Artificial Intelligence and Machine Learning
- Overview -
Hyeoncheol Kim

Two Approaches

- **Knowledge-Based Approach**
 - Symbolic AI, Traditional AI

- **Data-Driven Approach**
 - Computational AI,
 - Machine Learning

- **Hybrid Approach**
 - Knowledge-based + Data-Driven
 - Ex) Knowledge-based Neural Network
 - Ex) Knowledge Extraction from Neural Network

What is that for?

- In order to build a domain model.

MODEL

- Classification, Prediction, Clustering, Explanation,

What is the ML for?

- In order to build a domain model.

MODEL

- Classifier, Predictor, Describer

“Machine Learning” creates a model from a set of data instances
(e.g., observed data, experience data)

Model Creation

- **Knowledge-based approach**
 - Never seen cats or dogs.
 - Somebody gave you the explicit knowledge of what a cat or a dog is.
 - You have the knowledge-based model to be used for classification or prediction.

- **Data-driven Approach**
 - Never been told about the cat or dog concept.
 - You’ve seen lots of cases of cats and dogs.
 - You have an implicit concept model to be used for classification or prediction.
 - Can you explain the concept in explicit format?

Example: A Domain of “Dog and Cat”

Question: Is this a Cat or a Dog?

To answer this question, we use a so-called “Concept Model (or Concept Knowledge)” built in our brains. We have the “concept model” on a CAT and a DOG already built in our brain. Why can’t we answer the question?
“Machine Learning” creates a model from a set of data instances (e.g., observed data, experience data).

A Huge Number of Instances
- An instance is just one observed example.
- An instance includes:
 - Input attributes (or features) with values
 - Output attribute with a class

A Model
- A model is a concise and generalized form representing the whole domain instances.
- We can use the model to:
 - Classify or predict a new instance in the future
 - Understand the structure of domain information

Examples of a Model:
- An equation
- A set of simple rules
- A decision tree

Definition of Machine Learning

- **“Machine Learning is the study of computer programs that improve automatically through experience”**

- **ML Algorithms:**
 - Decision Tree, Neural Networks, HMM, Support Vector Machine, etc.

Learn What?

- Class membership
 – eg. Globins
- Classification hierarchy
 – eg. Folds, super-families, families
- Sequence prediction
 – eg. Repeating secondary structure
- Shape descriptions
 – eg. Binding site descriptions
- Temporal models
 – eg. Models of cell activity, pathways, etc.

Training and Testing

- Domain Dataset
- Training set
 - To Build a model
- Testing set
 - To Test model performance

N-fold Cross-Validation

- Use (N-1) subsets for training and 1 subset for testing.
- Repeat it N times with different testing subset and Average them.
- General rule for the N:
 - 10-fold when number of examples, 30≤n<200
 - Leave-one-out when number of examples, n<30
Training Dataset

- should be domain-representative
- should be class-balanced
- Noise-free

Performance Evaluation

- Accuracy = (TN+TP)/(TP+TN+FP+FN)
- Specificity = TN/(TN+FP)
- Sensitivity = TP/(TP+FN)
- Positive Predictive Value = TP/(TP+FP)
- Negative Predictive Value = TN/(TN+FN)
- Correlation Coefficient = (TP*TN – FP*FN)/SQRT((TP+FP)*(FP+TN)*(TN+FN)*(FN+TP))

Evaluation Measures

- Sensitivity
 - The proportion of all true positive patterns that are correctly identified
- Specificity
 - The percentage of all true negative patterns that are correctly identified
- Positive (or Negative) Predictive Value
 - The probability that a predicted true (or negative) pattern is indeed a true (or negative) pattern
- Correlation coefficient
 - Its value of 1 and -1 correspond to a perfect and a completely wrong prediction, respectively.

Hybrid

- How do we (i.e., our brain) learn?
 - Knowledge-based?
 - Data-driven?
 - Or Both? Incorporated?

Knowledge

- In explicit form
 - Description/Understanding what has been learned
 - Improves learning efficiency

Cognitive concept

- In implicit form
 - Knowledge

- Increases learning efficiency