the corresponding bit in the filtering vector is set to ‘1’ just as it is supposed to be. However, if we take the propagation path loss, including reflection loss, attenuation loss and spreading loss [60], into account, there is still a chance that a busy slot may not be detected by the reader. This may happen in a time varying channel where the reader may fail in receiving a tag’s signal during a deeply faded slot when the tag transmits. We stress that this is not a problem unique to ITSP, but all protocols that require communications from tags to readers will suffer from this problem if it happens that the reader cannot hear the tags. ITSP is not robust against this type of error. But there exists ways to alleviate this problem — for instance, each filtering vector from tags to the reader is transmitted
twice. As long as a slot is busy in one of two transmissions, the slot is considered to be busy.

Next, we will investigate the reverse link with noise interference for ITSP under two error models.

2.4.2.1 ITSP under random error model (ITSP-rem)

The random error model is characterized by a parameter called error rate P_{ERR}, which means every slot independently has a probability P_{ERR} to be corrupted by the noise. Influencing by the channel noise, the reader can detect more busy slots as some empty slots turn into busy ones, which raises the false-positive probability of phase-two filtering vectors. Suppose the frame size of phase two in a certain round is l, the original number of busy slots is about $l \times P_{FV} \approx l/2$. At the reader’s side, however, the number of busy slots averagely increases to $l/2 + l/2 \times P_{ERR} = \frac{(1+P_{ERR}) \times l}{2}$. After encoding the slot status into a filtering vector, the false-positive probability of that filtering vector is:

$$P'_{FV} \approx \frac{(1+P_{ERR}) \times l}{2} = \frac{1+P_{ERR}}{2}. \quad (2-36)$$

To satisfy the false-positive ratio requirement, $(P'_{FV})^K \leq P_{REQ}$ should hold. Therefore, the search process of ITSP-rem contains at least

$$K = \left\lceil \frac{\ln P_{REQ}}{\ln((1+P_{ERR})/2)} \right\rceil \quad (2-37)$$

rounds. Also, we can derive

$$|X_{i+1}| \approx |U_i| \times P'_{FV} + |W| \approx |U_i|(1 + P_{ERR})/2 + |W|. \quad (2-38)$$

With K, $|X_i|$, $|Y_i|$ and m_i, $1 \leq i \leq K$, the search time of ITSP-rem can be calculated using $(2-31)$ $(2-26)$ $(2-27)$.
2.4.2.2 ITSP under burst error model (ITSP-bem)

In telecommunication, a burst error is defined as a consecutive sequence of received symbols, where the first and last symbols are in error, and there exists no continuous subsequence of \(m \) (\(m \) is a specified parameter called the guard band of the error burst) correctly received symbols within the error burst [61]. A burst error model describes the number of bursts during an interval and the number of incorrect symbols in each burst error, which differs greatly from the random error model.

According to the burst error model presented in [62], both the number of bursts in an interval and the number of errors in each burst have Poisson distributions. Assume the expected number of bursts in a \(l \)-bit interval is \(\eta \), the probability distribution function for the number of bursts can be expressed as

\[
h(x) = \sum_{i=0}^{\infty} \frac{\eta^i}{i!} e^{-\eta} \delta_{xi},
\]

where \(\delta_{xi} \) is the Kronecker delta function [63]. Meanwhile, if the mean value of errors due to a burst in the \(l \) bits is \(\tau \), then the probability distribution function of the number of error is given by

\[
g(y) = \sum_{j=0}^{\infty} \frac{\tau^j}{j!} e^{-\tau} \delta_{yj}.
\]

Therefore, the probability of having \(w \) errors in an interval of \(l \) bits is

\[
P_l(w) = e^{-\eta} \frac{\tau^w}{w!} \sum_{i=0}^{\infty} \frac{i^w}{i!} \eta^i e^{-i\tau}.
\]

In other words, for a frame with \(l \) slots, the probability that \(w \) slots will be corrupted by the burst noise is \(P_l(w) \).

Now we evaluate the ITSP under the burst error model, denoted as ITSP-bem. Given a filtering vector with size of \(l \)-bit, recall from (2–41) that the probability of having \(w \) errors in this \(l \)-bit vector is \(P_l(w) \). In this case, each original ‘0’ bit has a probability \(\frac{w}{l} \) to be corrupted by the errors, and becomes a ‘1’ bit. Consequently, the false-positive
probability of the filtering vector is expected to be:

\[P'_{FV} \approx \frac{1}{2} + \frac{1}{2} \sum_{w=0}^{l} P_l(w) \times \frac{w}{l}. \]

(2–42)

After obtaining the value of \(P'_{FV} \), the ITSP-bem can use (2–37), (2–38), to determine the values of other necessary parameters.

2.5 Performance Evaluation

2.5.1 Performance Metric

We compare our protocol ITSP with CATS [29], the polling protocol (Section 2.2.2), the optimal DFSA (dynamic frame slotted ALOHA), and a tag identification protocol with collision recovery [53], denoted as CR, which identifies 4.8 tags per slot on average, about 13 times the speed of the optimal DFSA. For ITSP and CATS, their Bloom filters (or filtering vectors) constitute most of the overall transmission overhead, while other transmission cost, such as transmission of hash seeds, is comparatively negligible. Both protocols need to estimate the number of tags in the system, \(|Y|\), as a pre-protocol step.

According to the results presented in [29], the time for estimating \(|Y|\) takes up less than 2% of the total execution time of CATS. Hence, we do not count the estimation time of \(|Y|\) in the simulation results because it is relatively small and does not affect fair comparison as both protocols need it. Consequently, the key metric concerning the time efficiency is the total size of Bloom filters or filtering vectors, and then (2–8) can be used for calculating the search time required by CATS, while (2–27) for ITSP.

After the search process is completed, we will calculate the false positive ratio \(P_{FP} \) using \(P_{FP} = \frac{|W^* - W|}{|X - W|} \), where \(W^* \) is the set of tags in the search result and \(W \) is the actual set of wanted tags in the coverage area. \(P_{FP} \) will be compared with \(P_{REQ} \) to see whether the search result meets the false positive ratio requirement.

2.5.2 Performance Comparison

We evaluate the performance of our protocol and compare it with the CATS protocol. In the first set of simulations, we set \(P_{REQ} = 0.001 \), fix \(|Y| = 50,000\), vary \(|X|\) from
Table 2-4. Performance comparison of tag search protocols. CR means a tag identification protocol with collision recovery techniques. $|Y| = 50,000$, $P_{REQ} = 0.001$.

| $|X|$ | 0.1 | 0.3 | 0.5 | TSP (R_{INTS}) | CATS | Polling | CR |
|------|-------|-------|-------|------------------|------|---------|-----|
| 5,000 | 61,463 | 96,989 | 105,828 | 108,346 | 124,553 | 126,370 | 485,000 | 1,427,083 |
| 10,000 | 108,017 | 145,553 | 206,709 | 199,586 | 231,236 | 238,313 | 970,000 | 1,427,083 |
| 20,000 | 185,204 | 255,898 | 335,426 | 397,462 | 403,954 | 447,772 | 1,940,000 | 1,427,083 |
| 40,000 | 304,767 | 467,433 | 512,156 | 598,718 | 678,066 | 837,837 | 3,880,000 | 1,427,083 |
| 80,000 | 414,686 | 590,150 | 656,426 | 721,347 | 721,347 | 721,347 | 15,520,000 | 1,427,083 |
| 160,000 | 472,677 | 630,669 | 721,347 | 721,347 | 721,347 | 721,347 | 15,520,000 | 1,427,083 |
| 320,000 | 529,835 | 668,794 | 721,347 | 721,347 | 721,347 | 721,347 | 31,040,000 | 1,427,083 |
| 640,000 | 573,270 | 696,015 | 721,347 | 721,347 | 721,347 | 721,347 | 62,080,000 | 1,427,083 |

Table 2-5. Performance comparison of tag search protocols. CR means a tag identification protocol with collision recovery techniques. $|X| = 10,000$, $P_{REQ} = 0.001$.

| $|Y|$ | 0.1 | 0.3 | 0.5 | TSP (R_{INTS}) | CATS | Polling | CR |
|------|-------|-------|-------|------------------|------|---------|-----|
| 1,250 | 13,047 | 17,364 | 18,033 | 18,033 | 18,033 | 164,589 | 970,000 | 35,677 |
| 2,500 | 24,289 | 33,337 | 36,067 | 36,067 | 36,067 | 175,960 | 970,000 | 71,354 |
| 5,000 | 42,835 | 62,862 | 68,528 | 72,134 | 72,134 | 190,387 | 970,000 | 142,708 |
| 10,000 | 73,909 | 109,281 | 119,022 | 137,056 | 144,269 | 204,814 | 970,000 | 285,417 |
| 20,000 | 95,833 | 132,546 | 169,065 | 167,713 | 192,960 | 219,241 | 970,000 | 570,833 |
| 40,000 | 111,904 | 152,606 | 174,926 | 228,215 | 232,904 | 233,668 | 970,000 | 1,141,667 |

5,000 to 640,000, and let $R_{INTS} = 0.1, 0.3, 0.5, 0.7, 0.9$. In the second set of simulations, we set $P_{REQ} = 0.001$, fix $|X| = 10,000$, vary $|Y|$ from 1,250 to 40,000 to investigate the scalability of ITSP with tag population from a large range, and let $R_{INTS} = 0.1, 0.3, 0.5, 0.7, 0.9$. For simplicity, we assume $t_{id} = 96t_s$, and $t_l = 137t_s$, in which a 9-bit QueryAdjust or a 4-bit QueryRep command, a 96-bit ID and two 16-bit random numbers can be transmitted. Tables 2-4 and 2-5 show the number of t_s slots needed by the protocols under different parameter settings. Each data point in these tables or other figures/tables in the rest of the section is the average of 500 independent simulation runs with ± 5% or less error at 95% confidence level.

From the tables, we observe that when R_{INTS} is small (which means $|W|$ is small), the ITSP performs much better than the CATS protocol. For example, in Table 2-4, when $R_{INTS} = 0.1$, the ITSP reduces the search time of the CATS protocol by as much as 90.0%. As we increase R_{INTS} (which implies larger $|W|$), the gap between the performance
of the ITSP and the performance of the CATS gradually shrinks. In particular, the CATS performs poorly when $|X| \geq |Y|$. But the ITSP can work efficiently in all cases. In addition, the ITSP is also much more efficient than the polling protocol, and any tag identification protocol with/without CR techniques. Even in the worst case, the ITSP only takes about half of the execution time of a tag identification protocol with CR techniques (Note that the identification process actually takes much more time since the throughput 4.8 tags per slot may not be achievable in practical and the duration of each slot is longer.). In practice, the wanted tags may be spatially distributed in many different RFID systems (e.g., warehouses in the example we use in the introduction), and thus R_{INTS} can be small. The ITSP is a much better protocol for solving the tag search problem in these practical scenarios.

Another performance issue we want to investigate is the relationship between the search time and P_{REQ}. The polling protocol, DFSA, and CR do not have false positive. Our focus will be on ITSP and CATS. We set $|X| = 5,000, 20,000$ or $80,000$, $|Y| = 50,000$, vary R_{INTS} from 0.1 to 0.9, and vary P_{REQ} from 10^{-6} to 10^{-2}. Fig. 2-4 compares the search times required by the CATS and the ITSP under different false positive ratio requirements. Generally speaking, the gap between the search time required by the ITSP and the search time by the CATS keeps getting larger with the decrease of P_{REQ}, particularly when R_{INTS} is small. For example, in Fig. 2-4 (c), when $P_{REQ} = 10^{-2}$ and
Figure 2-5. False positive ratio after running the ITSP.

$R_{INTS} = 0.1$, the search time by the ITSP is about one third of the time by the CATS; when we reduce P_{REQ} to 10^{-6}, the time by the ITSP becomes about one fifth of the time by the CATS. The reason is as follows: When R_{INTS} is small, $|W|$ is small and most tags in X and Y are non-candidates. After several ITSP rounds, as many non-candidates are filtered out iteratively, the size of filtering vectors decreases exponentially and therefore subsequent ITSP rounds do not cause much extra time cost. This merit makes the ITSP particularly applicable in cases where the false positive ratio requirement is very strict, requiring many ITSP rounds. On the contrary, the CATS protocol does not have this capability of exploiting low R_{INTS} values.

2.5.3 False Positive Ratio

Next, we examine whether the search results after execution of the ITSP will indeed meet the requirement of P_{REQ}. In this simulation, we set the false-positive ratio requirement based on the following formula:

$$P_{REQ} \leq \frac{|W|}{\lambda(|X| - |W|)},$$ \hspace{1cm} (2-43)

where λ is a constant. We use an example to give the rationale: Consider an RFID system with $|X| = 20,000$. If $|W| = 10,000$, $P_{REQ} = 0.01$ may be good enough because the number of false positives is about $(|X| - |W|) \times P_{REQ} = 100$, which is much fewer than $|W|$. However, if $|W| = 10$, $P_{REQ} = 0.01$ may become unacceptable since $(|X| - |W|) \times P_{REQ} \approx 200 \gg |W|$. Therefore, it is desirable to set the value of P_{REQ} such that the number of false positives in the search result is much smaller than $|W|$, namely,
\((|X| - |W|) \times P_{REQ} \leq \frac{1}{\lambda} |W|\). Let \(\lambda = 10\) and we test the ITSP under three different parameter settings:

(a) \(|X| = 5,000, |Y| = 50,000, \) and \(R_{INTS}\) varies from 0.1 to 0.9, i.e., \(|W|\) varies from 500 to 4,500. \(P_{REQ} \leq \frac{500}{10 \times (5,000 - 500)} \approx 0.01111\). We set \(P_{REQ} = 10^{-2}\).

(b) \(|X| = 20,000, |Y| = 50,000, \) and \(R_{INTS}\) varies from 0.01 to 0.9, i.e., \(|W|\) varies from 200 to 18,000. \(P_{REQ} \leq \frac{200}{10 \times (20,000 - 200)} \approx 0.00101\). We set \(P_{REQ} = 10^{-3}\).

(c) \(|X| = 80,000, |Y| = 50,000, \) and \(R_{INTS}\) varies from 0.01 to 0.9, i.e., \(|W|\) varies from 500 to 45,000. \(P_{REQ} \leq \frac{500}{10 \times (80,000 - 500)} \approx 0.00063\). We set \(P_{REQ} = 10^{-4}\).

For each parameter setting, we repeat the simulation 500 times to obtain the average false positive ratio.

Fig. 2-5 shows the simulation results. In (a), (b), and (c), we can see that the average \(P_{FP}\) is always smaller than the corresponding \(P_{REQ}\). Hence, the search results using the ITSP meet the prescribed requirement of false positive ratio in the average sense.

If we look into the details of individual simulations, we find that a small fraction of simulation runs have \(P_{FP}\) beyond \(P_{REQ}\). For example, Fig. (2-6) depicts the results of 500 runs with \(|X| = 5,000, |Y| = 50,000, |W| = 500\) and \(P_{REQ} = 10^{-2}\). There are about 5% runs having \(P_{FP} > P_{REQ}\), but that does not come as a surprise because the false positive ratio in the context of filtering vectors (ITSP) or Bloom filters (CATS) is defined in a probability way: The probability for each tag in \(X - W\) to be misclassified as one in \(W\) is no greater than \(P_{REQ}\). This probabilistic definition enforces a requirement \(P_{REQ}\) in an average sense, but not absolutely for each individual run.

2.5.4 Performance Evaluation under Channel Error

2.5.4.1 Performance of ITSP-rem and ITSP-bem

We evaluate the performance of ITSP-rem and ITSP-bem. To simulate the error rate \(P_{ERR}\) in ITSP-rem, we employ a pseudo-random number generator, which generates random real numbers uniformly in the range \([0, 1]\). If a bit in the filtering vector is ‘0’ and the generated random number is in \([0, P_{ERR}]\), that bit is flipped to ‘1’. \(P_{S}\) can be simulated in a similar way. As for the burst error in ITSP-bem, we first calculate
the values of $P_l(w)$ with different w for a given l. Then each w is assigned with a non-overlapping range in $[0, 1]$, whose length is equal to the value of $P_l(w)$. For each interval, we generate a random number and check which range the number locates, thereby determining the number of errors in that interval.

We set $P_{REQ} = 0.001$, $P_S = 0.01$, and $R_{INTS} = 0.1, 0.5, 0.9$, respectively. The values of $|X|$ and $|Y|$ are the same as those in Tables 2-4 and 2-5. l_s is set to 80 bits and a 16-bit CRC is appended to each segment on forward link for integrity check. For ITSP-rem, we consider two cases with $P_{ERR} = 5\%$ and 10\% respectively. For ITSP-bem, the prescribed parameters are set to be: $\eta = 0.135$, $\tau = 7.10$ with each interval to be 96 bits [62].

