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1.1 Introduction
Neighbor selection is a non-trivial problem faced in the design of opportunistic net-
works. Consider any opportunistic networking applications ranging from social dis-
covery to P2P mobile games to DTNs and MANETs, almost all of the applications
require neighbor discovery followed by some kind of neighbor selection. A DTN
application may select a neighbor that has higher chances ofrelaying the message
to the destination or a P2P mobile gaming application may select neighbor based on
duration of past encounters. However, due to diversity of requirements, we argue that
there is no one optimal method of selecting neighbors for allapplications.

Selecting a subset of neighbors from all the available neighbors becomes chal-
lenging in the case of opportunistic network because 1. Neighbor selection is appli-
cation dependent, 2. Identities of all the neighbors may notbe known, 3. Users may
not be comfortable communicating with unknown neighbors, 4. Without incentives,
neighbors may not be willing to participate (mobile device are constrained for power
& processing), 5. Not all neighbors may meet the requirementof the application, and
6. Some neighbors may have malicious intent.

At the same time, there are several unique characteristics of opportunistic net-
works that provide arsenal to tackle many of the above challenges such as 1. Physical
proximity that enables easier verification of identity (onecan have face-to-face meet-
ings and also exchange out-of-band cryptographic keys), 2.Tight coupling of mobile
devices and users can allow customization of selection based on user needs, and 3.
Availability of location and other contextual information(e.g. mode of transport, im-
portance of location) can give valuable insights when making neighbor selection.
Face-to-face meeting, verification of user profile, and setup of out-of-band keys are
comparatively low cost operations for neighbors in radio range as they are in physical
proximity (for e.g. Bluetooth 4.0 range is< 50m) when compared to wired networks.

Utilizing the above mentioned characteristics, we providea brief overview of
studies in the areas of encounter based neighbor and social discovery, context aware-
ness and recommendation (and reputation) systems for opportunistic network estab-



Encounter-based Opportunistic Social Discovery in MobileNetworks � 7

lishment. Furthermore, we present detailed discussion of the design and analysis of a
new encounter-based framework,ConnectEnc(Connections based on Encounters) as
a solution to the problem of neighbor selection. The framework is fully distributed,
self-bootstrapping, privacy preserving, and integrates attack resilience mechanisms.
This framework utilizes mobile encounters as a primitive toaddress the problem of
neighbor selection. A mobile encounter signifies the detection of radio signals (Wi-
Fi, Bluetooth, etc.) from another device (current neighbor). The use of short range
radios (e.g., Bluetooth, Wi-Fi) enables detection and utilization of proximity and en-
counters. Furthermore, the tight coupling between users and mobile devices enables
new and accurate ways to establish behavioral profiles that can be used to fine-tune
the neighbor selections based on application requirements; e.g., by selecting say only
the users encountered at multiple locations. Along with this encounter framework, we
also promote the face-to-face interaction between peer to peer users that allows au-
thentication peer identity and establishment of out-of-band encryption keys [14] that
can be later used to establish secure P2P/opportunistic communication channel.

At the core ofConnectEnc, we use encounter rating metrics calledEncounter
Filters. TheseEncounter Filtersanalyze mobile encounters, proximity, location,
and context data in novel ways, to augment the users (and application’s) net-
work/neighbor view and awareness. Its goal is to rate opportunities in terms of neigh-
bors selections based on weighted filter scores that are coupled with the users input
and application requirements. We investigate and detail five different algorithms ap-
plied to filter the encountered devices.

It is the fusion and integration of these multi-dimensionaldata, that provides the
promise in selecting better neighbors in opportunistic networking in ways we could
not before, and in ways that are not possible in wired networks due to lack of con-
nectivity proximity. An opportunistic network application can now state its neigh-
bor/peer selection criteria to the ‘ConnectEnc’ framework(such as neighbor with
highest probability of meeting again or a neighbor who met ata particular location
before, etc). The ‘ConnectEnc’ framework, based onEncounter Filterscan provide
the most suitable candidate(s) out of all the current neighbors.

This study introduces a systematic framework and new protocol for gathering and
processing the encounter information to build encounter-based profiles of the neigh-
bors. Evaluation of the ‘ConnectEnc’ framework and mobile application is a three-
phase process: 1. real world mobile networks trace statistical analysis, 2. extensive
trace-driven simulation of the framework components, and 3. prototype implementa-
tion and participatory testing on smartphones. First, we use wireless network traces
from 3 different major university campuses spanning 9 months with over 70K users
and 150 million encounters. We find that several filters possess desirable stability
characteristics, and that selecting neighbors with high encounter scores in general
forms a small world. Resilience to attacks (neighbors attempting to inflate encounter
statistics), using anomaly detection, achieves less than 10% false positives and 7%
false negatives. Second, we measure the effectiveness ofConnectEncon epidemic
routing in DTN with selfishness using neighbor recommendation by ConnectEnc
and obtain higher network performance reducing the effectsof selfishness. Third, we
conduct a series of surveys and participatory experiments usingConnectEnc’s mobile
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application to evaluate the performance of the framework against the ground truth.
We find users’ selection of trustworthy peers/neighbors (for opportunistic commu-
nication) has a statistically strong correlation withConnectEnc’s recommendations.
Further,ConnectEncfilters can capture 80% of the already known user within top
25% of the encountered users.

