Publications
Jianhua Fan, Jörg Peters:
Smooth Bi3 spline surfaces with fewest knots.
CAD
submitted.
Abstract:Converting a quadrilateral input mesh into a C^1 surface with one bi3 NURBS patch per facet is a classical challenge. We give explicit local averaging formulas for the spline control points. Where the quadrilateral mesh is not regular, the patches have two internal double knots, the least number and multiplicity to always allow for an unbiased G^1 construction. 
Jörg Peters, Jianhua Fan: The
projective linear transition map for constructing smooth surfaces.
Shape Modeling International 2010
Abstract:We exhibit the essentially unique linear(rational linear) reparameterization for constructing C^s surfaces of genus greater than 0. Conversely, for quadrilaterals and isolated vertices of valence 8, we show constructively for s=1,2 that this map yields a projective linear spline space for surfaces of genus greater or equal to 1. This establishes the reparametrization to be the simplest possible transition map. 
Jörg Peters, Jianhua Fan: On
the Complexity of Smooth Spline Surfaces from Quad Meshes. Computer
Aided Geometric Design (CAGD): Vol.27,no.1,pp 96105
Abstract: This paper derives strong relations that boundary curves of a smooth complex of patches have to obey when the patches are computed by local averaging. These relations restrict the choice of reparameterizations for geometric continuity. In particular, when one bicubic tensorproduct Bspline patch is associated with each facet of a quadrilateral mesh with nvalent vertices and we do not want segments of the boundary curves forced to be linear, then the relations dictate the minimal number and multiplicity of knots: For general data, the tensorproduct spline patches must have at least two internal double knots per edge to be able to model a G1conneced complex of C1 splines. This lower bound on the complexity of any construction is proven to be sharp by suitably interpreting an existing surface construction. That is, we have a tight bound on the complexity of smoothing quad meshes with bicubic tensorproduct Bspline patches. 
Jianhua Fan, Jörg Peters: On
Smooth Bicubic Surfaces from Quad Meshes. ISVC
(1) 2008: 8796
Slides
Abstract: Determining the least m such that one m×m
bicubic macropatch per quadrilateral offers enough degrees of freedom to
construct a smooth surface by local operations regardless of the vertex
valences is of fundamental interest; and it is of interest for computer
graphics due to the impending ability of GPUs to adaptively evaluate
polynomial patches at animation speeds. 

Elimination in Generically Rigid 3D Geometric Constraint
Systems Jörg Peters , Meera Sitharam , Yong Zhou and Jianhua Fan Algebraic Geometry and Geometric Modeling, Nice, France, September 27  29, 2004 Abstract: Modern geometric constraint solvers use combinatorial graph algorithms to recursively decompose the system of polynomial constraint equations into generically rigid subsystems and then solve the overall system by solving subsystems, from the leave nodes up, to be able to access any and all solutions. Since the overall algebraic complexity of the solution task is dominated by the size of the largest subsystem, such graph algorithms attempt to minimize the fanin at each recombination stage. Recently, we found that, especially for 3D geometric constraint systems, a further graphtheoretic optimization of each rigid subsystem is both possible, and often necessary to solve wellconstrained systems: a minimum spanning tree characterizes what partial eliminations should be performed before a generic algebraic or numeric solver is called. The weights and therefore the elimination hierarchy defined by this minimum spanning tree computation depend crucially on the representation of the constraints. This paper presents a simple representation that turns many previously untractable systems into easy exercises. We trace a solution family for varying constraint data. 
Projects