Tables 2-6 \sim 2-11 show the number of t_s slots needed under each parameter setting. The second column presents the results of ITSP when the channel is perfectly reliable. The third and fourth columns present the results of ITSP-rem with an error rate of 5\% or 10\%. The fifth column presents the results of ITSP-bem. It is not surprising that the search process under noisy channel generally takes more time due to the use of CRC and the higher false positive-probability of filtering vectors, and the execution time of the ITSP-rem is usually longer in a channel with a higher error rate. An important positive observation is that the performance of the proposed protocol gracefully degrades in all simulations. The increase in execution time for both ITSP-rem and ITSP-bem is modest, compared to ITSP with a perfect channel. For example, even when the error rate is 10\%,
Table 2-6. Performance comparison. $|Y|=50,000, R_{INTS}=0.1, P_{REQ} = 0.001$.

| $|X|$ | ITSP | I | TSP-rem | ITSP-bem |
|-----|--------|-----|---------|----------|
| | | $P_{ERR} = 5\%$ | $P_{ERR} = 10\%$ | | |
| 5,000 | 61,463 | 74,288 | 75,812 | 72,144 |
| 10,000 | 108,017 | 129,995 | 133,022 | 125,779 |
| 20,000 | 185,204 | 241,026 | 247,824 | 238,962 |
| 40,000 | 304,767 | 361,242 | 398,198 | 358,361 |
| 80,000 | 414,686 | 441,365 | 458,433 | 437,256 |
| 160,000 | 472,677 | 504,565 | 545,338 | 499,058 |
| 320,000 | 529,835 | 567,403 | 630,174 | 560,456 |
| 640,000 | 573,270 | 626,379 | 690,400 | 618,913 |

Table 2-7. Performance comparison. $|Y|=50,000, R_{INTS}=0.5, P_{REQ} = 0.001$.

| $|X|$ | ITSP | I | TSP-rem | ITSP-bem |
|-----|--------|-----|---------|----------|
| | | $P_{ERR} = 5\%$ | $P_{ERR} = 10\%$ | | |
| 5,000 | 105,828 | 160,481 | 166,469 | 153,838 |
| 10,000 | 206,709 | 211,513 | 221,771 | 210,805 |
| 20,000 | 335,426 | 371,974 | 391,983 | 370,557 |
| 40,000 | 512,156 | 577,305 | 617,196 | 577,305 |
| 80,000 | 656,426 | 735,592 | 789,874 | 735,592 |
| 160,000 | 721,347 | 793,482 | 865,617 | 793,482 |
| 320,000 | 721,347 | 793,482 | 865,617 | 793,482 |
| 640,000 | 721,347 | 793,482 | 865,617 | 793,482 |

Table 2-8. Performance comparison. $|Y|=50,000, R_{INTS}=0.9, P_{REQ} = 0.001$.

| $|X|$ | ITSP | I | TSP-rem | ITSP-bem |
|-----|--------|-----|---------|----------|
| | | $P_{ERR} = 5\%$ | $P_{ERR} = 10\%$ | | |
| 5,000 | 124,553 | 156,041 | 163,718 | 155,972 |
| 10,000 | 231,236 | 275,394 | 290,493 | 275,256 |
| 20,000 | 403,954 | 454,929 | 486,150 | 454,929 |
| 40,000 | 678,066 | 752,753 | 814,890 | 752,753 |
| 80,000 | 721,347 | 793,482 | 865,617 | 793,482 |
| 160,000 | 721,347 | 793,482 | 865,617 | 793,482 |
| 320,000 | 721,347 | 793,482 | 865,617 | 793,482 |
| 640,000 | 721,347 | 793,482 | 865,617 | 793,482 |

The execution time of ITSP-rem is about 10% ∼ 30% higher than that of ITSP. This modest increase demonstrates the practicality of our protocol under a noisy channel.
Table 2-9. Performance comparison. $|X|=10,000$, $R_{INTS}=0.1$, $P_{REQ} = 0.001$.

| $|Y|$ | ITSP | ITSP-rem | ITSP-bem |
|-----|------|---------|---------|
| | $P_{ERR} = 5\%$ | $P_{ERR} = 10\%$ |
| 1,250 | 13,047 | 14,868 | 15,898 | 14,174 |
| 2,500 | 24,289 | 26,626 | 28,617 | 25,283 |
| 5,000 | 42,835 | 46,994 | 50,863 | 44,393 |
| 10,000 | 73,909 | 76,807 | 84,135 | 75,983 |
| 20,000 | 95,833 | 103,255 | 106,693 | 102,121 |
| 40,000 | 111,904 | 133,043 | 137,345 | 130,382 |

Table 2-10. Performance comparison. $|X|=10,000$, $R_{INTS}=0.5$, $P_{REQ} = 0.001$.

| $|Y|$ | ITSP | ITSP-rem | ITSP-bem |
|-----|------|---------|---------|
| | $P_{ERR} = 5\%$ | $P_{ERR} = 10\%$ |
| 1,250 | 18,033 | 19,837 | 21,640 | 19,837 |
| 2,500 | 36,067 | 39,674 | 43,280 | 39,674 |
| 5,000 | 68,528 | 77,021 | 82,448 | 77,021 |
| 10,000 | 119,022 | 134,208 | 143,261 | 134,208 |
| 20,000 | 169,065 | 202,891 | 212,105 | 202,467 |
| 40,000 | 174,926 | 214,563 | 224,227 | 213,970 |

Table 2-11. Performance comparison. $|X|=10,000$, $R_{INTS}=0.9$, $P_{REQ} = 0.001$.

| $|Y|$ | ITSP | ITSP-rem | ITSP-bem |
|-----|------|---------|---------|
| | $P_{ERR} = 5\%$ | $P_{ERR} = 10\%$ |
| 1,250 | 18,033 | 19,837 | 21,640 | 19,837 |
| 2,500 | 36,067 | 39,674 | 43,280 | 39,674 |
| 5,000 | 72,134 | 79,348 | 86,561 | 79,348 |
| 10,000 | 144,269 | 158,696 | 173,123 | 158,696 |
| 20,000 | 192,960 | 217,245 | 232,272 | 217,245 |
| 40,000 | 232,904 | 261,277 | 277,300 | 261,173 |

Figure 2-7. False positive ratio after running ITSP-rem, ITSP-bem and CATS.
2.5.4.2 False positive ratio of ITSP-rem and ITSP-bem

We use the same parameter settings in Section 2.5.3 to examine the accuracy of search results by ITSP-rem and ITSP-bem. Meanwhile, for ITSP-rem, we set $P_{ERR} = 5\%$ or 10%. For ITSP-bem, the required input parameter setting is $\eta = 0.135$ and $\tau = 7.10$, with each 96-bit interval. Simulation results are delineated in Fig. 2-7, where the error rate is given between the parentheses after ITSP-bem. Clearly, the false positive ratio in the search results after executing ITSP-rem or ITSP-bem is always within the bound of P_{REQ}. These results confirm that the false-positive ratio requirement is met under noisy channel.

2.5.4.3 Signal loss due to fading channel

We consider the scenario of a time-varying channel in which it may happen that a signal from a tag is not received by the reader in a deep fading slot. Although we consider this condition is relatively rare in a RFID system that is configured to work stably, we acknowledge in Section 2.4.2 that ITSP (or CATS) is not robust against this type of error. However, the problem can be alleviated by the tags transmitting each filtering vector twice. Figure 2-8 shows the simulation results under parameters $|X| = 10000$, $|Y| = 5000$, $|W| = 500$, and $P_{REQ} = 0.01$. The horizontal axis shows the error rate, which is defined as the fraction of slots in deep fading, causing complete signal loss. ITSP-2 denotes the approach of transmitting each filtering vector from tags to the reader twice. When a wanted tag in W is not identified, we call it a false negative. The simulation results show that ITSP incurs significant false negatives when the error rate becomes large. For example, when the error rate is 2\%, the average number of false negatives is 90.7. ITSP-2 works very well in reducing this number. When the error rate is 2\%, its number of false negatives is just 1.95.

2.6 Summary

This chapter studies the tag search problem in large-scale RFID systems. To improve time efficiency and eliminate the limitation of prior solutions, we propose an iterative tag
search protocol (ITSP) based on a new technique that iteratively applies filtering vectors. Moreover, we extend the ITSP to work under noisy channel. The main contributions of our work are summarized as follows: (1) The iterative method of ITSP based on filtering vectors is very effective in reducing the amount of information to be exchanged between tags and the reader, and consequently saves time in the search process; (2) the ITSP performs much better than the existing solutions; (3) the ITSP works well under all system conditions, particularly in situations of $|X| \gg |Y|$ when CATS works poorly; (4) the ITSP is improved to work effectively under noisy channel.

Figure 2-8. False negatives due to signal loss in time-varying channel.
CHAPTER 3
A LIGHTWEIGHT CIPHER FOR RFID SYSTEMS

3.1 Security Model

3.1.1 System Model

An RFID system consists of a large number of tags, one or multiple readers, a backend server, and the communication channels between them. There are three types of RFID tags: active tag, passive tag and semi-active tag. In this chapter, we focus on the low-cost passive tags, which are powered by radio energy emitted from the readers. The computation and storage capabilities of each tag are very limited. The backend server, which takes charge of data storage, lookup and high-performance computations, is connected with the readers via high speed wired or wireless links. A reader must be authorized by the backend server before accessing confidential information, such as tag IDs and secret keys. Since the backend server and the readers have abundant resources to implement effective cryptographic primitives, they have no difficulty in establishing secure connections. Therefore, an authorized reader and the backend server can be considered as an integrated entity, still called an authorized reader. An unauthorized reader has no right to access the backend server, but it can eavesdrop on the wireless channels between the readers and tags. Note that in the following discussion, a reader without further annotation is an authorized one by default.

However, none of the above ciphers goes beyond the traditional paradigm for cryptography design: The two communicating parties are thought to be equipotent entities with comparable capabilities, and they should execute the protocols independently. This is true when communications happen between full-fledged computers. When it comes to RFID systems, however, a reader is much more powerful than a tag. If we stuck with the traditional paradigm when designing a new cipher, the tag would have to operate the same cryptographic functions as those implemented on the reader, which poses a heavy workload on the tag.
3.1.2 Adversary Model

An adversary will exploit the weaknesses of the RFID system to achieve malicious objectives. In [64], the authors classify adversaries based on their objectives, level of interference, presence, and available resources. In our model, we assume the major purpose of the potential adversary is to intercept confidential information exchanged between the readers and the tags. The adversary is capable of manipulating a few unauthorized readers to eavesdrop on both the forward channel (reader to tag commands) and the backward channel (tag to reader responses). Moreover, the adversary possesses sufficient storage resources to record all messages it overhears for further analysis. Finally, for the sake of not being detected, the adversary will never carry out disruptive attacks that may expose its presence.

3.2 Related Work

Recently, some work focused on studying lightweight ciphers, and a number of cryptographic algorithms have been proposed. Since asymmetric (public-key) cryptography usually demands more computation resources than symmetric (secret-key) cryptography, most lightweight ciphers are developed in the scope of the latter. In [65], the authors classify existing lightweight ciphers into three categories: Some researchers tried to optimize and compact standardized block ciphers, like AES [66–68] and IDEA [69], thereby reducing their hardware requirements and making them suitable for resource-constrained devices. Those algorithms fall into the first category. The algorithms in the second category are devised by slightly revising classical block ciphers, so they can be applied to lightweight applications. For example, DESL and DESXL [70] are lightweight variants of DES. The third category includes a set of new algorithms that are particularly designed for low-cost devices such as RFID tags and wireless sensors. Among them are lightweight block ciphers, such as PRESENT [71], HIGH [72] and mCrypton [73], and compact stream ciphers, such as Grain, MICKEY and Trivium [74], which are the
achievements from the eSTREAM project, while Hummingbird [65] is a hybrid of block cipher and stream cipher.

However, none of the above ciphers goes beyond the traditional paradigm for cryptography design: The two communicating parties are thought to be equipotent entities with comparable capabilities, and they should execute the protocols independently. This is true when communications happen between full-fledged computers. When it comes to RFID systems, however, a reader is much more powerful than a tag. If we stuck with the traditional paradigm when designing a new cipher, the tag would have to operate the same cryptographic functions as those implemented on the reader, which poses a heavy workload on the tag.

3.3 Cipher design

3.3.1 Motivation

A stream cipher generates a pseudorandom bit stream, called keystream, and uses it to encrypt the plaintext with a simple XOR operation. Compared with block ciphers, stream ciphers generally have a higher execution speed and a lower hardware complexity, which makes them better candidates for low-cost RFID tags. Since typical stream ciphers belong to symmetric ciphers, it is imperative that every RFID tag must independently produce the keystream if we want to apply such ciphers to RFID systems. However, implementation of common stream ciphers, such as RC4, incurs significant hardware cost. For example, RC4 built by [75] takes 13K GE (logic gate equivalence). Alternatively, we may leverage cryptographic hash functions to generate pseudorandom numbers and transform them into a keystream. A common hash function, such as MD4, MD5, and SHA-1, usually requires more than 7K logic gates [33]. In contrast, a low-cost RFID tag is only integrated with 7K-15K logic gates, of which 2K-5K are used for security purposes [64]. This bottleneck makes it impractical to implement complicated cryptographic functions on low-cost tags. Our goal is to design a new stream cipher that is more hardware-efficient for tags.
One interesting idea is as follows: If we handed the burdensome task of generating a keystream over to a reader and let the reader secretly inform the tags the generated keystream on the fly, the functions implemented on the tags could be much simplified. For example, suppose each RFID tag had an unlimited memory, and was pre-configured with infinite number of different \(\langle index, key \rangle\) pairs, which were shared by the reader. When the reader communicates with a tag, it generates random indexes one by one to decide which keys to use. Meanwhile, those indexes are sent to the tag in sequence notifying it of the currently selected keys. Once a key is used, it will be deleted by the reader and the tag to avoid duplicate use. The reader and the tag can generate the same keystream by concatenating the chosen keys in order. More importantly, it is an easy task for the tag to construct the keystream according to the received indexes.

Unfortunately, far from infinity, the memory size of a passive tag is actually very limited, and even a small number of keys can occupy its whole memory. According to the EPC C1G2 standard[2], the memory of a tag logically comprises four distinct banks: reserved memory, EPC memory, TID memory, and user memory. User memory can be used for user-specific data storage, such as security keys. A passive UHF tag usually owns a 512-bit user memory. Even some high-end tags only have a memory capacity of up to 32KB [76–78], and the prices of such tags are much higher. For example, the x Sky-ID tag [76] with 8KB user memory currently costs $25 each. Due to the cost reason, we assume that the available user memory for storing keys, denoted as \(M\) bits, is no larger than 1Kb when we design our cipher.

We call the small number of keys accommodated by each tag base keys. Suppose the length of each base key is \(L\) bits, and the number of base keys in each tag is \(N\). Clearly, the condition \(N \times L \leq M\) must hold. In this case, those base keys must be reused and updated to produce a massive number of so-called derived keys, which are used to form a keystream for encryption. Our basic idea is that the reader makes use of its powerful computation capability to generate derived keys with good randomness, and meanwhile it
encodes the information about how each derived key is generated into messages sent to the tag. Instructed by the received messages, the tag can retrieve the same derived keys with little effort. To assist the tag in generating derived keys one by one on the fly, the reader divides its messages into \(L \)-bit blocks and encodes the information for producing derived keys in the message blocks.

The length of every derived key is fixed to \(L \) bits, the same as that of the base keys. We use \(\mathcal{K} \) to represent the key space of all possible derived keys generated from the \(N \) base keys, and our objective is two-fold: (1) The cardinality of \(\mathcal{K} \) should be \(2^L \), namely, \(\mathcal{K} \) contains all possible values of \(L \) bits long; (2) the probability for the appearance of any derived key in \(\mathcal{K} \) is approximately equivalent to \(\frac{1}{2^L} \).

3.3.2 Design Details

We now describe our lightweight cipher Pandaka in detail, where tags only need to perform three simple operations: bitwise XOR, one-bit left circular shift, and bit flip. To simplify the discussion, we just consider the communications between one reader and one tag.

3.3.2.1 Initialization

First of all, some base keys must be shared by the reader and the tag. To generate a number \(N \) of \(L \)-bit base keys, denoted by \(k_0, k_1, \ldots, k_{N-1} \), respectively, the reader employs a random number generator that produces random numbers uniformly in the range \(\{0, 1, \ldots, 2^L - 1\} \). Those \(N \) base keys are configured into the tag’s user memory before deployment. Also, those base keys as well as the corresponding tag ID are stored in the backend database, so the reader can retrieve the base keys with the tag’s ID.

3.3.2.2 Derived keys generated by the reader

We design an algorithm for the reader to produce derived keys based on the base keys. To generate a derived key \(k \), each base key \(k_i \) (\(0 \leq i \leq N - 1 \)) is independently selected with a probability \(\frac{1}{2} \). The selection process is achieved by a random bit generator that can uniformly produce 0 and 1. Before determining whether \(k_i \) is chosen or not, the
Figure 3-1. Generation of derived keys.

reader calls the generator to produce a random bit. The base key k_i will be chosen only if the bit is 1. We denote the set of the chosen base keys as K_C. Obviously, there are $2^N - 1$ possible results for K_C, excluding the case that K_C is empty when no base key is selected. Afterwards, the reader calculates k by applying XOR operation on all elements in K_C. For instance, if $K_C = \{k_0, k_2, k_{N-1}\}$, then $k = k_0 \oplus k_2 \oplus k_{N-1}$. The complete process for generating a derived key is illustrated in Fig. 3-1.

3.3.2.3 Base key update by the reader

Once a derived key is generated, the selected base keys should be updated to refresh the key materials. This time, the reader reuses the random bit generator in 3.3.2.2 to generate two random bits. Accordingly, four different update patterns are devised. For every chosen base key, it first performs a one-bit left circular shift as shown in Fig. 3-2, where a one-bit left circular shift is applied on the sequence (0110 1101)$_2$. Next, a corresponding update pattern is adopted based on the two random bits as follows:

(1) Pattern 0: The two bits are 00. Nothing is to be done.

(2) Pattern 1: The two bits are 01. The reader flips the bits in the base key whose position indexes mod 3 is equal to 0.

(3) Pattern 2: The two bits are 10. The reader flips the bits in the base key whose position indexes mod 3 is equal to 1.

(4) Pattern 3: The two bits are 11. The reader flips the bits in the base key whose position indexes mod 3 is equal to 2.

After that, the update process at the reader side is finished.
3.3.2.4 Design rationale

The rationale behind our update scheme is to reduce the mutual dependence between bits in each base key. We let $L = 2^\lambda$, where λ is a constant integer, and denote the L bit positions in the base key k_i as $b[i][L - 1], \ldots, b[i][1], b[i][0]$. According to our update scheme for base keys, those L positions can be divided into three flipping groups, such that all bits in the same group will be flipped together if the corresponding update pattern is chosen, while bits belonging to different groups will never be flipped together.

For example, if $L = 8$, the eight positions in k_i are divided into three flipping groups:

\{b[i][0], b[i][3], b[i][6]\},
\{b[i][1], b[i][4], b[i][7]\} and \{b[i][2], b[i][5]\}.

Consider two arbitrary bits in k_i, denoted by X and Y, which are treated as discrete random variables $\in \{0, 1\}$. Suppose X and Y initially locate at $b[i][p]$ and $b[i][q]$ ($0 \leq p < q \leq L - 1$), respectively. Based on their relation when being updated, they are classified into two categories: (1) If $3 \nmid (q - p)$ and $3 \nmid (L + p - q)$, X and Y will never move to two positions that belong to the same flipping group. In other words, there is no chance for them to be flipped together. (2) If $3 \mid (q - p)$ or $3 \mid (L + p - q)$, X and Y may appear at two positions that are in the same flipping group, thereby possibly being flipped together (Note that by no means will both $3 \mid (q - p)$ and $3 \mid (L + p - q)$ hold because $3 \nmid L$). More specifically, within a period of L updates such that X and Y return to their original positions, if $3 \mid (q - p)$, X and Y are in the same flipping group for $(L - (q - p))$ times, and if $3 \mid (L + p - q)$, X and Y may be flipped together for $(q - p)$ times. For example, we let $L = 8$. If X is at $b[i][0]$ and Y is at $b[i][4]$ at the beginning, they belong
to the first category. In contrast, if initially X is at $b[i][0]$ and Y is at $b[i][3]$, they belong to the second category. Their initial positions are in the same flipping group, but after five updates, they respectively move to $b[i][5]$ and $b[i][0]$, which are no longer in the same flipping group, just as illustrated in Fig. 3-3, where positions of the same flipping group are marked with the same color.

In conclusion, there is always a chance for any two bits X and Y in a base key to appear at positions in different flipping groups regardless of their initial positions, and then they can be flipped asynchronously, which reduces their mutual dependence.

3.3.2.5 Indicator for the tag

Now that it is clear how the reader generates derived keys and updates the base keys, we proceed to show how those two processes can be repeated by the tag in a simpler way. To establish secure communication channels, the reader and the tag should always share the same base keys and generate same derived keys. Hence, each time the reader has to somehow inform the tag its choices of base keys and update pattern, thus instructing the tag to generate the same derived key and update the base keys following the same pattern. To do so, the reader encodes all necessary information into a bit vector, which is called an indicator, and sends that indicator to the tag. Let us take a look at the structure of an indicator as illustrated in Fig. 3-4: It is a $(N + 2)$-bit vector, where the low-order N bits represent the reader’s choices of base keys. If the i^{th} bit in the indicator is ‘1’, it means the i^{th} base key is selected; otherwise, the i^{th} base key is not chosen by the reader. The remaining two high-order bits in an indicator manifest the update pattern for those chosen base keys.
Figure 3-4. A \((N + 2)\)-bit indicator.

With the help of an indicator, the tag knows exactly which base keys should be used to calculate the derived key and how to update the selected base keys. Note that there is no need for the tag to implement the same random number generators as the reader does, which simplifies the tag’s function.

3.3.2.6 Formats of message blocks

The length of a message block is fixed to \(L\) bits, and it is bitwise XORed with a derived key for encryption. To avoid the leakage of information in an indicator, it is encrypted as part of a message block. This brings about a problem that no existing derived key can be used to encrypt the first indicator. To address the problem, the reader generates another \(L\)-bit random number when initializing the tag, and that random number is stored in both the reader and the tag, serving as the first (pre-stored) derived key. One or more indicators for subsequent derived keys can be piggybacked by current message block, which is encrypted before transmission.