Key contributions of this work include: 1. introducing a framework to augment
mobile user’s perception and awareness of the network neighborhood by fusing
multi-dimensional encounter and contextual data for better neighbor selection, 2. an-
alyzing various trust adviser filters with extensive network traces, 3. propose a model
for anomaly or attacker detection, 4. developing a mobile app ‘ConnectEnc’ that in-
tegrates the filters and contextual information to aid user in neighbor classification &
selection, and 4. deployedConnectEncas a proof-of-concept mobile application to
evaluate the framework based on ground truth via participatory testing.

1.2 Overview

This overview is organized into 4 different subsections, each corresponds to a step
involved in establishing short-range-radio based mobile P2P networks. These 4 steps
are i. Neighbor Discovery: here information for all the available devices is obtained,
ii. Neighbor Selection: here a subset of all the available devices is selected, iii. Con-
nection Establishment: after selection, peers exchange/negotiate connection parame-
ters based on security and authentication, and iv. Applications: here we list some of
the popular P2P applications.

1.2.1 Neighbor Discovery

In any P2P scenario, if the peers have unpredictable behavior (availability) in either
space or time, there will be a need to discover peers that are currently available for
interactions. Most of the popular P2P applications whethercommunicating over In-
ternet or via Adhoc radio network employ some kind of P2P discovery mechanism.
There are primarily two ways to discover i. using a central infrastructure (torrents)
and ii. adhoc (sensor networks, DTNs). For opportunistic networking, the latter is
more commonly utilized. To discover other peers, generallypeers send out a discov-
ery radio beacon to solicit response from all the neighboring peers. Several popu-
lar radio protocols such as Bluetooth and Wifi-Direct natively support this kind of
discovery. Since a peer may be continuously moving (surrounding peers may also
move), searching for available peers can be an expensive process in terms of energy
consumption. Several energy efficient methods have been proposed (including one by
the authors of this chapter) [35, 20]. There is also a research direction where based on
the previous discovery patterns of a peer, predictions are made about future discovery
of that peer [30]. Researchers find that human movement pattern is predictable at a
coarse granularity based on that peer discoveries can also be predicted.
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1.2.2 Neighbor Selection

Once a set of neighbors is discovered, there may be a need to select a subset of
neighbors based on the requirements of the application. This step may be necessary
when an application does not want to interact with all the available peers. The DTN
routing application such as epidemic routing [34] may interact with all the available
peers, however, several other DTN routing protocols such as[21, 26, 16, 36] may
require selecting peers based on their encounter history. The main focus is on opti-
mum end to end routing and less on one hop (next-hop) node selection. They may
not be privacy preserving or may not provide stable recommendation and are not eas-
ily configurable to the needs of an application. Similarly, agaming application may
want to select peers who may be encountered again to finish offthe game. Unlike
neighbor discovery, there is no one way to select a peer. Different applications have
different criteria.

The idea of neighbor selection in P2P networks has been well explored in wired
networks where neighbors are selected based on the geographic proximity, latency,
bandwidth available, etc. [27]. These ideas, however, do not hold when a mobile
application wants to leverage a P2P based direct radio connection. Mobile P2P net-
works face greater set of challenges since the peers are mobile and there is a high
possibility of peers moving out of radio range. There exist several DTN routing pro-
tocols that employ node selection algorithms [21, 26, 16] but focus mainly on opti-
mum end to end routing and thus focus is less on one hop node selection. They may
not be privacy preserving or may not provide stable recommendation and are not
easily configurable to the needs of an application. The lack of any optimized one hop
P2P neighbor selection is also a challenge for P2P mobile application development
community [6]. There are several P2P applications available [5, 33, 4] but without
any automatic strategy for peer selection, it is left out forthe user to decide. But how
will a user decide?ConnectEncattempts to solve this problem by providing back-
ground information about the peers to make an informed selection. To best of our
knowledge, there is no existing solution to this problem. Later in this chapter we pro-
pose, as a solution to this neighbor selection problem, a multi-criteria neighboring
peer selection framework,ConnectEnc.