To accomplish the mutual communication between the reader and the tag, we design three different formats of message blocks, which are depicted in Fig. 3-5. The format 1, denoted by \(F_1\), shows how the reader organizes its message to be sent. A \(L\)-bit \(F_1\) message block is composed by two parts: the high-order \((L - N - 2)\) bits are data to be transmitted, and the low-order \((N + 2)\) bits represent an indicator. The format 2, denoted by \(F_2\), is utilized by the reader to assist the tag in generating derived keys when the tag intends to transmit some data to the reader. Each \(F_2\) message consists of \(\lfloor \frac{L}{N+2} \rfloor\) indicators, while the remaining \((L - \lfloor \frac{L}{N+2} \rfloor \times (N + 2))\) high-order bits are padded with 0s. The format 3,
denoted by F_3, is employed by the tag to send its data to the reader, where all bits are used for encoding the data to be transmitted.

No matter which of the three formats is used, a CRC code is calculated for that block before encryption. A C1G2 RFID tag supports two CRC types: 16-bit CRC and 5-bit CRC\(^2\). In this chapter, we adopt the 16-bit CRC code for the purpose of integrity verification of message blocks. For each CRC code, it is transmitted along with its corresponding ciphertext block. Fig. 3-6 shows the overall format of a transmitted message block. After receiving a block, the reader or the tag first strips the L-bit encrypted message to decrypt it, and then calculates the CRC code of the decrypted block, which is compared with the attached CRC code. If the verification of the CRC code fails, the reader or the tag sends a request for retransmission of that block.

3.3.3 Two-Phase Communications

Communications between the reader and tag are always initialized by the reader. Each session consists of two phases: In phase one, the reader transmits an encrypted
message to the tag, and during phase two, the tag sends its encrypted message with the aid of the reader. More generally, phase one or phase two may be skipped if there is only a one-way message to be transmitted. Before exchanging the messages, the reader first sends a query to the tag, and the tag responds with its ID (Note that privacy of tag ID is not our concern in this chapter). Using this received ID, the reader can retrieve the set of base keys and the pre-stored derived key (or the derived key left from last session) from the backend server.

3.3.3.1 Phase one

In phase one, the reader encrypts and sends message blocks in form of F_1 to the tag continuously. The reader segments its message into $(L - N - 2)$-bit blocks. For each $(L - N - 2)$-bit data block, the reader combines it with a randomly generated $(N + 2)$-bit indicator. The derived key for encrypting the first block is the pre-stored random number or left from last session. The message blocks are XORed with the corresponding derived keys for encryption, and then consecutively sent by the reader to the tag in order. Once receiving an encrypted block, the tag is capable of decrypting it using the corresponding derived key. The tag extracts and stores the high-order $(L - N - 2)$-bit data from the decrypted block. Meanwhile, the tag calculates the next derived key and updates the chosen base keys guided by the indicator. Note that the indicator can be discarded once it is used. When the transmission is done, the reader informs the tag that phase one ends, so the tag can switch to phase two.

3.3.3.2 Phase two

Phase two may consist of multiple rounds, where message blocks are exchanged bidirectionally. In each round, the reader first randomly creates $\lceil \frac{L}{N+2} \rceil$ indicators, which are concatenated into a F_2 message block. Among those $\lceil \frac{L}{N+2} \rceil$ indicators, the first $(\lfloor \frac{L}{N+2} \rfloor - 1)$ ones instruct the tag to generate derived keys that will be used for encrypting its own message, while the last one specifies the derived key that the reader will use to encrypt the next F_2 block. Afterwards, the reader encrypts the F_2 block with a
Figure 3-7. State transitions of one bit.

derived key. The first derived key used by the reader in phase two is the last key left from phase one. The tag divides its message to be transmitted into blocks of format F_3. When receiving a message block from the reader, the tag decrypts it, thereby obtaining the $\lfloor \frac{L}{N+2} \rfloor$ indicators. The tag then takes one indicator at a time (from low-order to high-order) to compute a derived key, which is XORed with a F_3 block for encryption. The encrypted message block is sent to the reader. Totally, $\lfloor \frac{L}{N+2} \rfloor - 1$ blocks of format F_3 can be transmitted by the tag in one round. The reader knows exactly which derived key is used by the tag to encrypt each block, and therefore can decrypt it correctly to obtain the original message. This process continues round by round until the tag finishes transmitting its message. One may notice that at the end of phase two, at least one indicator is not used, namely, the last indicator in the final F_2 block sent by the reader, and it is shared by the reader and the tag. This guarantees that the reader can initiate another session anytime using the derived key generated with that indicator.

3.3.4 Randomness Analysis

3.3.4.1 Randomness

Randomness is a probabilistic property that is the most important metric for assessing a random number generator or a stream cipher. For our protocol, it is of great importance that the generated derived keys are random and unpredictable. Before we lucubrate the randomness of the derived keys, we first study the randomness of a base key k_i during its consecutive updates.

First, we consider one arbitrary bit in k_i, whose value is designated as random variable $X \in \{0, 1\}$. Suppose X is currently located at position $b[i][j]$ ($0 \leq j \leq L - 1$). When k_i is updated, X is shifted and then flipped with a probability of 0.25.
Figure 3-8. State transitions of two bits.

regardless of its new position. Fig. 3-7 shows the probabilities of state transitions of X. Correspondingly, the transition matrix for X during each update is given by $P_1 = \begin{pmatrix} 0.75 & 0.25 \\ 0.25 & 0.75 \end{pmatrix}$. Using singular value decomposition (SVD), $P_1 = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}$. Since the choice of an update pattern is independent with each other, after α updates, the transition matrix for X is $P_1^\alpha = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}^\alpha \times \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix},$ which converges to $\begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$ quickly as α increases. We take $\alpha = 8$ as an example, $P_1^8 = \begin{pmatrix} 0.502 & 0.498 \\ 0.498 & 0.502 \end{pmatrix}$. Therefore, whatever the initial value of X is, it turns to be 0 or 1 with about equal probabilities after several updates. Based on the above analysis, we conclude that the bit at any position in k_i is equally likely to be 0 or 1 in long term.

Now let us investigate two arbitrary bits in an arbitrary base key k_i, denoted by X and Y. Suppose X and Y are initially located at $b[i][p]$ and $b[i][q]$, respectively. Recall from Section 3.3.2.4 that the relation between X and Y can be classified into two categories based on their original positions in k_i. For the first category, X and Y are updated independently. Therefore, the values at $b[i][p]$ and $b[i][q]$ are independent. If
and Y belong to the second category, the mutual influence makes the situation more complicated. The left half of Fig. 3-8 shows state transitions of XY when they are flipped asynchronously, while the right half shows state transitions when they are flipped together. The corresponding transition matrixes for left half and right half of Fig. 3-8 are

\[
P_2 = \begin{bmatrix}
0.5 & 0.25 & 0.25 & 0 \\
0.25 & 0.5 & 0 & 0.25 \\
0.25 & 0 & 0.5 & 0.25 \\
0 & 0.25 & 0.25 & 0.5
\end{bmatrix},
\]

\[
P_3 = \begin{bmatrix}
0.5 & 0 & 0 & 0.5 \\
0 & 0.5 & 0 & 0.5 \\
0 & 0.5 & 0 & 0.5 \\
0.5 & 0 & 0 & 0.5
\end{bmatrix}.
\]

Assume that within L updates, X and Y move to positions belonging to different flipping groups for \(\beta\) times, and positions in the same flipping group for \(\gamma\) times, subjecting to \(1 \leq \beta < L, 1 \leq \gamma < L,\) and \(\beta + \gamma = L\). We observe that

\[
P_2^\beta \times P_3^\gamma = \begin{bmatrix}
0.25 & 0.25 & 0.25 & 0.25 \\
0.25 & 0.25 & 0.25 & 0.25 \\
0.25 & 0.25 & 0.25 & 0.25 \\
0.25 & 0.25 & 0.25 & 0.25
\end{bmatrix}
\]

for arbitrary combination of \(\beta\) and \(\gamma\). Hence, for any two bits in \(k_i\), regardless of their initial values, they will have the same probability of 0.25 to become 00, 01, 10, and 11 when they are shifted back to their original positions after \(L\) updates. In other others, the bits in \(k_i\) become pairwise independent.

With the above insight, we go further to study the randomness of the derived keys. Let us consider the \(j^{th}\) bit in every base key. Suppose the number of 0s in those \(N\) bits is \(n_0[j]\), and the number of 1s is \(n_1[j]\), where \(0 \leq j \leq L - 1\), and \(n_0[j] + n_1[j] = N\). We
have proved that any bit in a base key is 0 or 1 with the same probability. Meanwhile, the values of the \(j \)th bits in different base keys are independent. Thus, we have \(n_0[j] \sim B(N, 0.5) \), and \(P(n_0[j] = t) = \binom{N}{t} \times (0.5)^N \). We designate the \(j \)th bit in a derived key \(k \) as \(k[j] \). For the value of \(k[j] \), we should consider two possible cases: (1) \(n_0[j] = N \), namely, there is no 1 in those \(N \) bits. In this case, \(k[j] \) is definitely 0; (2) If \(0 \leq n_0[j] < N \), then \(k[j] \) can be 0 or 1. In the second case, if \(k[j] = 0 \), it implies an even number of base keys whose \(j \)th bit is 1 are chosen, and that probability is:

\[
P(k[j] = 0 \mid 0 \leq n_0[j] < N) = \frac{2^{n_0[j]} \times \sum_{t=0}^{n_1[j]} \binom{n_1[j]}{2t} - 1}{2^N - 1}
\]

\[= \frac{2^{n_0[j]} \times 2^{n_1[j]} - 1}{2^N - 1}
\]

\[= \frac{2^{N-1} - 1}{2^N - 1},
\]

which is a constant if \(N \) is fixed. Thus, we can obtain the probability for \(k[j] = 0 \) is:

\[
P(k[j] = 0) = P(n_0[j] = N) \times P(k[j] = 0 \mid n_0[j] = N)
\]

\[+ P(0 \leq n_0[j] < N) \times P(k[j] = 0 \mid 0 \leq n_0[j] < N)
\]

\[= \frac{1}{2^N} \times 1 + \left(1 - \frac{1}{2^N}\right) \times \frac{2^{N-1} - 1}{2^N - 1}
\]

\[= \frac{1}{2}.
\]

Therefore, \(P(k[j] = 1) = P(k[j] = 0) = \frac{1}{2} \), which means any bit in the derived key is uniformly distributed over \(\{0, 1\} \). Moreover, \(k[j] \) is determined only by the \(j \)th bits of the base keys, and we have proved bits in every base key are pairwise independent, so bits in \(k \) are also pairwise independent.

3.3.4.2 Gap length

Another metric for evaluating the performance of a random number generator is the gaps occurring between the same digits in the series [79]. This metric can also be
extended to assess our algorithm for producing derived keys. Gap length, denoted by \(L_g \), is defined as the number of derived keys before the first recurrence of a given derived key. For example, for a derived key whose value is 0, \(L_g \) is 3 in the derived-key sequence 0, 1, 2, 3, 0, and \(L_g \) is 4 in the derived-key sequence 0, 1, 2, 3, 3, 0. For a \(L \)-bit derived key, if it is produced uniformly, the expectation of \(L_g \) is

\[
E(L_g) = \sum_{j=0}^{\infty} j \times \text{Prob}(L_g = j)
\]

\[
= \sum_{j=0}^{\infty} j \times \frac{(2^L - 1)^j}{(2^L)^{j+1}}
\]

\[
= \frac{1}{2^L} \times \sum_{j=1}^{\infty} j \times \left(1 - \frac{1}{2^L}\right)^j
\]

\[
= \frac{1}{2^L} \times \frac{1 - \frac{1}{2^L}}{(1 - (1 - \frac{1}{2^L}))^2}
\]

\[
= 2^L - 1.
\]

It means that before a derived key reappears it is expected that all (or most) other keys will appear. In Section 3.4, we will conduct simulations to evaluate the randomness of the derived keys.

3.3.5 Hardware Cost for Tag Implementation

Given the constraint that only 2K-5K GEs in low-cost tags can be used for security functions, we estimate the hardware requirement of Pandaka to evaluate its hardware efficiency. The number of GEs required by each cryptographic component is not a constant and varies with actual implementation. We use the same parameters for cost estimations as in [64], which are outlined in Table 3-1. A shift register is a group of flip-flops connected in chain, and a circular shift register can be created by connecting the serial input and last output of a shift register [80]. Hence, the circular shift register can be built with \(L \times 12 \) GEs, where \(L \) is the length of a base key. To generate a derived key, we need another two \(L \)-bit registers. The first register, which is initialized to all ones, keeps the intermediate result. Each time, the tag reads one chosen base key.
Table 3-1. Cost estimations for typical cryptographic hardware.

<table>
<thead>
<tr>
<th>Functional Block</th>
<th>Cost (GEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 input NAND gate</td>
<td>1</td>
</tr>
<tr>
<td>2 input XOR gate</td>
<td>2.5</td>
</tr>
<tr>
<td>2 input AND gate</td>
<td>2.5</td>
</tr>
<tr>
<td>FF (Flip Flop)</td>
<td>12</td>
</tr>
<tr>
<td>n-byte RAM</td>
<td>n × 12</td>
</tr>
</tbody>
</table>

from memory and stores it in the second register, which is bitwise XORRed with the first register. The intermediate result is written back to the first register. Proceeding in this way, the derived key is finally stored in the first register after all chosen base keys are XORRed with the first register. The two registers and the XOR operation need 2 × 12 × L + L × 2.5 = 26.5 × L GEs. In addition, we need N × L bits RAM to store the base keys, which requires N × L × 1.5 GEs. As a result, the total number of GEs for a tag to implement Pandaka is L × 12 + L × 26.5 + N × L × 1.5 = (38.5 + 1.5N) × L, which is determined by L and N. For example, if we let L = 16 and N = 6, a tag needs about (38.5 + 1.5 × 6) × 16 = 760 GEs to implement Pandaka; if we let L = 32 and N = 6, a tag needs about (38.5 + 1.5 × 6) × 32 = 1520 GEs to implement Pandaka. As a comparison, we list the hardware costs of other lightweight ciphers in Table 3-2, where Pandaka(L, N) means Pandaka with N L-bit base keys. It is not surprising that Pandaka requires much fewer GEs than others since it only needs to perform three simple operations.

3.4 Simulations

In this section, we use simulations to examine the randomness of derived keys in Pandaka.

3.4.1 Frequency Test

First, we examine the randomness of derived keys using frequency test. Specified in the EPC C1G2 Standard [2], one requirement for the generation of 16-bit pseudorandom

2 This is the number of GEs required by the most lightweight implementation of Hummingbird.
Table 3-2. Comparison of lightweight ciphers in terms of hardware complexity.

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Key bits</th>
<th>Block bits</th>
<th>Cost (GEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESENT-80[71]</td>
<td>80</td>
<td>64</td>
<td>1570</td>
</tr>
<tr>
<td>PRESENT-128[71]</td>
<td>128</td>
<td>64</td>
<td>1886</td>
</tr>
<tr>
<td>AES [66]</td>
<td>128</td>
<td>128</td>
<td>3400</td>
</tr>
<tr>
<td>HIGHT[72]</td>
<td>128</td>
<td>64</td>
<td>3408</td>
</tr>
<tr>
<td>mCrypton[73]</td>
<td>96</td>
<td>64</td>
<td>2681</td>
</tr>
<tr>
<td>DES[70]</td>
<td>56</td>
<td>64</td>
<td>2309</td>
</tr>
<tr>
<td>DESL[70]</td>
<td>56</td>
<td>64</td>
<td>1848</td>
</tr>
<tr>
<td>DESXL[70]</td>
<td>184</td>
<td>64</td>
<td>2168</td>
</tr>
<tr>
<td>Hummingbird[81]</td>
<td>128</td>
<td>16</td>
<td>2159 (^2)</td>
</tr>
<tr>
<td>Trivium[82]</td>
<td>80</td>
<td>1</td>
<td>2580</td>
</tr>
<tr>
<td>Trivium×8[82]</td>
<td>80</td>
<td>8</td>
<td>2952</td>
</tr>
<tr>
<td>Trivium×16[82]</td>
<td>80</td>
<td>16</td>
<td>3166</td>
</tr>
<tr>
<td>Grain[83]</td>
<td>80</td>
<td>1</td>
<td>1450</td>
</tr>
<tr>
<td>Grain×8[83]</td>
<td>80</td>
<td>8</td>
<td>2756</td>
</tr>
<tr>
<td>Grain×16[83]</td>
<td>80</td>
<td>16</td>
<td>4248</td>
</tr>
<tr>
<td>MIKEY[82]</td>
<td>128</td>
<td>1</td>
<td>5039</td>
</tr>
<tr>
<td>Pandaka(16, 6)</td>
<td>96</td>
<td>16</td>
<td>760</td>
</tr>
<tr>
<td>Pandaka(32, 6)</td>
<td>192</td>
<td>32</td>
<td>1520</td>
</tr>
</tbody>
</table>

numbers is that the probability of any 16-bit number \(RN_{16}\) with value \(v\) being drawn from the generator shall be bounded by \(0.8 < P(RN_{16} = v) < 1.25\). We extend that requirement to the generation of derived keys with arbitrary length \(L\)-bit: The probability of any \(L\)-bit derived key \(k\) having value \(v\) shall be bounded by \(0.8 < P(k = v) < 1.25\). To check whether the randomness of the derived keys meets the requirement, we generate \(N\) random base keys, and execute the derived-key generator for \(2^L \times r\) times to produce a large number of derived keys, where \(r\) is a simulation parameter. As a result, approximately \(2^L \times r \times (1 - \frac{1}{2^N})\) derived keys are generated. The frequency of each derived key is defined as the number of its appearances divided by the total number of keys derived. From simulation results, we compute the standard deviation \(\sigma\) for the frequencies of derived-key values. Note that the average frequency, denoted by \(F_{avg}\), should be \(\frac{1}{2^N}\). Meanwhile, we count the number of derived keys whose frequencies locate in \((0.8, 1.25)\), denoted by \(N_s\), thereby calculating the satisfactory rate, which is defined as
Table 3-3. Statistics for Pandaka with $L = 8$ and Grain×8.

<table>
<thead>
<tr>
<th></th>
<th>Pandaka</th>
<th>Grain×8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$F_{\text{avg}}(\times 10^{-3})$</td>
<td>3.91</td>
<td>3.91</td>
</tr>
<tr>
<td>$\sigma(\times 10^{-4})$</td>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>R_s</td>
<td>99.6%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 3-4. Statistics for Pandaka with $L = 16$ and Grain×16.

<table>
<thead>
<tr>
<th></th>
<th>Pandaka</th>
<th>Grain×16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$F_{\text{avg}}(\times 10^{-5})$</td>
<td>1.526</td>
<td>1.526</td>
</tr>
<tr>
<td>$\sigma(\times 10^{-7})$</td>
<td>9.7</td>
<td>7.9</td>
</tr>
<tr>
<td>R_s</td>
<td>99.95%</td>
<td>100%</td>
</tr>
</tbody>
</table>

$R_s = \frac{N_s^2}{2^L}$. Constrained by the computation capability of our computer, we are not able to run simulations with $L = 32$ or larger. For this reason, we set the parameters as follows:

(a) $r = 500$, $L = 8$, and N varies from 1 to 4.

(b) $r = 500$, $L = 16$, and N varies from 1 to 4.

As a comparison, we implement Grain (Grain×8 and Grain×16 as shown in Table 3-2), one of the most lightweight existing stream ciphers.

The simulation results are shown in Fig. 3-9, Table 3-3 and Table 3-4. To make the figures legible, we sample a fraction of 1/50 among all derived keys for displaying. Our results show that the frequencies of derived keys in Pandaka perfectly meet the randomness requirement, even if the number of base keys is very small. Also, we find that the randomness of derived key becomes better when N increases. Moreover, the randomness of keystream in Pandaka is almost as good as that of Grain when $N \geq 4$, while recalling from Table 3-2 that the hardware cost of Pandaka(16, 6) is only about one sixth of the cost of Grain×16.

3.4.2 Gap Test

Second, we check the randomness of derived keys by gap test. We run simulations to obtain the gap length of any first generated derived key. Under each setting of L and N, the test is conducted 500 times to obtain the average value of gap length, denoted by L_g.

72
Figure 3-9. Frequency test for randomness.
Figure 3-10. Gap test for randomness.

The results are depicted in Fig. 3-10. According to (3–3), we know $E(L_g) = 255$ when $L = 8$, and $E(L_g) = 65535$ when $L = 16$. We can see from Fig. 3-10 that for a given L, L_g rises with the increase of N at the beginning. However, the increasing rate of L_g gradually slows down, and finally L_g slightly oscillates around a stable value that is very close to $E(L_g)$ when $N \geq 5$. That is the reason why we set $N = 6$ for Pandaka in Section 3.3.5. These results show that our derived key generation algorithm can achieve nice randomness with just a few base keys.

3.5 Security Analysis of Pandaka

In this section, we consider several general attacks on Pandaka and analyze to what extent Pandaka can resist against those attacks.

3.5.1 Ciphertext Only Attack

Suppose the adversary can only obtain some ciphertext. It has to search through all possible base keys to decrypt the message. For each set of base keys, the adversary tries to decrypt the ciphertext with every possible derived key, and hopes to obtain some recognizable plaintext. However, this is not feasible as the space for base keys is as large as 2^{NL} (e.g. if $L = 16$ and $N = 6$, the space is 2^{96}).

3.5.2 Known Plaintext Attack

The only function of an indicator is to help the tag generate a derived key, so neither the reader nor the tag needs to store this temporary data. Hence, we assume the only plaintext an adversary may obtain is the data in a F_1 block or a F_3 block. When an
adversary somehow obtains a \((plaintext \ block, \ ciphertext \ block)\) pair, it can calculate the corresponding derived key (or part of the derived key if the plaintext is the data part of a \(F_1\) block) by XORing them. The obtained derived keys, appearing completely random (Section 3.4), will not provide sufficient information to break base keys, which are only used once before being updated; without knowing the indicators, the adversary has no idea on how the base keys are updated.

3.5.3 Time-Memory-Data Tradeoff Attack

The authors of \([84]\) propose a new time-memory-data trade-off attack on stream ciphers. The generic attack on a stream cipher requires about \(T = N_s^{2^3}\) time, where \(N_s\) represents the size of the search space. In our case, \(N_s = 2^{NL}\), so \(T = 2^{2NL}\). If we let \(N = 6\) and \(L = 32\), \(T = 2^{128}\), which makes the time-memory-data tradeoff attack impracticable. Also, we should keep in mind that the base key materials are always being updated, which makes this attack more difficult to be performed.

3.5.4 Tradeoff among Throughput, Security, and Hardware Cost

It is clear that there exists a tradeoff among throughput, security and hardware cost in the design of Pandaka. The security of Pandaka is proportional to the number of key bits \(NL\), and the greater the value of \(NL\) is, the more secure Pandaka becomes. However, when \(N\) is large, the indicators account for a large proportion of the transmitted messages, resulting in a waste of throughput. Moreover, large \(NL\) requires more hardware expenditure for implementing Pandaka. Hence, we should tune those two parameters according to the different constraints and requirements in different application scenarios.

3.6 Summary

In this chapter, we propose a novel lightweight cipher Pandaka tailored to RFID systems. Unlike classical symmetric ciphers in which two communicating parties are burdened with equal workload, Pandaka assigns a heavy workload to the reader as it is more powerful than the tag. The analytical and simulation results demonstrate the effectiveness and hardware efficiency of Pandaka for low-cost tags. Complementary to the
traditional cryptographic design approaches, this chapter provides a new perspective for
developing symmetric cryptography in systems where significant asymmetry exists between
the communicating parties.
4.1 System Model and Security Model

4.1.1 System Model

Consider a hierarchical distributed RFID system as shown in Fig. 4-1. Each tag is pre-installed with some keys for authentication. The readers are deployed at chosen locations, responsible for authenticating tags entering their coverage areas. In addition, the readers at each location are connected to a backend server, serving as a supplement to provide more storage and computation resources. All backend servers are further connected to the central server, where every tag’s keys are stored. Any authorized backend server can fetch the tags’ keys from the central server. Since the keys of each tag are only stored at the central server, they are synchronized from the view of different backend servers. Moreover, the high-speed links connecting the central server, backend servers and readers make the latency of transmitting small authentication data negligible. Therefore, a reader, its connected backend server, and the central server can be thought as single entity, and will be used interchangeably.

In this chapter, we focus on low-cost RFID tags, particularly passive backscatter tags that are ubiquitously used nowadays. The simplicity of these tags contributes to their low prices, which in turn restricts their computation, communication, and storage capabilities. In contrast, the readers, which are not needed in a large quantity as tags do, can have much richer resource. Moreover, the backend server can provide the readers with extra
resource when necessary. The communication between a reader and a tag works in the request-and-response mode. The reader initiates the communication by sending a request. Upon receiving the request, the tag makes an appropriate transmission in response. We divide the transmissions between the readers and tags into two types: (1) Invariant transmissions contain the content that is invariant between any tag and any reader, such as the beacon transmission from a reader which informs the incoming tag of what to do next. (2) Variant transmissions contain the content that may vary for different tags or the same tag at different times, such as the exchanged data for anonymous authentication.

4.1.2 Security Model

Threat model: An adversary may eavesdrop on any wireless transmissions made between the tags and the readers. In addition, the adversary may plant unauthorized readers at chosen locations, which communicate with passing tags and try to identify the tag carriers. However, such unauthorized readers have no access to the backend servers or the central server since the servers will authenticate the readers before granting access permissions. In the sequel, a reader without further notation means an authorized one by default. Moreover, we assume that the adversary may compromise some tags and obtain their keys, but it cannot compromise any authorized readers.

Anonymous model: The anonymous model requires that all variant transmissions must be indistinguishable by the adversary, meaning that (1) any variant transmission in the protocol should not carry a fixed value that is unchanged across multiple authentications, and (2) the transmission content should appear totally random and unrelated across different authentications to any eavesdropper that captures the transmissions. Therefore, no adversary will have a non-negligible advantage in successfully guessing the next variant transmission of a tag based on the previous transmissions [85].

4.2 Related Work

Prior work on anonymous authentication can be generally classified to two categories: non-tree-based and tree-based.
4.2.1 Non-Tree based Protocols

The Hash-lock [86] leverages random hash values for anonymous authentication. After receiving an authentication request from a reader, a tag sends back \((r, id \oplus f_k(r))\), where \(r\) is a random number, \(id\) is the tag’s ID, \(k\) is a pre-shared secret between the tag and the reader, and \(\{f_n\}_{n \in \mathbb{N}}\) is a pseudo-random number function ensemble. The reader exhaustively searches its database for a tag whose ID and key can produce a match with the received data. The hash-lock protocol has a serious efficiency problem that the reader needs to perform \(O(n)\) hash computations on line per authentication, where \(n\) is the number of tags in the system. Some variants [87–90] of hash-lock scheme try to improve the search efficiency, but they have issues. The OKS protocol [87] uses hash-chain for anonymous authentication. The OSK/AO protocol [88, 89] leverages the time-memory tradeoff to reduce the search complexity to \(O(n^{\frac{2}{3}})\) (still too large) at the cost of \(O(n^{\frac{2}{3}})\) units of memory. However, both OKS and OSK/AO cannot guarantee anonymity under denial-of-service (DoS) attack [85]. The YA-TRAP protocol [90] makes use of monotonically increasing timestamps to achieve anonymous authentication. YA-TRAP is also susceptible to DoS attack, and a tag can only be authenticated once in each time unit. The DoS attack in OSK/AO and YA-TRAP is in nature a desynchronization attack, which tricks a tag into updating its keys unnecessarily and makes it fail to be authenticated by an authorized reader later.

The LAST protocol was proposed based on a weak privacy model[91]. Key identifiers are used to facilitate the reader to identify the tags quickly. After each authentication, the reader uploads a new \(\langle\text{identifier, key}\rangle\) pair to the tag. LAST only requires the reader and tag to compute \(O(1)\) hashes per authentication, but the overhead for the reader to search a given key identifier is not considered. Moreover, since the key identifier is only updated after a successful authentication, the tag keeps sending the same key identifier between two consecutive successful authentications. Therefore, LAST is not anonymous in
the strict sense. In addition, the process of uploading a new \((identifier, key)\) pair to the tag after each authentication incurs extra communication overhead.

4.2.2 Tree based Protocols

Tree-based protocols organize the shared keys in a balanced tree to reduce the complexity of identifying a tag to \(O(\log n)\). However, the tree-based protocols generally require each tag to store \(O(\log n)\) keys, which is \(O(1)\) for non-tree based protocols.

In Dimitriou’s protocol\[92\], the non-leaf nodes of the tree store auxiliary keys that can be used to infer the path leading to leaf nodes that store the authentication keys. For each authentication, the computation overhead for both the reader and the tag is \(O(\log n)\), and the tag needs to transit \(O(\log n)\) hash values. This protocol is is vulnerable to the compromising attack since different tags may share auxiliary keys \[93, 94\].

The ECNP protocol \[95\] leverages a cryptographic encoding technique to compress the authentication data transmitted by tags. ECNP can reduce the computation overhead of the reader and the transmission overhead of the tag by multifold compared with Dimitriou’s protocol\[92\], but they remain \(O(\log n)\) due to the use of tree structure. Moreover, ECNP is not resistant against the compromising attack since the children of one node in the tree share the same group keys.

The ACTION protocol \[94\] was designed to be resistant against the compromising attack. It adopts a sparse tree architecture to make the keys of each tag independent from one another. In ACTION, each tag is randomly assigned with a path key, which is further segmented into link indices to guide the reader to walk down the tree towards the leaf node that carries the secret key \(k\) of the tag. For each authentication, a tag needs to compute and transmit \(O(\log n)\) hashes and the reader needs to perform \(O(\log n)\) hashes to locate the shared key. The key problem of ACTION is that the size of link indices is too small after segmentation (e.g., 4 bits), rendering them easy to guess.
Before moving to our main contributions, we propose a strawman solution for lightweight anonymous authentication.

4.3 A Strawman Solution

Consider an RFID system with n tags t_1, t_2, \ldots, t_n, each pre-installed with an array of m unique random tokens, $[tk_1^1, tk_2^2, \ldots, tk_m^m]$ ($1 \leq i \leq n$). Tag t_i also has a token index pt_i (initialized to 1) pointing to its first unused token. The tokens and token index of each tag are also stored in the database of the central server, as illustrated in Table 4-1.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Token Array</th>
<th>Token Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>$[tk_1^1, tk_2^2, \ldots, tk_1^m]$</td>
<td>pt_1</td>
</tr>
<tr>
<td>t_2</td>
<td>$[tk_2^1, tk_2^2, \ldots, tk_2^m]$</td>
<td>pt_2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>t_n</td>
<td>$[tk_n^1, tk_n^2, \ldots, tk_n^m]$</td>
<td>pt_n</td>
</tr>
</tbody>
</table>

4.3.1 Motivation

Most prior work, if not all, employs cryptographic hash functions to randomize authentication data for the purpose of keeping anonymity. Implementing a typical cryptographic hash function such as MD4, MD5, and SHA-1 requires at least 7K logic gates [33]. However, widely-used passive tags only have 7K-15K logic gates, of which 2K-5K are reserved for security purposes[64]. The hardware constraint necessitates a new design paradigm for lightweight anonymous authentication protocols that are more supportive for low-cost tags. The commercial success of RFID tags lies with their simplicity. Although there is no specification on how simple these tags should be, it is safe to say that we will always prefer a solution that achieves the comparable goal with less hardware requirement. On the other hand, the significant disparity between the readers and tags points out an asymmetry design principle that we will follow: push most complexity to the readers while leaving the tags as simple as possible.
In the sequel, we consider the authentication process between an arbitrary reader R and an arbitrary tag t having a token array $[tk^1, tk^2, \ldots, tk^m]$ and a token index pt. To authenticate t, R sends a request to t. Upon receiving the request, t sends its first unused token tk^{pt} to R. After that, t increases pt by 1 to guarantee that the same token will not be used twice. Otherwise, t will always send the same token when an unauthorized reader requests a token, which breaks the anonymity. After receiving the token, R has to search the token in the database since it does not know the tag’s identity. Starting from $i = 1$, R checks if $tk^{pt_i} = tk^{pt}$ one by one. If there exists an $i \in [1, n]$ such that $tk^{pt_i} = tk^{pt}$, t is successfully authenticated; otherwise, t fails the authentication. In the former case, R sends back the token tk^{pt_i+1} to t to authenticate itself, and sets $pt_i = pt_i + 2$. Tag t compares the received token with tk^{pt} to authenticate R, and increases pt by 1 again. Fig. 4-2 shows the three steps of the mutual authentication.

In this approach, the online computation overhead of the tag is low — only one comparison (requires far less hardware than implementing a cryptographic hash) per authentication. The online computation complexity of the reader is $O(n)$ since at most n comparisons (though one comparison is much cheaper than computing one hash value) are needed for searching the received token. The communication overhead for both the reader and the tag is $O(1)$.

To avoid the leakage of the tag’s identity, the tokens used for authentication should look random. In addition, each token can be used only once. Hence, the tag must be
replenished with new tokens after $\frac{n}{2}$ mutual authentications, e.g., purchasing new tokens from an authorized branch. Therefore, the tag should store as many tokens as possible to reduce the inconvenience caused by token replenishment. A low-cost tag, however, only has a tiny memory. For example, a passive UHF tag generally has a 512-bit user memory for storing user-specific data (tokens in our case). Some high-end tags with large memory [76, 78] are prohibitively expensive to be applied in large quantities. As an example, x Sky-ID tags [76] with an 8KB user memory cost $\$25$ each. We will introduce the security issues of this design in the next section.

4.4 Dynamic Token based Authentication Protocol

In this section, we propose our first dynamic Token based Authentication Protocol (TAP). TAP can produce tokens for anonymous authentication on demand, and therefore does not require the tags to pre-install many tokens. However, we will show shortly that TAP still has some problems, which will be solved by our final design in the next section.

4.4.1 Motivation

Given the memory constraint, each tag can only store a few tokens. Frequent token replenishment brings about unacceptable inconvenience in practice. Hence, we want to invent a way to enable dynamic token generation from the few pre-installed tokens. In addition, the time for the reader to search a particular token is $O(n)$ in the preliminary design. We desire to reduce this overhead to $O(1)$. More importantly, we hope all advantages of the preliminary design, including no requirement of cryptographic hash functions, low computation overhead for the tag, and low communication overhead for both the reader and the tag, can be retained in our new design.

4.4.2 Overview

Let an arbitrary tag t in the system be pre-installed with u base tokens, denoted by $[bt_1, bt_2, \ldots, bt^u]$, each being a-bit long. These base tokens can be used to derive dynamic tokens for authentication. In addition, we introduce another type of auxiliary keys called base indicators to generate indicators that support the derivation of dynamic tokens.
Suppose t stores v base indicators denoted by $[b_{i1}, b_{i2}, \ldots, b_{iv}]$, each being b-bit long. Let tk represent the current a-bit token, and ic be the current b-bit indicator. All the base tokens, base indicators, token and indicator are also stored at the central server. Our idea is to let the reader and the tag independently generate the same random tokens by following the instruction encoded in the indicator. TAP consists of three phases: initialization phase, authentication phase, and updating phase, which will be elaborated one by one.

4.4.3 Initialization Phase

The central server stores all tags’ keys in a key table, denoted by KT. As shown in Table 4-2, each entry is indexed by the tag index, supporting random access in $O(1)$ time. With the tag index idx, the keys of t can be found at $KT[idx]$.

When t joins the system, the reader randomly generates an array of u base tokens $[bt_1, bt_2, \ldots, bt_u]$, an array of v base indicators $[bi_1, bi_2, \ldots, bi_v]$, a token tk and an indicator ic for t. After that, the reader requests the central server to store those keys of t in the database. The central server inserts the keys to the first empty entry in KT. The search process for an empty entry can be sped up by maintaining a small table recording all empty entries in KT (e.g., due to tags’ departure). If KT is fully occupied, the central server doubles its size to accommodate more tags.

To identify a tag based on its token in $O(1)$ time, the central server maintains a hash table HT, mapping the token of each tag to its tag index. Let HT consist of l slots. At first, every slot in HT is initialized to zero. After t joins the system, the reader computes the hash value $h(tk)$, where the hash function $h(\cdot)$ yields random values in $[1, l]$, and then puts the tag index idx of t in the $h(tk)$th slot of the hash table, i.e., $HT[h(tk)] = idx$ (the potential problem of hash collisions will be addressed shortly). Fig. 4-3 presents an illustration of the hash table built for the tokens of five tags.

4.4.4 Authentication Phase

The authentication process of TAP is similar to that of the preliminary design as shown in Fig. 4-2. One difference is that the reader can quickly identify the tag from
Table 4-2. Key table stored by the central server for TAP.

<table>
<thead>
<tr>
<th>Tag Index</th>
<th>Tag</th>
<th>Base Token Array</th>
<th>Token</th>
<th>Base Indicator Array</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t_1</td>
<td>$[bt_1^1, \ldots, bt_1^n]$</td>
<td>tk_1</td>
<td>$[bi_1^1, \ldots, bi_1^n]$</td>
<td>ic_1</td>
</tr>
<tr>
<td>2</td>
<td>t_2</td>
<td>$[bt_2^1, \ldots, bt_2^n]$</td>
<td>tk_2</td>
<td>$[bi_2^1, \ldots, bi_2^n]$</td>
<td>ic_2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>n</td>
<td>t_n</td>
<td>$[bt_n^1, \ldots, bt_n^n]$</td>
<td>tk_n</td>
<td>$[bi_n^1, \ldots, bi_n^n]$</td>
<td>ic_n</td>
</tr>
</tbody>
</table>

Figure 4-3. A hash table used by TAP. The tokens of the five tags t_1, t_2, t_3, t_4, t_5 are tk_1, tk_2, tk_3, tk_4, tk_5, respectively. Each token is randomly mapped to a slot in the hash table, where the corresponding tag index is stored.

its token using the hash table. After receiving a token tk from tag t, the reader first calculates $h(tk)$, and then accesses $HT[h(tk)]$ to retrieve the tag index of t, which is idx. If the reader finds $idx = 0$, it asserts the tag is fake and informs the tag of authentication failure. Otherwise, the reader refers to $KT[idx]$ in the key table to fetch the token, and compares it with the received token tk. Only if the two tokens are identical will the tag pass the authentication. In case that t is successfully authenticated, the reader will generate and transmit a new token to authenticate itself. The generation of tokens with good randomness requires the reader (more exactly, the central server) and the tag to update their shared keys synchronously.

4.4.5 Updating Phase

To guarantee anonymity, the tokens exchanged between the reader and the tag should have good randomness. Therefore, the reader (central server) and the tag need to synchronously update their shared keys after the current token is used. We stress that the tag will update its keys once it uses its current token. Therefore, the same token will never be used in two consecutive authentications, which fundamentally differs from LAST.

85
where the tag only updates its key identifier after a successful authentication (which breaks the anonymity).

The tag t relies on its current indicator ic to update its keys. Fig. 4-4 shows the structure of an indicator, which includes two parts: The low-order $(b - 2)$ bits form a selector, indicating which base tokens/base indicators should be used to derive the new token/indicator, while the high-order two bits encode the update pattern. When the updating phase begins, t calculates a new token from the base tokens according to the selector. Each of the low-order u bits ($u \leq b - 2$) in the selector encodes a choice of the corresponding base token: ‘0’ means not selected, while ‘1’ means selected. For all selected base tokens, they are XORed to compute the new token. Therefore,

$$tk = \bigoplus_{j=1}^{u} ic[j]bk^j,$$

where $ic[j]$ is the jth bit in ic (assume one-based indexes are used) and \bigoplus is the XOR operator. The left plot in Fig. 4-5 gives an example of token update, where bt^1, bt^3, and bt^5 among the six base tokens happen to be selected. Similarly, t derives a new indicator from the base indicators as follows:

$$ic = \bigoplus_{j=1}^{v} ic[j]bi^j.$$

At the server’s side, the same new token and new indicator can be generated because it shares the same keys with the tag. In addition, the server also needs to update the hash table. First, the server sets $HT[h(tk)]$ (the old token) to 0, and after generating the new token, it sets $HT[h(tk)] = idx$.

Figure 4-4. The Structure of a b-bit indicator.
After updating the token and the indicator, the central server and the tag need to further update the selected base tokens and base indicators. The update process for any selected base token or base indicator includes two steps: A one-bit left circular shift, and bit flip by following the particular 2-bit update pattern:

1. Pattern (00)$_2$: no flip is performed;
2. Pattern (01)$_2$: flip the jth bit if $j \equiv 0 \pmod{3}$;
3. pattern (10)$_2$: flip the jth bit if $j \equiv 1 \pmod{3}$;
4. Pattern (11)$_2$: flip the jth bit if $j \equiv 2 \pmod{3}$.

Obviously, the ith and jth bits can be flipped together if and only if $i \equiv j \pmod{3}$. This rationale of the updating scheme is that if the parameters a and b are set properly, any two bits in a base token or a base indicator have a chance to not be flipped together, thereby reducing their mutual dependence. We will provide the formal proof shortly.

We emphasize that all keys are only stored at the central server rather than every single reader. Hence, the update process of a tag’s keys triggered by one reader is transparent to other readers (a tag carrier can only appear at one location at a time.).
4.4.6 Randomness Analysis

As required by our anonymous model, the tokens generated by TAP should be random and unpredictable. Randomness is a probabilistic property that should be described in terms of probability. We first prove the following theorem.

Theorem 1. If $a \geq 2$ and $a \not\equiv 0 \pmod{3}$, there must exist a positive integer w, where $1 \leq w \leq a$, such that any two different bits in one base token will move to positions that cannot be flipped together after the base token is updated w times.

Proof. We track two arbitrary bits in the base token bt^j, denoted by random variables X and $Y \in \{0, 1\}$. Suppose X and Y are initially located at the pth bit and qth bit of bt^j ($1 \leq p < q \leq a$), respectively, and w updates are performed ($1 \leq w \leq a$). Two possible cases need to be considered according to their initial positions:

Case 1: $q - p \not\equiv 0 \pmod{3}$ and $a + p - q \not\equiv 0 \pmod{3}$. First, if $q + w \leq a$, X and Y have moved to $bt^j[p + w]$ and $bt^j[q + w]$, respectively. Since $(q + w) - (p + w) \not\equiv 0 \pmod{3}$, they cannot be flipped together. Second, if $p + w \leq a < q + w$, then X moves to $bt^j[p + w]$ and Y moves to $bt^j[q + w - a]$. Because $(p + w) - (q + w - a) \not\equiv 0 \pmod{3}$, they still cannot be flipped together. Finally, if $p + w > a$, X and Y are now at $bt^j[p + w - a]$ and $bt^j[q + w - a]$, respectively. Similarly, since $(q + w - a) - (p + w - a) \not\equiv 0 \pmod{3}$, they cannot be flipped together. Hence, X and Y will never be flipped together under such conditions.

Case 2: $q - p \equiv 0 \pmod{3}$ or $a + p - q \equiv 0 \pmod{3}$ (Note that by no means will $q - p \equiv a + p - q \equiv 0 \pmod{3}$ because $a \not\equiv 0 \pmod{3}$). If $q - p \equiv 0 \pmod{3}$ and $a - q < w \leq a - p$, X moves to $bt^j[p + w]$ and Y moves to $bt^j[q + w - a]$. Because $(p + u) - (q + u - a) \not\equiv 0 \pmod{3}$, they move to positions that cannot be flipped together. On the contrary, if $a + p - q \equiv 0 \pmod{3}$, X and Y will not be flipped together at the beginning, but it becomes possible after w updates as long as $a - q < w \leq a - p$.

Hence, X and Y have a chance to not be flipped together within a updates regardless of their initial positions. \qed
Before investigating the randomness of the derived tokens, we first study the randomness of an arbitrary base token during its updates. We have the following lemma:

Lemma 1. If the update pattern in the indicator is random, an arbitrary bit in a base token becomes 0 or 1 with equal probability using our update scheme.

Proof. Let us track one arbitrary bit in bt_j^i, denoted by a random variable $X \in \{0, 1\}$. Suppose X is currently located at position $bt_j^i[i]$, where $1 \leq i \leq a$. When bt_j^i is updated, X is left shifted and then flipped with a probability of 0.25 if the update pattern is random. Therefore, the transition matrix for X during each update is $P_1 = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$. Using singular value decomposition (SVD), $P_1 = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix}$. Hence, the transition matrix for X after w updates is

$$P_1^w = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix}^w = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}^{w+1} & \frac{1}{2} - \frac{1}{2}^{w+1} \\ \frac{1}{2} - \frac{1}{2}^{w+1} & \frac{1}{2} + \frac{1}{2}^{w+1} \end{pmatrix},$$

which converges to $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$. Therefore, X becomes 0 or 1 with equal probability.

Now let us further investigate two arbitrary bits in a base token, and we have the following lemma:

Lemma 2. If the update pattern in the indicator is random, two arbitrary bits in a base token are independent under our update scheme.

Proof. Consider two arbitrary bits, denoted by random variables X and Y, in base token bt_j^i. Suppose X and Y are initially located at the pth bit and qth bit of bt_j^i ($1 \leq p < q \leq a$), respectively. The transition matrices when X and Y cannot be flipped together and
can be flipped together are

\[P_2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \\ \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}, \quad \text{and} \quad P_3 = \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}, \]

respectively. Assume that among the \(w \) (\(w \geq a \)) updates, \(X \) and \(Y \) cannot be flipped together for \(\beta \) times, while can be flipped together for \(\gamma \) times. We know from Theorem 1 that \(\beta \geq 1 \), so we have \(\beta \geq 1, \gamma \geq 0, \) and \(\beta + \gamma = w \).

Case 1: \(\gamma > 0 \). We have

\[P_2^\beta \times P_3^\gamma = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} \]

for any combinations of \(\beta \) and \(\gamma \).

Case 2: \(\gamma = 0 \). Hence, \(P_2^\beta \times P_3^0 = P_2^w \). Using SVD, we can calculate

\[P_2^w = \begin{pmatrix} \frac{1}{4} + \frac{1}{2}^{w+1} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} - \frac{1}{2}^{w+1} \\ \frac{1}{4} & \frac{1}{4} + \frac{1}{2}^{w+1} & \frac{1}{4} - \frac{1}{2}^{w+1} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} - \frac{1}{2}^{w+1} & \frac{1}{4} + \frac{1}{2}^{w+1} & \frac{1}{4} \\ \frac{1}{4} - \frac{1}{2}^{w+1} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} + \frac{1}{2}^{w+1} \end{pmatrix}, \]

each entry converging to \(\frac{1}{4} \). Therefore, two arbitrary bits in a base token are pairwise independent.

With the two lemmas above, we can prove the following theorem regarding the randomness of the derived tokens.
Theorem 2. If the indicator is random, any bit in the derived token has an equal probability to be 1 or 0, and two arbitrary bits in the derived token are independent using our update scheme.

Proof. Consider the ith bit of the derived token tk, denoted by $tk[i]$ ($1 \leq i \leq a$). We know $tk[i] = \bigoplus_{j=1}^{u} ic[j]bt^j[i]$. Let N_0 be the random variable of the number of base tokens whose ith bit is 0, and N_1 be the random variable of the number of base tokens whose ith bit is 1, subjecting to $N_0 \geq 0$, $N_1 \geq 0$ and $N_0 + N_1 = u$. According to Lemma 1 and the independence of different base tokens, N_0 follow the binomial distribution $B(u, 0.5)$, and $P(N_0 = x) = \binom{u}{x} \times (\frac{1}{2})^u$, where $0 \leq x \leq u$. To calculate $tk[i]$, we need to consider two possible cases:

Case 1: $N_0 = u$, namely, there is no 1 in those u bits. In this case, $tk[i]$ must be 0.

Case 2: $0 \leq N_0 < u$. In this case, $tk[i]$ can be 0 or 1. If $tk[i] = 0$, it implies that an even number of base tokens whose ith bit is 1 are chosen, and the conditional probability is:

$$P(tk[i] = 0 \mid 0 \leq N_0 < u) = \frac{2^{N_0} \times \sum_{x=0}^{\lfloor N_1/2 \rfloor} \binom{N_1}{2x} - 1}{2^u - 1} \quad (4.3)$$

Hence, the probability for $tk[i] = 0$ is:

$$P(tk[i] = 0) = P(N_0 = u) \times P(tk[i] = 0 \mid N_0 = u) + P(0 \leq N_0 < u) \times P(tk[i] = 0 \mid 0 \leq N_0 < u) = \frac{1}{2^u} \times 1 + (1 - \frac{1}{2^u}) \times \frac{2^{u-1} - 1}{2^u - 1} = \frac{1}{2}. \quad (4.4)$$

Therefore, $P(tk[i] = 1) = P(tk[i] = 0) = \frac{1}{2}$. Moreover, because $tk[i]$ is determined only by the ith bits of the base tokens, and two arbitrary bits in a base tokens are independent according to Lemma 2, two arbitrary bits in the derived token are also independent. \qed
The randomness analysis of the indicators follows the same path. The simulation results provided in 4.7 demonstrate that the tokens and indicators have very good randomness.

4.4.7 Discussion

Memory requirement: To implement TAP, each tag needs \((u+1)a+(v+1)b\) bits of memory to store the keys. Our simulation results in Section 4.7 show that \(a, b, u\) and \(v\) can be set as small constants. Therefore, the memory requirement for the tag is small. The memory requirement at the central server is \(O(n)\) for storing the key table and hash table.

Communication overhead: For each authentication, the tag only needs to transmit one \(a\)-bit token, and the reader sends an authentication request and one a reponse, both incurring \(O(1)\) communication overheads.

Online computation overhead: For each authentication, the tag generates two tokens and performs one comparison to authenticate the reader. All operations performed by the tag, including bit-wise XOR, bit flip, and one-bit left circular shift, are simple and hardware efficient. The reader (or the server) needs to calculate two extra hash values: one for the token received from the tag to identify the tag, and the other for the new token to update the hash table. Both the tag and the reader have \(O(1)\) computation overhead.

4.4.8 Potential Problems of TAP

TAP has three potential problems that should be addressed. Desynchronization attack: An unauthorized reader can also initiate an authentication by sending a request. The tag will reply with its current token, and then update its keys as usual. As a result, its keys differ from what are stored by the central server. When the tag encounters a legitimate reader later, it will probably fail the authentication as its current token does not match the one stored in the central server.

Replay attack: When performing a desynchronization attack, the adversary can record the received token. Later it can retransmit the token to authenticate itself. Since the token is
valid, it will pass the authentication. The above two issues also exist in the preliminary design.

Hash collision: For two tags in the system, the hash values of their current tokens may happen to be the same, called hash collision. In this case, their tag indexes cannot be stored in the same slot of the hash table. Otherwise, the reader cannot uniquely identify the tag through the received token. In addition, since each tag generates its tokens independently, it may happen that two tags have the same token, called token collision. Token collision is a special case of hash collision, and token collision must lead to hash collision. We find that hash collisions, though the probability is low, can cause problems to all anonymous RFID authentication protocols using cryptographic hashes, but the potential problems are never carefully addressed.

4.5 Enhanced Dynamic Token based Authentication Protocol

To address the issues of TAP, we propose the Enhanced dynamic Token based Authentication Protocol (ETAP).

4.5.1 Resistance Against Desynchronization and Replay Attacks

Since desynchronization attack and replay attack can be carried out simultaneously, we tack them together. Our objective is two-fold: First, the valid tag can still be successfully authenticated by a legitimate reader after some desynchronization attacks; Second, even if the adversary has captured some tokens from the valid tag, it cannot use those tokens to authenticate itself.
To make our protocol resistant against desynchronization attack, we let the central server pre-calculate an array of k tokens $[tk^1, tk^2, \ldots, tk^k]$ from the base tokens, and any token can be used to identify the tag, where k is a system parameter that can be set large or small, depending on the available memory at the server. The reader needs at least one token to identify the tag, and thus at most $k - 1$ desynchronization attacks can be tolerated1. After a successful mutual authentication, the reader will replenish the token array with k new tokens. Furthermore, we use a two-step verification process to guard against replay attacks. Table 4-3 shows the key table stored by the central server for implementing ETAP.

Now let us elaborate ETAP with an example given in Fig. 4-6. Suppose $k = 4$ and the reader pre-calculates four tokens tk^1, tk^2, tk^3 and tk^4 for tag t with tag index idx. In addition, suppose the current token stored by t is $tk = tk^2$, which means t may have been under one desynchronization attack and the adversary has captured tk^1. When the reader receives tk^2 from t, it accesses $HT[h(tk^2)]$ to fetch the tag index idx of the t, and then the token array of t from $KT[idx]$. The reader then traverses the token array until it finds tk^2. After that, the reader uses the next token in the token array, tk^3 in this example, to authenticate itself. If the received token happens to be at tail of the array, the reader needs to derive a new token for authentication. To prevent the adversary from passing authentication using tk^1, we adopt the two-step verification as illustrated in Fig. 4-7. In step 3, the reader includes a b-bit random nonce in its message, and challenges the tag to send another token. After the tag authenticates the reader, it updates its indicator by XORing the indicator with the received nonce (so does the reader), which contributes to randomizing the indicator as well. After that, the tag derives a new token based on the updated indicator, and sends it to the reader for the second verification.

1 An exponentially increasing timeout period can be enforced between unsuccessful authentications to prevent an adversary from depleting the k tokens too quickly.
Figure 4-6. Our scheme against desynchronization attack.

Figure 4-7. Two-step verification mechanism of ETAP.

Since the adversary does not know the base tokens and the indicator, it cannot derive the correct token to pass the second verification, rendering replay attack infeasible. After the successful mutual authentication, the reader generates four new tokens to replenish the token array. In addition, the reader updates HT by setting the slots corresponding to the old tokens to 0, and setting the slots corresponding to the new tokens to idx. Note that the token replenishment is performed off line by the central server, which is therefore not a performance concern.

4.5.2 Resolving Hash Collisions

One candidate approach for reducing hash collisions is to use a very large hash table, which is however not memory efficient. We observe that two different tokens causing a
hash collision under one hash function probably will not have a collision under another hash function. Therefore, using multiple hash functions provides an alternative way for resolving hash collisions. A slot in the hash table is called an empty slot, a singleton slot, and a collision slot respectively, if zero, one and multiple tokens are mapped to it. Suppose the size of the hash table is \(l \), and the central server pre-computes \(k \) tokens for each tag.

When a single hash function is used, the probability \(p_s \) that an arbitrary slot is a singleton slot is

\[
p_s = \left(\frac{nk}{l} \right) \left(1 - \frac{1}{l} \right)^{nk-1} \approx \frac{nk}{l} e^{-\frac{nk}{l}}. \tag{4-5}
\]

It is easy to prove that \(p_s \leq \frac{1}{e} \approx 0.368 \) and it is maximized when \(l = nk \).

We find that if we apply two independent hash functions to map tokens to slots, a slot will have a probability of up to \(1 - (1 - 0.368)^2 \approx 0.601 \) to be a singleton in one of the two mappings. If we apply \(r \) independent hash functions from tokens to slots, the probability that a slot will be a singleton in one of the \(r \) mappings can increase to \(1 - (1 - 0.368)^r \), which quickly approaches to 1 with the increase of \(r \). Fig. 4-8 presents an example showing the advantage of using multiple hash functions in reducing hash collisions. In the left plot, only one hash function is used, and there is only one singleton slot, while in the right plot, three hash functions are employed and every token is mapped to a singleton slot.

To identify which hash function maps a token of which tag to a certain singleton slot, that slot needs to store both the index of that hash function, called hash index, as well as...
the tag index. Fig. 4-9 shows the hash table used by ETAP. For example, a token \(tk_2 \) of \(t_2 \) is mapped by the hash function \(h_3(\cdot) \) to the first slot (a singleton slot) of \(HT \). Hence, \(HT[1] \) records the hash index 3, and the tag index 2. When the reader receives a token \(tk \) from a tag, it computes \(h_i(tk) \) (\(1 \leq i \leq r \)) till it finds the hash index in slot \(HT[h_i(tk)] \) is equal to \(i \), where it can obtain the correct tag index of that tag.

Our simulations results in Section 4.7 demonstrate that the hash collisions caused by different tokens can be resolved by using a small number of independent hash functions. However, the issue of token collisions still exists because any hash functions map the same token to the same slot. Note that if token collision happens, the reader cannot identify the tag since the token is associated with multiple tags. Therefore, such collided tokens are not useful in nature. The central server can store those tokens in a CAM (Content Addressable Memory) \([97]\) or another hash table for quick lookup. When the reader receives a token, it first checks if it is collided one; if so, the reader needs to request another token to identify the tag. We expect that the number of collided token is small as long as the generated tokens have good randomness.

4.5.3 Discussion

Memory requirement: The memory requirement for the tag to implement ETAP is the same as TAP, i.e., \((u + 1)a + (v + 1)b \) bits. The memory requirement at the central server moderately increases because of the larger key table and hash table for storing multiple tokens for each tag.
Communication overhead: For each authentication, the tag only needs to transmit two
a-bit tokens, and the reader needs to send an authentication request, one a-bit token, one
b-bit nonce, and a response, both incurring $O(1)$ communication overheads.

Online computation overhead: For each authentication, the tag generates three tokens
and performs one comparison to authenticate the reader. ETAP requires some extra
computation overhead from the reader (server). First, the reader should check if a received
token is a collided one, which requires $O(1)$ computation. In addition, the reader needs to
calculate at most r hash values to identify the tag, and perform at most k comparisons to
locate the received token in the token array. Since r and k are small constants, the online
computation overhead for the reader is still $O(1)$.

Hardware cost: The hardware for RFID tags to implement ETAP consists of a circular
shift register, two registers for storing intermediate results, some XOR gates, and some
RAM to store u base tokens, v base indicators, one token and one indicator. We estimate
the hardware cost of ETAP following the estimated costs of typical cryptographic
hardware [15, 64] listed in Table 3-1. The circular shift register is a group of flip-flops
connected in chain, which requires $12 \times \max(a, b)$ logic gates. Similarly, the two registers
for intermediate results need $2 \times 12 \times \max(a, b)$ logic gates. In addition, it takes
$2.5 \times \max(a, b)$ logic gates to implement the XOR gates. Finally, the cost of the RAM for
storing the base tokens, base indicators, token and indicator is about $\frac{(u+1)a}{8} \times 12 + \frac{(v+1)b}{8} \times 12$
logic gates. Therefore, the total number of required logic gates for implementing ETAP is
approximately $38.5 \times \max(a, b) + 1.5 \times (u+1)a + 1.5 \times (v+1)b$. For example, if we set
a = b = 16, $u = 10$ and $v = 6$ (the reason for this setting will be explained shortly), ETAP
only requires about 1K logic gates.

4.6 Security Analysis

ETAP is designed to be resistant against desynchronization attack and replay attack.
In this section, we further analyze the security of ETAP under both passive and active
attacks.
Known token attack: In ETAP, the tokens are transmitted without any protection, which may lead to a potential security loophole. The adversary can capture all tokens exchanged between the reader and the tag, and use them to infer the base tokens. However, we have the following theorem:

Theorem 3. Cracking the base tokens from the captured tokens is computationally intractable if a sufficient number of base tokens are used.

Proof. According to (4–1), each captured token provides an equation of the base tokens. Since there are \(u \) base tokens, at least \(u \) independent equations are needed to obtain a solution of the base tokens. However, the adversary has no clue about the current value of the indicator, which can have very good randomness as shown in Section 4.7. Therefore, the adversary has no better way than trying each possible value of the indicator by brute force. Hence, the \(u \) bits in the selector and the 2-bit update pattern give \(2^{u+2} \) instantiations of each equation. Therefore, the adversary has to solve \((2^{u+2})^u = 2^{u(u+2)}\) different equation sets. For each candidate solution, the adversary derives another token, and compares it with the captured one to verify if the solution is correct, which requires another \(2^u \) trials. As a result, the total computation overhead for the adversary to crack the base tokens is \(2^u \times 2^{u(u+2)} = 2^{u(u+3)} \), which is computationally intractable if \(u \) is set reasonably large, e.g., \(u = 10 \).

Anonymity: Due to the randomness of the tokens (verified in Section 4.7), the adversary cannot associate any tokens with a certain tag. According to Theorem 2, the probability that the adversary can successfully guess any bit \(z \) of a tag’s next token based on its previous tokens is

\[
Prob(z_I = z) \leq \frac{1}{2} + \frac{1}{poly(s)},
\]

where \(z_I \) is the adversary’s guess of \(z \), and \(poly(s) \) is an arbitrary polynomial with a security parameter \(s \). Therefore, the adversary does not have a non-negligible advantage in guess \(z \), and ETAP can preserve the anonymity of tags.
Compromising resistance: In ETAP, the keys of each tag are initialized and updated independently. Even if all tags except two are compromised by an adversary, it still cannot infer the keys of the two remaining tags or distinguish them based on their transmitted tokens. Therefore, ETAP is robust against compromising attack.

Forward secrecy: Forward secrecy requires that an adversary cannot crack the previous messages sent by a tag even if the adversary obtains the current keys of the tag. ETAP has perfect forward secrecy because in step 3 of each authentication, the tag will XOR its current indicator with a random nonce. Even if the adversary obtains all current keys of the tag, it does not know the previous values of the indicator without capturing all random nonces. Therefore, the adversary cannot perform reverse operations of the updating process to calculate the previous tokens.

4.7 Numerical Results

In this section, we first verify the effectiveness of our scheme of using multiple hash functions to resolve hash collisions. After that, we run randomness tests on the tokens generated by ETAP.

4.7.1 Effectiveness of Multi-Hash Scheme

First, we determine the number l of slots needed to guarantee every token is mapped to a singleton slot when different numbers of hash functions are employed. The number of tokens is set to 100 and 1000. We vary the number r of hash functions from 1 to 10. Under each parameter setting, we repeat the simulation 500 times and obtain the average number of required slots. Results in Fig. 4-10 demonstrate that l is reduced dramatically with the increase of r at first, and gradually flattens out when r is sufficiently large. For example, when $r = 1$, more than 1400 slots are needed to guarantee each of the 100 tokens is mapped to singleton slot, about 14 slots per token; in contrast, when $r = 10$, the 100 tokens only require 103 slots on average, approximately 1 slot per token.

Furthermore, we investigate the minimum number of slots needed to guarantee no hash collision when a fixed number hash functions are used. We fix $r = 10$, and vary the
Figure 4-10. Number of slots needed to guarantee every token is mapped to a singleton slot when different numbers of hash functions are used. Left Plot: The number of unique tokens is 100. Right Plot: The number of unique tokens is 1000.

Figure 4-11. Ratio of tests that have no hash collision when \(r = 10 \). Left Plot: The number of slots is \(1.5 \times \) the number of tokens. Right Plot: The number of slots is \(1.8 \times \) the number of tokens.

number of tokens from 100 to 1000 at steps of 100. Under each parameter setting, we run 500 tests and calculate the ratio of tests that have no hash collision. The left plot of Fig. 4-11 presents the results when \(l \) is set to \(1.5 \times \) the number of tokens. In this case, only a few tests have hash collisions, e.g., when the number of tokens is 1000, 8 out of the 500 tests have hash collisions. When \(l \) increases to \(1.8 \times \) the number of tokens, there is no hash collision any more, as shown in the right plot of Fig. 4-11.

4.7.2 Token-Level Randomness

The effectiveness of ETAP relies on the randomness of the tokens and indicators. An intuitive requirement of randomness is that any token (indicator) should have approximately the same probability to appear. The EPC C1G2 standard [2] specifies
Figure 4-12. Frequency tests for tokens and indicators generated by ETAP, where $a = b = 16$. Each point represents a token/indicator and its frequency. The two dotted horizontal lines represent the required bounds.

that for a 16-bit pseudorandom generator the probability of any 16-bit RN_{16} with value x shall be bounded by $\frac{0.8}{2^{16}} < P(RN_{16} = x) < \frac{1.25}{2^{16}}$. To evaluate the randomness of tokens and indicators generated by ETAP, we set $a = b = 16$, respectively produce $2^{16} \times 500$ tokens and indicators, and calculate the frequency of each token or indicator. Note that we can concatenate multiple tokens to form a longer one if necessary. In addition, we set $u = 10$ as suggested by Theorem 3, and vary $v = 2, 4, 6$ to investigate its impact on randomness. Fig. 4-12 presents the results, where the dotted horizontal lines represent the bounds specified by EPC C1G2. We can see that the indicators have better randomness with the increase of v, while the randomness of tokens is not sensitive to the value of v since u is already set sufficiently large. In addition, when $u = 10$ and $v = 4$, requiring only 256-bit tag memory, both the tokens and indicators meet the randomness requirement.
The sample size \(m_s \) is 500, and the acceptable confidence interval of the success proportion is \([0.97665, 1]\).

<table>
<thead>
<tr>
<th>Test</th>
<th>Length 1000</th>
<th>P-value</th>
<th>Length 5000</th>
<th>P-value</th>
<th>Length 10000</th>
<th>P-value</th>
<th>Length 50000</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monobit Frequency</td>
<td>0.9920</td>
<td>0.002927</td>
<td>0.9880</td>
<td>0.861264</td>
<td>0.9920</td>
<td>0.719747</td>
<td>0.9900</td>
<td>0.957612</td>
</tr>
<tr>
<td>Block Frequency</td>
<td>0.9960</td>
<td>0.037076</td>
<td>0.9880</td>
<td>0.538182</td>
<td>0.9880</td>
<td>0.162606</td>
<td>0.9940</td>
<td>0.055361</td>
</tr>
<tr>
<td>Cumulative Sum (Mode 0)</td>
<td>0.9920</td>
<td>0.119508</td>
<td>0.9860</td>
<td>0.123755</td>
<td>0.9880</td>
<td>0.632955</td>
<td>0.9880</td>
<td>0.986227</td>
</tr>
<tr>
<td>Cumulative Sum (Mode 1)</td>
<td>0.9920</td>
<td>0.798139</td>
<td>0.9920</td>
<td>0.823725</td>
<td>0.9900</td>
<td>0.877083</td>
<td>0.9900</td>
<td>0.081510</td>
</tr>
<tr>
<td>Runs</td>
<td>0.9940</td>
<td>0.286836</td>
<td>0.9820</td>
<td>0.482707</td>
<td>0.9880</td>
<td>0.146982</td>
<td>0.9860</td>
<td>0.068571</td>
</tr>
<tr>
<td>Longest Run</td>
<td>0.9960</td>
<td>0.583145</td>
<td>0.9880</td>
<td>0.554420</td>
<td>0.9860</td>
<td>0.851383</td>
<td>0.9900</td>
<td>0.889118</td>
</tr>
<tr>
<td>Matrix Rank(^2)</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>0.9880</td>
</tr>
</tbody>
</table>

4.7.3 Bit-Level Randomness

The National Institute of Standards and Technology (NIST) provides a statistical suite for randomness test [98], including monobit frequency test, block frequency test, cumulative sums test, runs test, test for the longest run of ones in a block, binary matrix rank test, etc. Due to space limitation, we cannot explain each test here, and interested readers can refer to [98] for detail information. Given a sequence of \(n_s \) bits, it is accepted as random only if the observed \(p \)-value is no less than a pre-specified level of significance \(\alpha \) based on the null hypothesis \(H_0 \).

We use two metrics to evaluate the test results: (1) The proportion of sequences that pass the tests. The acceptable range is \(\hat{p} \pm 3 \sqrt{\frac{\hat{p}(1-\hat{p})}{m_s}} \) [98], where \(\hat{p} = 1 - \alpha \) and \(m_s \) is the sample size; (2) The uniformity of the observed \(p \)-values. Let \(X \) be a random variable with probability density function \(f_X(x) \), and \(Y \in [0, 1] \) be the \(p \)-value of \(X \). Since the cumulative distribution function \(F(X) \) of \(X \) is monotonically increasing, we have

\[
P(Y \leq y) = P(\int_X^\infty f_X(x)dx \leq y) = P(1 - F(X) \leq y) \\
= 1 - P(X \leq F^{-1}(1 - y)) = 1 - (1 - y) = y.
\]

\(^2\) Matrix rank test requires that the bit sequence consists of at least 38912 bits. Hence, no test is performed when \(n_s < 38912 \), which is marked as N.A..
Hence, $Y \sim U(0, 1)$. We divide $(0, 1)$ into ten equal-length subintervals, and denote the numbers of p-values in each subinterval as F_1, F_2, \ldots, F_{10}, respectively. We have
\[
\chi^2 = \sum_{i=1}^{10} \frac{(F_i - \frac{m_s}{10})^2}{\frac{9m_s}{100}} \sim \chi^2(9).
\]
(4.8)

The proof is given below:

Proof. Consider the value of F_i, where $1 \leq i \leq 10$. Let Z_{ij} be the event that the p-value of the jth ($1 \leq j \leq m_s$) sequence, denoted by Y_j, belongs to the ith subinterval $[\frac{i-1}{10}, \frac{i}{10})$. In addition, let $1_{Z_{ij}}$ be the corresponding indicator random variable, namely,
\[
1_{Z_{ij}} = \begin{cases}
1, & \text{if } Y_j \in [\frac{i-1}{10}, \frac{i}{10}), \\
0, & \text{otherwise}.
\end{cases}
\]
Therefore, we have $F_i = \sum_{j=1}^{m_s} 1_{Z_{ij}}$. Since $Y_j \sim U(0, 1)$, we have $E(1_{Z_{ij}}) = \frac{1}{10}$ and $Var(1_{Z_{ij}}) = \frac{1}{10} \times (1 - \frac{1}{10}) = \frac{9}{100}$. Hence, $E(F_i) = \frac{m_s}{10}$, and $Var(F_i) = \frac{9m_s}{100}$. Based on the Central Limit Theorem (CLT), $\frac{F_i}{m_s}$ converges to $\text{Norm}(\frac{1}{10}, \frac{9}{100m_s})$ asymptotically. Therefore, $\left(\frac{F_i - \frac{m_s}{10}}{\sqrt{\frac{9m_s}{100}}}\right)^2 \sim \chi^2(1)$, and $\chi^2 = \sum_{i=1}^{10} \left(\frac{F_i - \frac{m_s}{10}}{\sqrt{\frac{9m_s}{100}}}\right)^2 \sim \chi^2(9)$.

Therefore, we can employ χ^2 test. If the observed statistic of χ^2 is $\chi^2(\text{obs})$, the p-value is
\[
P(\chi^2 \geq \chi^2_{\text{obs}}) = \frac{\int_{\chi^2_{\text{obs}}}^{\infty} e^{-x/2}x^{9/2-1}dx}{\Gamma(9/2)2^{9/2}}
= \frac{\int_{\chi^2_{\text{obs}}/2}^{\infty} e^{-x}x^{9/2-1}dx}{\Gamma(9/2)}
= \text{igamc}(\frac{9}{2}, \chi^2_{\text{obs}}),
\]
where $\text{igamc}(c, z) = 1 - \frac{\int_{-\infty}^{z} e^{-x}x^{c-1}dx}{\Gamma(c)}$. The uniformity is acceptable if $\text{igamc}(\frac{9}{2}, \frac{\chi^2(\text{obs})}{2}) \geq 0.0001$ [98].

We set $a = b = 16$, $u = 10$ and $v = 4$, and convert the tokens generated by ETAP to a bit sequence. We vary n_s from 1000, 5000, 10000 to 50000. The NIST suggests that $\alpha \geq 0.001$, so we set $\alpha = 0.01$. In addition, we set $m_s = 500$, in the same order of
magnitude as α^{-1}. The block size M should be selected such that $M \geq 20$, $M > 0.01n_s$ and $N_B < 100$, where N_B is the number of blocks. We set $M = 0.02n_s$, so $N_B = \frac{n_s}{M} = 50$.

The test results are shown in Table 4-4. We can see that the bit sequence generated by ETAP can pass the randomness tests under all parameter settings, which again verifies that our protocol can generate tokens with good randomness.

4.8 Summary

In this chapter, we propose a lightweight anonymous authentication protocol for RFID systems. To meet the hardware constraint of low-cost tags, we abandon hardware-intensive cryptographic hashes and follow the asymmetry design principle. Our protocol ETAP uses a novel technique to generate random tokens on demand for anonymous authentication. The randomness analysis and tests demonstrate that ETAP can produce tokens with very good randomness. Moreover, ETAP reduces the communication overhead and online computation overhead to $O(1)$ per authentication for both the tags and the readers, which compares favorably with the prior art.
5.1 System Model and Problem Statement

5.1.1 State-Free Networked Tags

There are two types of networked tags. The stateful networked tags maintain network state such as neighbors and routing tables and update the information to keep it up-to-date. These tags resemble the nodes in a typical sensor network. On the contrary, for the purpose of energy conservation, the state-free tags do not maintain any network state prior to operation, which makes them different from traditional networks, including sensor networks — virtually all literature on data-collecting sensor networks assume the stateful model, where the sensor nodes maintain information about who are their neighbors and/or how to route data in the network. This work considers state-free networked tags, not only because there is little prior work on this type of networked nodes, but also because it makes more sense for the tag identification problem: First, establishing neighborship and then routing tables across the network is expensive and may incur much more overhead than tag identification itself, which only requires each tag to deliver one number (its ID) to the reader. Second, maintaining the neighbor relationship and updating the routing tables (as tags may move between operations) require frequent network-wide communications, which is not worthwhile for infrequent operation of tag identification.

It is challenging to design an identification protocol for state-free networked tags. First, because power is a scarce resource for tags, the protocol must be energy-efficient in order to reduce the risk of network failure caused by energy depletion. Second, we should also make the protocol time-efficient so that it can scale to a large tag system where the communication channel works at a very low rate for energy conservation. Third, in order to eliminate overhead of state maintenance and thus conserve energy, tags are assumed to...
be state-free, which means that they do not know who are their neighbors and there is no existing routing structure for them to send IDs to the reader.

5.1.2 Networked Tag System

We consider a reader and a large number of objects, each of which is attached with a tag. We will use tag, node and networked tag interchangeably in the sequel. Each tag has a unique ID that identifies the object it is attached to. The reader also has a unique ID that differentiates itself from the tags.

A networked tag system is different from a traditional RFID system with a fundamental change: Tags near each other can directly communicate. This capability allows a multihop network to be formed amongst the tags. Developed at Columbia University recently [26], prototype networked tags can communicate using variants of CSMA and slotted ALOHA. The transmission range of inter-tag communications is usually short, about 1 to 10 meters [36]. But the reader is a more powerful device, and its transmission range can be much larger. Tags that can perform direct two-way communicate with a node form the neighborhood of the node.

Networked tags are expected to carry sufficient internal energy for long-term operations or have the capability of harvesting energy from the environment where they are deployed. Tags of the highest energy demand are located in the reader’s neighborhood (i.e., coverage area) because they have to relay the information from all other tags as the data converge towards the reader. Fortunately, these tags can be powered by the reader’s radio waves, similar to what today’s passive RFID tags do; their energy supply is ensured. In contrast, tags that are beyond the reader’s coverage need to use their own energy. The operations of these tags must be made energy-efficient.

The reader and the tags in the system form a connected network. In other words, there exists at least one path between the reader and any tag such that they can communicate by transmitting data along that path. Tags that are not reachable from the reader are not considered to be in the system.
5.1.3 Problem Statement

The problem of tag identification is for a reader to collect IDs from all networked tags that can be reached by the reader over multiple hops with the help of intermediate tags relaying the IDs of tags that are not in the immediate coverage area of the reader. Our goal is to develop tag identification protocols that are efficient in terms of energy cost and protocol execution time. We will consider both average energy cost per tag and maximum energy cost among all tags in the system. The average energy cost is an overall measurement of energy drain across the whole system, and the maximum energy cost is a measurement for the worst hot spot which may cause power-exhausted tags and network partition.

5.1.4 System Model

What makes tags attractive is their simplicity. There is no specification on how simple future networked tag tags should be, but it is safe to say that we will always prefer protocol designs that achieve comparable efficiency with less hardware requirement. Generally speaking, each tag has very limited energy, memory, and computing resources. In this chapter, we do not require tags to implement GPS, any localization mechanism, or other complex functions. We consider state-free tags, which do not spend energy in maintaining any state information prior to operation.

Since each tag is only equipped with a single transceiver, it cannot perform transmission and reception simultaneously. Assume that the reader and tags cannot resolve collided signals. Therefore, a node can successfully receive the transmission only if there is only one neighbor transmitting.

For state-free tags, there is no mechanism (such as frequent beacon exchange between neighbors) that keeps track of the changes in network topology in real time. We assume that the tags are stationary during the operation of tag identification. For example, in a warehouse, the daily tag identification may be performed automatically in after-work hours when objects are not moved around. During the daytime between the previous
identification and the next one, objects can still be freely moved around. In case that the identification operation needs to be performed during the daytime, we need to design a protocol that takes as little time as possible to avoid significant interruption to other warehouse operations due to the stationary requirement at the time of identification.

To conserve energy, networked tags are likely configured to sleep and wait up periodically for operations. After wake-up, a tag will listen for a request broadcast from the reader into the network, which either puts the tag back to sleep or asks the tag to participate in an operation such as reporting its ID. The broadcast request will serve the purpose of loosely re-synchronizing the tag clock. The reader will time its next request a little later than the timeout period set by the tags to compensate for the clock drift and the clock difference at the tags due to broadcast delay. The exact sleep time of the tags and the inter-request interval of the reader should be set empirically based on application needs and physical parameters of the tags.

5.2 Related Work

The tag identification protocols for traditional RFID systems can be broadly classified into two categories: ALOHA-based [99, 100], and tree-based [101, 102]. To run an ALOHA-based identification protocol, the reader first broadcasts a query, which is followed by a slotted time frame. Each tag randomly picks a time slot in the frame to report its ID. Collision happens if a slot is chosen by multiple tags. Tags not receiving positive acknowledgements from the reader will continue participating in the subsequent frames. The dynamic frame slotted ALOHA (DFSA) [42, 43] adjusts the frame size round by round.

The tree-based protocols organize all IDs into a tree of ID prefixes. Each in-tree node has two child nodes that have one additional bit, ‘0’ or ‘1’. The tag IDs are leaves of the tree. The reader walks through the tree. As it reaches an in-tree node, it queries for tags with the prefix represented by the node. When multiple tags match the prefix, they will all respond and cause collision. Then the reader moves to a child node by extending
the prefix with one more bit. If zero or one tag responds (in the one-tag case, the reader receives an ID), it moves up in the tree and follows the next branch.

To further improve the identification efficiency, network coding and interference cancelation techniques are used to help the reader recover IDs from collided signals [103, 104].

5.3 Contention-based ID Collection Protocol (CICP) for Networked Tag Systems

We are not aware of any existing data collection protocol specifically designed for the state-free model which makes sense in the domain of tags but was not adopted in the mainstream literature of sensor networks or other types of wireless systems. However, it is not hard to design an ID collection protocol for networked tags based on techniques known in existing wireless systems. For example, in this section, we will follow an obvious design path based on broadcast, spanning tree and contention-based transmission. The resulting protocol will be used as a benchmark for performance comparison (since there is no prior work on identifying networked tags). In the next section we will point out that the obvious techniques are however inefficient and other less-obvious design choices can produce much better performance.

5.3.1 Motivation

One straightforward approach for tags to deliver their IDs to the reader is through flooding: As each tag broadcasts its ID and every other ID it receives for the first time into its neighborhood, the IDs will eventually reach the reader. However, flooding causes a lot of communication overhead. In addition, each tag has to store the IDs that it has received in order to avoid duplicate broadcast. Due to the nature of flooding, it means that eventually each tag will store all IDs in the system, which demands too much memory.

Another approach is to ask tags to discover their neighbors and run a routing protocol to form routing paths towards the reader right before sending the IDs (even though the
tags are state-free prior to operation). However, as the number of neighbors can be in hundreds in a packed system, the overhead of doing so will be high, considering that only one ID per tag will be delivered.

As the above two approaches do not work well, our idea is to establish routing paths for free. For a reader to begin the tag identification process, it needs to broadcast a request to all tags. We can make extra use of this network-wide broadcast to piggyback the function of establishing a spanning tree that covers all tags, with the reader at the root of the tree. This tree will be used for transmitting the IDs to the reader. We use the ALOHA protocol to resolve the contention among concurrent transmissions made by close-by tags.

5.3.2 Request Broadcast Protocol (RBP)

The classical broadcast protocol is for each node to transmit a message when it receives the message for the first time. But it becomes more complicated to guarantee that all nodes receive the message: If each node knows its neighbors, it may keep transmitting the message until receiving acknowledgements from all neighbors. However, more care must be taken if the nodes do not know their neighbors. Below we briefly describe a request broadcast protocol (RBP) that guarantees delivering a request from the reader to all state-free tags.

To initiate tag identification, the reader broadcasts a request notifying the tags to report their IDs. The request initially carries the reader’s ID, which will later be replaced with a tag’s ID when the tag forwards the request to others. The state transition diagram of the protocol is depicted in Fig. 5-1, which is explained below.

State of Waiting for Request: Each tag begins in this state and takes action based on one of three possible events.

1. Idle Channel: The channel is idle, i.e., no neighbor is transmitting anything.
2. Request Received: Only one neighbor is forwarding the request, so the tag can receive the request correctly.
Figure 5-1. State transition diagram of the RBP protocol. Each circle is a state, and each arrow is a transition, where the event triggering the transition is above the line and the action is below the line.

(3) Collision: Multiple neighbors are forwarding the request, resulting in a collision.

In event (1), the tag does nothing. In event (2), the tag will acknowledge the sender that it has successfully received the request with an ACK. Meanwhile, it extracts the ID from the request and saves it as its parent. After that, it moves to the state of Forwarding Request. As we will see shortly, it is not important whether the ACK is correctly received by the sender of the request or not. The sender will know that all its neighbors have received the request when it does not hear any response (since the neighbors all move to the state of Forwarding Request). In event (3), the tag cannot resolve the collided. It sends a negative acknowledge (NAK) and stays in the state of Waiting for Request.

State of Forwarding Request: To ensure that the request will be propagated across the network, each tag having received the request will keep broadcasting it with exponential backoff upon collision until all its neighbors receive the request. Each time after the tag broadcasts the request (which carries the tag’s ID), there are three possible events:

(1) No Response: No response is received from any neighbor.
(2) One ACK/NAK: Only one ACK/NAK response is received.
(3) Collision: Multiple ACK/NAK responses are sent by the neighbors, leading to a collision.

Recall that any neighbor in the state of Wait for Request will respond either ACK or NAK regardless of whether it can successfully receive the request or not. Event (1) must mean that all the neighbors have already received the request and moved to other states. In this case, the tag does not need to broadcast the request any more. If no response is heard after broadcasting the request for the first time, the tag knows it has no child and it is therefore a leaf node in the spanning tree. In event (2), if a single ACK is received, the tag knows that all its neighbors now have received the request. Hence, it can stop broadcasting the request. If a single NAK is received, the tag knows that there must have been collision at a neighbor, which did not receive the request successfully. Therefore, the tag should perform an exponential backoff to avoid continuous collision in the channel. In event (3), the tag cannot resolve the received ACK/NAK correctly and it also performs an exponential backoff. As an example, Fig. 5-2 illustrates the spanning tree built in a networked tag system after it executes RBP, where the reader has an ID 0.

The wireless transmissions in RBP can be implemented either based on unslotted ALOHA or based on slotted ALOHA. Slotted ALOHA is more efficient but requires the tags to synchronize their slots. When the reader transmits its request to nodes in its neighborhood, the preamble of the transmission provides the clock and slot synchronization. Similarly, when a distant tag receives the request for the first time from another tag, the preamble of the latter synchronizes the clock and slot.

Theorem 4. Every tag will receive a copy of the request sent out by the reader under RBP.

Proof. To prove by contradiction, let’s assume there exists a tag T that does not receive the request after executing RBP. It must be true that none of its neighbors has received the request. Otherwise, according to the protocol, any neighbor having received the request would continue broadcasting the request until T receives it and acknowledges...
Figure 5-2. An example of a spanning tree built by RBP, where the ID of tag T_i is i. Each dotted circle on the left gives the neighbors of a tag at the center of the circle.

its receipt — each time the request is transmitted, if T does not receive the request successfully, it will respond NACK, causing the sender to retransmit. By the same token, the neighbors of any T’s neighbor must not receive the request. Applying this argument recursively, all nodes reachable from T must not receive the request. By the assumption that the network is connected, at least one neighbor T' of the reader is reachable from T. Therefore, T' must not receive the request. This contradicts to the fact that T' is located in the reader’s coverage area and should receive the request at the very beginning when the reader broadcasts the request for the first time. Therefore, the theorem must hold.

5.3.3 ID Collection Protocol (ICP)

When a tag transmits its ID, it will include its parent’s ID in the message, such that the parent node will receive it while other neighbors will discard the message. This unicast transmission is performed based on the classical ALOHA with acknowledgement and exponential backoff to resolve collision. The parent node will forward the received ID to its parent, and so on, until the ID reaches the reader.

The execution of ICP is performed in parallel with RBP: Once a tag knows its parent ID from RBP, it will begin transmitting its ID to the parent. When a tag needs to forward both an ID for ICP and a request for RBP, we give priority to ID forwarding because it is easier for unicast to complete.

Theorem 5. The reader will receive the IDs of all tags in the system after the execution of ICP.
Proof. From Theorem 1, each tag is guaranteed to receive the request and therefore find a parent (from which the request is received). Consider an arbitrary tag T. According to the design of ICP, the ID of T will be sent to its parent until positively acknowledged. The parent will forward the ID to its parent, and as this process repeats, the ID will eventually reach the reader at the root of the spanning tree.

5.4 Serialized ID Collection Protocol (SICP)

5.4.1 Motivation

The contention-based protocol ICP allows parallel transmissions by non-interfering tags through spatial channel reuse. In the conventional wisdom, this is an advantage. However, we find in our simulations that the contention-based protocol performs poorly for tag identification. The reason is that although parallel transmissions are enabled among the tags in the network, the reader can only take one ID at a time. Essentially, the operation of ID collection is serialized at the reader, regardless of how much parallelism is achieved inside the network of tags. Furthermore, the parallelism is actually harmful because the more the IDs are crowded to the reader in parallel, the more the contention is caused at the reader, resulting in many failed transmissions due to collision, which translates into high energy cost and long protocol execution time. When tags are densely deployed, this problem can severely degrade the system performance. With this observation, we take a different design path by trying to partially serialize the tag transmissions, such that only a (small) portion of tags will attempt to transmit at any time. By lessening the level of contention, we see a drastic performance improvement.

Another serious problem of RBP/ICP is that the spanning tree is unbalanced, causing significantly higher energy expenditure by some tags than others. This problem of biased energy consumption and a solution will be explained in details later.

5.4.2 Overview

We give an overview of our serialized protocol, SICP. The reader begins by collecting IDs in its neighborhood using framed ALOHA. An illustrative example is shown in
Figure 5-3. At any time, there exists only one node that is active in collecting IDs from its lower-tier neighbors.

Figure 5-3, where the reader collects the IDs from neighbors T_1 through T_4 (which form tier 1), while all other nodes stay idle. When the reader receives a tag’s ID (say, T_2) free of collision, T_2 must be the only tag that is transmitting in the whole network. It also means that other neighbors of T_2 can hear the transmission free of collision. These tier-2 nodes, T_5 through T_7, set T_2 as their parent.

After collecting all tier-1 IDs, the reader sequentially informs each tier-1 node to further collect IDs from its children. For example, when the reader informs T_2 to do so, all other tier-1 nodes will stay silent. As T_2 sends out a request for IDs, only its children (T_5, T_6 and T_7) will respond. The same process as described in the previous paragraph will repeat; only this time T_2 takes the role of the reader.

After T_2 collects the IDs of all its children, it will forward the IDs to the reader, which will then move to the next tier-1 node. Once it exhausts all tier-1 nodes, it will move to tier-2 nodes, one by one and tier by tier, until the IDs of all nodes in the network are collected.

Below we will first introduce the problem of biased energy consumption, give a solution, and then describe recursive serialization.

5.4.3 Biased Energy Consumption

When a tag is transmitting its ID to the reader, its neighbors outside of the reader’s coverage can overhear the ID. They may use this tag as their parent. As illustrated in the left plot of Fig. 5-4, we prefer a roughly balanced spanning tree where each node serves as
the parent for a similar number of children. In reality, however, a tag that delivers its ID to the reader early on will tend to have many more children. An example is given in the right plot of Fig. 5-4. Suppose tag 1 transmits its ID to the reader first. Overhearing its ID, tags 5-9 will pick tag 1 as their parent. When tag 2 transmits its ID at a later time, no tag will be left to choose tag 2 as parent even though tags 7-8 are in the range of tag 2 — recall that they have already chosen tag 1. In this case, tag 1 will have to forward more IDs, resulting in quicker energy drain than others. The severity of the problem grows rapidly with an increasing number of tiers because the numerous children of tag 1 tend to acquire even more numerous children of their own and those IDs will pass through tag 1 to the reader.

Uneven energy consumption causes some tags to run out of energy earlier, which can result in network partition. The same problem also exists for RBP/ICP where tags that receive and forward the request early on during the network-wide broadcast may end up with a large number of children.

We observe that a tag may overhear multiple ID transmissions over time and thus have multiple candidates to choose its parent from, as shown by Fig. 5-5 where T may choose its parent from three tier-1 nodes. Ideally, the tag should choose its parent uniformly at random from the candidates. However, because of collision, each candidate may have to retransmit its ID for a different number of times before the reader
Figure 5-5. A tag may choose its parent from multiple candidates, where arrows represent ID transmissions (or broadcast).

successfully receives it. To avoid giving more chance to a candidate that retransmits its ID more times, the tag may keep the IDs of all known candidates to filter out duplicate overhearing. However, a serious drawback of this approach is that the memory cost can be high if a tag has numerous candidates for its parent in a system where tagged objects are packed tightly together. We want to point out that typical tags have very limited memory.

5.4.4 Serial Numbers

We propose a solution to biased energy consumption based on serial numbers. In our protocol, each tag will be dynamically assigned a serial number from 1 to N, where N is the number of tags. The reader’s serial number is 0.

Let’s first consider the reader’s neighborhood only; other tiers will be explained later. The reader initiates the protocol by broadcasting an ID collection request, carrying its serial number and a frame size f. The request is followed by a time frame of f slots. Each tag that receives the request will set the serial number 0 (i.e., the reader) as its parent and then randomly chooses a slot in the time frame. It waits until the chosen slot to report its ID to the reader. If only one tag selects a certain slot, its ID will be correctly received by the reader, which replies an ACK to the tag in the same slot. The ACK carries the number of IDs that the reader has successfully received so far. This number is assigned as the serial number of the tag; the number is system-wide unique due to its monotonically-increasing nature. A tag can be identified either by its ID or its assigned serial number. After receiving the ACK, we require the tag to
broadcast the assigned serial number in its neighborhood. Hence, each time slot contains
an ID transmission, an ACK transmission, and a serial-number transmission. If the ID
transmission is collision-free, so do the other two transmissions. Even though a tag may
need to retransmit its ID multiple times due to collision, it will transmit its assigned serial
number once, only at the time when an ACK is received.

If the reader observes any collision in the time frame, it will broadcast another request
with another time frame to collect more IDs. If no collision is observed, the reader has
collected all IDs from its neighborhood and it will perform recursive serialization (to be
discussed) to collect IDs outside of its neighborhood.

5.4.5 Parent Selection

Consider an arbitrary neighbor of T, denoted as T', which has not set its parent yet.
As illustrated in Fig. 5-6, T' must not be in the reader’s neighborhood because the tags in
that neighborhood set the serial number 0 as their parent when they receive the request
from the reader for the first time. When T' receives a serial number for the first time,
it will set the number as its parent, which is subject to change when T' receives more
serial numbers from other tags (candidates for parent). Recall that each tag broadcasts its
serial number only once. This property allows us to design the following parent selection
algorithm (PSA) which guarantees every candidate has an equal chance to be selected
as the parent: Each tag maintains two values, its parent and a counter c for the number
of candidates having been discovered so far. The counter is initialized to zero. Each
time when T' receives a serial number s' from a neighbor, it increases c by one and then
replaces the current parent with \(s' \) by a probability \(\frac{1}{e} \). Using this PSA, we have the following theorem:

Theorem 6. Suppose a tag has \(m \) candidates for parent. Each candidate has an equal probability of \(\frac{1}{m} \) to be chosen as the tag’s parent in the end.

Proof. For the \(j \)th (\(1 \leq j \leq m \)) discovered candidate, it becomes the final parent only if it replaces the previously selected parent, and is never substituted by the subsequently discovered candidates. Therefore, the probability that it is chosen by the tag as the parent in the end is

\[
\frac{1}{j} \prod_{l=j+1}^{m} \left(1 - \frac{1}{l}\right) = \frac{1}{m},
\]

(5-1)

implying every candidate is equally likely to be the parent. \(\square \)

Another advantage of using the serial number instead of ID for parent identification is that an ID — typically 96 or more bits for RFID tags — is much longer than the size of the serial number, \(\lceil \log_{2} N \rceil \), where \(N \) is the maximum number of tags in a system. For example, even if \(N = 1,000,000 \), the serial number is just 20 bits long.

5.4.6 Serialization at Tier Two

After the reader collects all IDs from its neighborhood, each tag in the neighborhood will obtain a unique serial number. Recall that these tags constitute the first tier of the network. The reader then serializes the subsequent ID collection process by sending the serial numbers of tier-1 tags one by one, in order to command the corresponding tag to collect IDs from its neighbors, with other tier-1 tags staying idle.

The reader begins by transmitting the serial number 1, together with the number \(s \) of IDs it has received so far. In response, the tag with the serial number 1, denoted as \(T_1 \), transmits an ID collection request, carrying its own serial number 1 and a frame size \(f \). The request causes the neighbors that are not tier-1 to finalize their parent selection; these nodes are tier-2. Note that some of them may have selected nodes other than \(T_1 \) as their parents. Hence, when a tier-2 node receives the request from \(T_1 \), only if its chosen
parent matches the serial number in the request, it will transmit its ID in the subsequent time frame; otherwise, it can sleep for a duration of f slots. If T_1 correctly receives an ID in a slot from a child T'_1, it increases the value of s by one and sends back an ACK with s as the serial number assigned to T'_1, which in turn broadcasts its serial number and tier number (i.e., 2) in its neighborhood such that the neighbors at the next tier can discover it as one of their candidates for parent. When a tag sets (or later replaces) its parent, it also sets its tier number as the tier number of its parent plus one; it should never replace its current parent with one whose tier number is larger.

It may take T_1 multiple requests to finish reading all IDs from its children. It then forwards the IDs to the reader. After acknowledging T_1, the reader sends a command to trigger the ID collection process at the next tier-1 tag.

After the reader finishes this process with all tier-1 tags, it has collected the IDs of all tier-2 tags. The reader also has the information to construct a spanning tree covering tier-1 and tier-2 nodes, as illustrated in Fig. 5-3 where the assigned serial numbers are shown inside the circles.

5.4.7 Recursive Serialization

After the reader commands all tier-1 tags one by one to collect the IDs of tier-2 tags, it repeats this serialization process recursively to collect other IDs tier by tier. Suppose the reader has collected the IDs from all tags at tier 1 through tier i and the range of serial numbers at tier i is from x to y. The reader will send a command to each tier-i tag in sequence. The command includes a concatenation of the serial numbers along the path in the spanning tree from the root (excluded) to that tag, in addition to the number s of IDs that the reader has received so far. For example, for tag 7 in Fig. 5-3, the command will carry two serial numbers, 2 and 7. (Note that since each serial number is of fixed size, there is no ambiguity on interpreting the sequence of serial numbers.)

When the reader broadcasts the command in its neighborhood, any tag receiving the command will extract and compare the first serial number with its own. If the
two serial numbers do not match, it discards the command. Otherwise, it further checks whether there are more serial numbers in the command. If so, it broadcasts the remaining command. This process repeats until a tag matches the last serial number in the command. That tag will perform ID collection in a similar way as described in Section 5.4.6. The collected IDs will be sent through the parent chain to the reader.

Theorem 7. The reader will receive the IDs of all tags in the system after the execution of SICP.

Proof. Proving by contradiction, we assume at least one tag \(T \) fails in delivering its ID to the reader. \(T \) must not have a parent; we again prove this by contradiction: Assume that \(T \) has a parent \(T' \). According to the protocol, for \(T' \) to be chosen as a parent, it must either the reader or a node that has already successfully delivered its ID and subsequently broadcast its assigned serial number. Hence, it will receive a command from the reader to collect IDs from its children. After the reader sends a command to \(T' \), \(T' \) will broadcast requests, free of collision due to serialization, to children until all IDs are collected — which happens when no collision is detected in the time frame after a request. When \(T' \) receives the ID of \(T \), if it is not the reader, it will forward the ID to the reader along the path with which its own ID has been successfully delivered, free of collision due to serialization. This contradicts the assumption that \(T \) fails in delivering its ID to the reader. Hence, \(T \) does not have a parent.

If \(T \) does not have a parent, all of its neighbors must fail in delivering their IDs to the reader because otherwise any successful neighbor would broadcast its serial number according to the protocol, which would result in \(T \) having a parent after \(T \) receives the serial number.

If all neighbors of \(T \) fail in delivering their IDs to the reader, by the same reasoning as above, all their neighbors must fail too. Recursively applying this argument, all tags in the network must fail in delivering their IDs to the reader because the network is connected, which contradicts at least to the fact that the reader’s immediate neighbors
are able to send their IDs to the reader through the slotted ALOHA protocol that SICP employs. Hence, the theorem is proved.

5.4.8 Frame Size

When the reader or a tag tries to collect the IDs in its neighborhood, its request carries a frame size f. Let n be the number of tags that are children of the reader or tag sending the request. It is well known that the optimal frame size should be set as n, such that the probability of each slot carrying a single ID (without collision) can be maximized. This can be easily seen as follows: Consider an arbitrary slot. The probability p that one and only one tag chooses this slot to transmit is

$$p = \left(\frac{n}{1} \right) \frac{1}{f} \left(1 - \frac{1}{f} \right)^{n-1} \approx \frac{n}{f} e^{-\frac{n-1}{f}} \approx \frac{n}{f} e^{-\frac{n}{f}}$$ \hspace{1cm} (5-2)

when n is large. To find the value of f that maximizes p, we take the first-order derivative of the right side and set it to zero. Solving the resulting equation, we have

$$f = n,$$ \hspace{1cm} (5-3)

which means the maximal value of p is e^{-1}. In subsequent requests, as more and more IDs have been collected, fewer and fewer tags are transmitting their IDs and the frame sizes should be reduced accordingly.

However, we do not know n. There are numerous estimation methods for n [56, 105, 106], which are however intended for a system with a large number of tags, in tens of thousands. It is known that these estimation methods will actually be inefficient if they are applied to a relatively small number of tags such as a couple of thousands or fewer [12]; if the number of tags is very small, the estimation time can be much larger than the time it takes to complete the tag identification task itself. In the context of this chapter, we expect the number of children of the reader or any tag is relatively small. Hence, it is not worthwhile to add the overhead of a separate component for estimating n before the reader (tag) begins collecting IDs from its neighborhood.
Our solution is to estimate the value of n iteratively from the frame itself without incurring additional overhead. Initially, we set f to be a small constant λ in the first request. We double the value of f in each subsequent request until there exists at least one empty slot that no tag chooses. From then on, we will estimate the number of n and set the frame size accordingly in the subsequent requests. Without the loss of generality, suppose we want to determine the frame size for the ith request. Let f_j be the frame size used in the jth request, $1 \leq j < i$. After the jth request, let c_j, s_j, and e_j be the numbers of slots that are chosen by multiple tags (collision), a single tag, and zero tag, respectively. Let m_j be the number of IDs that are successively collected after the jth request. All these values are known to the reader (tag). The process for a tag to randomly choose a slot in a time frame can be cast into bins and balls problem \cite{107}. In the jth frame, $n-m_{j-1}$ tags (balls) are mapped to f_j slots (bins). The total number of different ways for putting $n-m_{j-1}$ balls to f_j bins is $f_j^{n-m_{j-1}}$. The number of ways for choosing e_j bins from f_j bins and let them be empty is $\binom{f_j}{e_j}$. In addition, the number of ways for choosing s_j balls from $n-m_{j-1}$ balls and putting each of them into one of the remaining f_j-e_j bins is $\binom{f_j-e_j}{s_j}\binom{n-m_{j-1}}{s_j}s_j!$. Finally, the remaining $n-m_{j-1}-s_j$ balls should be thrown into the remaining c_j bins, each containing at least 2 balls (collision slots). We first choose $2c_j$ balls and put 2 balls into each of the c_j bins, which includes $\binom{n-m_{j-1}-s_j}{2c_j}\binom{2c_j}{2c_j}$ possibilities. After that, the remaining $(n-m_{j-1}-s_j-2c_j)$ balls can be put into any of the c_j bins, which involves $(n-m_{j-1}-s_j-2c_j)^{c_j}$ different ways. Therefore, the likelihood function for observing these values is

$$L(n) = \prod_{j=1}^{i-1} \frac{\binom{f_j}{e_j}\binom{f_j-e_j}{s_j}\binom{n-m_{j-1}}{s_j}s_j!\binom{n-m_{j-1}-s_j}{2c_j}\binom{2c_j}{2c_j}}{f_j^{n-m_{j-1}}} \times (n-m_{j-1}-s_j-2c_j)^{c_j}.$$

(5-4)

The estimate of n is the value that maximizes L. Let this value be \hat{n}, which can be found through exhaustive search since the range for n is limited in practice, rarely going beyond tens of thousands. For the ith request, we set the frame size to be $\hat{n} - m_{i-1}$.

124
The above estimator follows the general principle originally seen in [105], but it takes the information of c_j, s_j, and e_j all in the same estimator, whereas the estimators in [105] use either c_j or e_j.

As our analysis will show, except for the reader, the average number of children per tag is typically very small (less than 2) for a randomly distributed tag network. In this case, if we set the initial frame size λ to 4, the chance is high that a tag successfully collect all IDs from it children in the first time frame. Therefore, only the reader needs to use (5–4) to estimate the number of its children, while the tags can just set the frame size to a small constant to avoid the computation overhead.

5.4.9 Load Factor Per Tag

We analyze the work load of each tag in terms of how many children and descendants it has to handle. While our load balancing approach is designed for any tag distribution, to make the analysis tractable, we assume here that tags are evenly distributed in an area with density ρ, and the tags whose distances from the reader are no larger than R form the first tier, while those whose distances from the reader are greater than $R + (i - 2)r$ but smaller than $R + (i - 1)r$ form the ith ($i \geq 2$) tier of the network, where the transmission ranges of the reader and a tag are R and r, respectively, with $R \geq r$. For example, Fig. 5-7 presents a network with three tiers. The number N_i of tags in the ith tier is estimated as

$$N_i = \rho \times (\pi \times (R + (i - 1)r)^2 - \pi \times (R + (i - 2)r)^2)$$

$$= \pi \rho (2Rr + (2i - 1)r^2). \tag{5–5}$$
Table 5-1. The values of D_i with $R = 3r$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_i</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 5-2. The values of L_i with $R = 3r$ and $l = 10$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_i</td>
<td>21.9</td>
<td>16.0</td>
<td>12.1</td>
<td>9.2</td>
<td>7.0</td>
<td>5.2</td>
<td>3.6</td>
<td>2.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>

One exception is that N_1 computed from (5–5) actually includes only the portion of tier-1 tags whose distances from the reader are larger than $R - r$; these are the tags that can serve as parents for tier-2 tags.

The children degree of tier-i tags, denoted by D_i, is defined as the average number of children that a tier-i tag has. Because tags at the ith tier only serve as parents for tags at the $(i+1)$th tier, we have

$$D_i = \frac{N_{i+1}}{N_i} = \frac{2R + (2i + 1)r}{2R + (2i - 1)r} = 1 + \frac{1}{\frac{R}{r} + (i - \frac{1}{2})}.$$ \hspace{1cm} (5–6)

We have $R \gg r$ because the reader can transmit at a much higher power level and it has much more sensitive antenna. This makes the values of D_i very small. For example, if $R = 3r$, Table 5-1 shows the values of D_i, $1 \leq i < 10$, which are smaller than 1.3 and quickly converge toward 1 as i increases. The values in the table will be even smaller if $R > 3r$.

The load factor of tier-i tags, denoted as L_i, is defined as the average number of IDs that a tier-i tag has to forward, including the IDs of its tier-$(i+1)$ children as well as other IDs that its children collects from their descendants. L_i is equal to the total number of tags beyond the ith tier divided by the number of tags at the ith tier.

$$L_i = \frac{\sum_{j=i+1}^{l} N_j}{N_i} = \frac{\sum_{j=i+1}^{l} 2R + (2j - 1)r}{2R + (2i - 1)r}$$

$$= \frac{2(l - i) + \frac{r}{R}(l^2 - i^2)}{2 + (2i - 1)\frac{r}{R}},$$ \hspace{1cm} (5–7)
where \(l \) is the total number of tiers and \(i < l \). When \(R = 3r \) and \(l = 10 \), Table 5-2 shows the values of \(L_i \), \(1 \leq i < 10 \), which are surprisingly small. Because tier-1 tags can be powered by the radio wave from the reader, we are only concerned with the power consumption of tags at other tiers. The tags at tier 2 have to forward more IDs than those at outer tiers. From the table, a tier-2 tag forwards just 16 IDs on average, which is modest overhead, considering that there are 8 more tiers beyond tier 2.

While the average is modest, the worst-case load factor is also important when we evaluate overhead. SICP is designed to evenly distribute the work load among tags by balancing the spanning tree, so that tags at a certain tier have similar numbers of children (or descendants), which translate to similar children degrees (or load factors). We will study the worst-case children degree and load factor by simulations.

5.5 Evaluation

5.5.1 Simulation Setup

There is no prior work on tag identification for networked tag systems. But known techniques such as broadcast and contention-based transmission widely used in other wireless systems can be used to design a state-free tag identification protocol, CICP, which we will use as a benchmark for comparison. We evaluate the performance of CICP and SICP to demonstrate two major findings that (1) although the ALOHA-based protocols are very successful in other wireless systems (including RFID systems), they are not suitable for networked tag systems, and that (2) serialization can significantly improve the tag identification performance.

1 For the special case when all networked tags are within the coverage of the reader, our protocols naturally become the traditional protocols, literally, because we may actually adopt any existing ALOHA-based RFID identification protocol for collecting IDs within the reader’s neighborhood in place of the operations described in Section 5.4.4, as long as the serial number is embedded in ACK.
Three performance metrics are used: (1) execution time measured in number of time slots, (2) average and maximum numbers of bits sent per tag, and (3) average and maximum numbers of bits received per tag. The last two are indirect measures of energy cost, where tier-1 tags are excluded because they can be powered by the reader’s radio waves. Computation by tags in the proposed protocols is very limited. Most energy is spent on communication. The amount of communication data serves as an indirect means to compare different protocols. For example, if tags in one protocol receive and send far more than those in another protocol, it is safe to say that the first protocol costs more energy than the second.

We vary the number N of tags in the system from 1000 to 10000 at steps of 1000. The tags are randomly distributed in a circular area with a radius of 50 m. The reader, whose communication range R is set to 25 m, is located at the center of the area. For each tag, its inter-tag communication range r is 5 m. In SICP, the reader sets its frame size of the ith request to $f_i = \max\{\hat{n} - m_{i-1}, f_i\}$, where m_{i-1} is the number of IDs that have been collected and \hat{n} is the estimate number of tags that maximizes (5–4). The lower bound f_i, fixed to 50, prevents the frame size from being setting too small or even negative due to the estimation deviation of \hat{n}. The initial frame size λ is 50 for the reader. To relieve the tags from estimating the numbers of children they have, we let them use a fixed frame size λ with a default value of 4, but we will also vary it from 2 to 10. The length of each tag ID is 96 bits long. The length of each serial number is $\lceil \log_2 N \rceil$ bits long. The length of each tier number is 4 bits long. Following the specification of the EPC global Class-1 Gen-2 standard [2], we set the length of the ID collection request in CICP to 20 bits, and set ACK and NAK to 16 bits and 8 bits, respectively. In SICP, the ACK will also include a serial number. For each data point in the figures, we repeat the simulation for 100 times and present the average result.
Figure 5-8. Left Plot: maximum children degree in the spanning tree. Right Plot: maximum load factor of tags in the spanning tree.

5.5.2 Children Degree and Load Factor

We first examine the balance of the spanning trees built by CICP and SICP. It has significant impact on the worst-case energy cost of the tags. A tag with a larger children degree (or a larger load factor) has to collect (or forward) more tag IDs, resulting in additional energy expenditure. Tags that have the largest children degree or load factor may become the energy bottleneck in the network. If the residual on-tag energy is exhausted before the completion of the protocol, the network may even be partitioned due to dead tags.

Fig. 5-8 presents the maximum children degree and the maximum load factor in the spanning trees built by CICP and SICP, respectively. As the number N of tags in the system becomes larger, the increase in these worst-case numbers under CICP is a lot faster than the increase under SICP, indicating a much balanced tree for the latter. For example, when $N = 10000$, the maximum children degree and load factor in CICP are 83 and 1969, and those numbers in SICP are only 12 and 259.

5.5.3 Performance Comparison

We compare the performance of CICP and SICP in Fig. 5-9, where the first plot shows the protocol execution time in terms of number of slots used, the second plot shows the average number of bits sent per tag, and the third plot shows the average number of bits received per tag. SICP uses slightly more slots than CICP, meaning that its execution time is modestly longer. However, its energy cost is much smaller, thanks to serialization
Figure 5-9. Performance comparison between CICP and SICP.

Figure 5-10. Left Plot: maximum number of bits sent by any tag in the system. Right Plot: maximum number of bits received by any tag in the system.

for collision reduction. For example, when \(N = 10000 \), the numbers of bits sent/received per tag in CICP are 8783 and 412218, whereas those numbers are just 839 and 46217 — 90.0% and 88.8% reduction, respectively.

Fig. 5-10 shows the maximum numbers of bits sent/received by a tag under the two protocols, respectively. As expected, the most energy-consuming tags spend much less energy under SICP than under CICP. For example, when \(N = 10000 \), the maximum numbers of bits sent/received by any tag in CICP are 631412 and 2367899, and those numbers in SICP are 51787 and 158458 — 91.8% and 93.3% reduction, respectively.

5.5.4 Performance Tradeoff for SICP

Finally, we demonstrate a performance tradeoff for SICP controlled by the value of \(\lambda \). We set \(N = 5000 \) and vary \(\lambda \) from 2 to 10. The results are presented in Fig. 5-11, where the three plots from left to right show the execution time, the average number of bits sent per tag, and the average number of bits received per tag, respectively. As the
value of λ increases, the execution time increases, but the energy cost for sending and receiving decreases. This presents a time-energy tradeoff. However, the time increases almost linearly, but the decrease in energy flattens out, suggesting that a modest value of λ is preferred.

5.6 Summary

This is the first study on tag identification in the emerging networked tag systems. The multihop nature of networked tag systems makes this problem different from the tag identification problem in RFID systems. We propose two tag identification protocols with two important findings. The first finding is that the traditional contention-based protocol design incurs too much energy overhead in networked tag systems due to excessive collision. The second finding is that load imbalance causes large worst-case energy cost to the tags. We address these problems through serialization and probabilistic parent selection based on serial numbers.
CHAPTER 6
FUTURE WORK

In this chapter, we propose two future work we will work on. One is to identify missing tags in RFID systems. The other is anonymous category-Level joint tag estimation in RFID systems.

6.1 Missing-Tag Identification Using Physical-Layer Signals

One important RFID application is to automatically detect if any tagged object in a storage is missing (due to management error or theft), and if so, identify which tagged object is missing. Existing solutions [13, 108, 109] attempt to ping each tag to see if it is still there. Their execution time is at least linear in the number of tags in the system, which can be in tens of thousands. We observe that it is unnecessary to collect the information about individual tags remaining in the system, but rather we should focus only on information that indicates the absence of tags, with a time complexity in the order of the number of missing tags. Moving away from the MAC-layer approach that most existing solutions have followed, we take a physical-layer approach that exploits richer information at the signal level. The readers periodically take a snapshot of the aggregated signals from the tags. By combining two consecutive snapshots, we can subtract away the unchanged information from the non-missing tags and produce differential slot states, called physical-layer differential filter. The construction of a physical-layer differential filter is shown by Fig. 6-1, where the magnitude of each signal is depicted. The first plot from the top shows the 1st physical-layer snapshot for 16 initial tags. The dashed line in the middle shows the boundary of the two segments in the snapshot. The second plot shows the 2nd snapshot for 14 tags after while two tags are missing. By subtracting the aggregate signals in the 2nd physical-layer snapshot from the 1st physical-layer snapshot, we obtained the differential filter, which is presented in the third plot.
6.2 Anonymous Category-Level Joint Tag Estimation

Tag estimation, which is to estimate the cardinality of a single tag set, is an important research topic. Although numerous approaches for tag estimation have been proposed, they have some limitations. First, most approaches only consider a single tag set [12, 56, 105, 110–115]. There is limited work on joint estimation of two tag sets [116, 117]. Second, most prior work, including [116, 117], only estimates the aggregate information of the whole tag set(s), but ignores the fact that tagged objects belong to different categories. We want to expand the research on tag estimation into a couple of new directions: First, not only do we perform joint estimation between two tag sets, but more importantly the estimation is fine-grained at the category level in an effort to accommodate practical scenarios, where each tag set consists of tags belonging to different categories. Second, we want to carry out category-level joint estimation anonymously without giving away the tags’ private information, including tag IDs and category IDs.
To achieve anonymous category-level joint tag estimation[118], we design a new data structure called mask bitmap, a variant of traditional bitmap. The idea is, instead of allocating a separate bitmap for each category, we use a single large bitmap B to accommodate all categories. For each category, we build a virtual bitmap (VB) by randomly choosing some bits from B. As a result, any bit in B can be shared by multiple categories. Fig. 6-2 illustrates two virtual bitmaps $VB(cid_1)$ and $VB(cid_2)$ randomly chosen from the mask bitmap B for categories cid_1 and cid_2, respectively, where the bit in grey is shared by both virtual bitmaps. A significant advantage of such bit-level sharing is that all categories use a common bitmap, so there is no need for transmissions of category IDs any more. More importantly, since each bit in the mask bitmap is shared by multiple categories, it helps mask the tag ID and the category ID of a tag that sets this bit.
CHAPTER 7
CONCLUSION

In this dissertation, we first investigate the tag search problem in large RFID systems in Chapter 2. We design the iterative tag search protocol (ITSP) based on a new technique that iteratively applies filtering vectors. In addition, we show the impact of channel noise on the performance of ITSP, and improve ITSP to make it more robust against channel noise. In Chapter 3, we design a lightweight cipher Pandaka for resource-constrained devices, such as RFID tags. Considering the significant capacity gap between tags and readers, we follow the asymmetry design principle that pushes most workload to the readers with rich resources while leaving the tags simple. This work provides an alternative way to develop symmetric cryptography for systems consisting of significantly asymmetric communicating entities. In Chapter 4, we propose a lightweight anonymous authentication protocol ETAP following the asymmetry design principle. ETAP allows the tags to generate dynamic tokens for authentication without using any hardware-intensive cryptographic hashes. Moreover, ETAP reduces the communication overhead and online computation overhead to $O(1)$ per authentication for both the tags and the readers. In Chapter 5, we propose two identification protocols for state-free networked tag with two important findings. The first finding is that the traditional contention-based protocol design incurs too much energy overhead in networked tag systems due to excessive collision. The second finding is that load imbalance causes large worst-case energy cost to the tags. We address these problems through serialization and probabilistic parent selection based on serial numbers. Finally, in Chapter 6 we propose some future work that we will work on.
REFERENCES

Dynamic Framed Slotted ALOHA for RFID Tag Identification,” Wireless Personal

and Networking Conference (CCNC), January 2006.

Reception of Passive UHF RFID Tags: A Communication Theoretic Approach,”
IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4225–4237, September
2011.

608–611, March 2013.

4653–4662, November 2013.

[54] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A

[55] Y. Qiao, T. Li, and S. Chen, “One memory access bloom filters and their

BIOGRAPHICAL SKETCH

Min Chen received his B.E. degree in information security from the University of Science and Technology of China, Hefei, China, in 2011, and the M.S. degree in computer engineering and Ph.D. degree in computer science from the University of Florida, Gainesville, FL, in 2015 and 2016, respectively. His research interests include Internet of Things, big network data, next-generation RFID systems, and network security.