Several researchers have proposed novel approaches in peerselection using rep-
utation based schemes, incentive based schemes, and game theory. The reputation
based schemes target better peer selection based on previous interaction records by
rating interactions with each peer. In [11], a node detects misbehavior locally by ob-
servation and use of second-hand information. In [10], a fully distributed reputation
system is proposed that can cope with false information, where each node maintains
a reputation rating for peers. In [31, 9, 15, 8], analysis of rewards provisions and
punishment is conducted based on game theoretic approachesto provide incentives
for message delivery. In [13], authors propose a game-theoretic model to discourage
selfish behavior and stimulate cooperation by leveraging Nash equilibria with so-
cially optimal behavior. In [38], authors propose a pricingmechanism to give credits
to nodes that participate in the message forwarding mechanism. The cooperation is
developed based on the number of messages transfered by the users.
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A common theme in these works is the reliance on peerinteractionto evolve the
reputation/credit scores. Inherently, this creates an undesirablecircular dependence,
where interaction requires technology adoption (reputation/credit system), which -
in turn - requires trust in specific instances of these systems. Hence, there is a com-
pelling need for abootstrapmechanism, which we directly address in our proposed
design. Further, unlike other studies, we do utilize encounter context in this paper.
Our work contributes towards solving this challenge by providing inputs from user’s
location preferences and contextual (e.g., social) behavior.

1.2.3 Connection Establishment

Once a neighbor is selected, the next thing to do is to establish a connection with
the neighbor to enable data/information exchange. The connection establishment in-
volves several challenges mostly from the security and privacy standpoint. Chal-
lenges such establishing secure connection between the nodes and identifying a peer
when meeting again are some of the bigger challenges faced bymobile P2P connec-
tion establishment. Authors of [25, 14, 28] propose explicit authentication mecha-
nism to generate trust and cooperation in network. These approaches are better mod-
eled for small groups [25] and require exchange of public keys and the installation of
the private key on the users device [14]. Another step to secure a connection can be to
meet the peer/neighbor face-to-face (since radio-range ofmobile devices is limited,
peers must be co-located physically), verify the peer and can also setup out-of-band
encryption keys. The out-of-band encryptions keys can be setup by the peers simply
by exchanging a secret code word when meeting face-to-face or can also achieve
cryptographic strength by using [14].

1.2.4 Applications

Whether it is a DTN application or a mobile P2P application, once a connection is
established, these applications can start leveraging the established connection. A few
examples of existing P2P applications are P2P multiplayer mobile gaming [5], coop-
erative sensing [23], mobile proxy [4], social discovery [3], personal safety [33], and
Cellular offloading [19]. This generation of applications do not employ a neighbor
selection method, hence they are mainly human driven in terms of neighbor selection;
with very minimal or no automated sensing and selection of neighbors.

In the following sections we present our proposedConnectEncframework
that can automate neighbor selection process by providing automatic requirement-
specific neighbor selection. The framework provides novel ways to rate the neighbors
and integrates within itself existing peer-rating systemssuch as recommendation and
reputation systems. We begin with the rational for the design and then proceed to-
wards design principles. Following the design, we present details ofEncounter Fil-
ters, comprehensive analysis of the framework and a section on validation, along
with a summary ofConnectEncuser study.
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1.3 Rationale & Architecture
In this section, we present rational, design goals and high level design of theCon-
nectEncframework.

1.3.1 Rationale and Approach

P2P mobile application can be only used with peers who are in the radio range. In
cases where several peers may be around to participate in a P2P activity, which out
of those should be picked? For some application any set of peers would work but
many applications as mentioned earlier would require an informed selection based
on the requirements of the application. For e.g. which peer has higher chance of
encountering again or of a longer encounter session. Also users may not want to
interact with randomly selected peers (Sec. 1.6.1).

Looking at this problem from a user’s perspective, who will be the peers this user
may meet again? (or other longer duration, etc) These will bethe peers who are sim-
ilar to user in their behavior (being at the same place and thesame time). In social
science this is known as principle of Homophily [29]. Homophily can be measured is
several different ways and using encounter history we can measure spatio-temporal
homophily. We propose severalEncounter Filtersto measure spatio-temporal ho-
mophily. For greater trust and reliability (optional) on a peer, a user can meet this
peer face-to-face. This is easier in mobile P2P network as the peers are in physical
proximity and some peers may already be socially known (although we do not make
any such assumptions). Face-to-face meeting can be utilized to verify the authentic-
ity of peer’s claim and can be used to set up out-of-band encryption keys [14, 25].
If these keys are stored withConnectEncthen other applications can use this key to
securely communicate with the specific peer.

1.3.2 Design Goals

The main design goals forConnectEncinclude:

1. Balanced Discovery:In our peer selection (and discovery) framework, identi-
fying peers known to the user (i.e., a perfect matches) is notalways our goal. Instead,
we aim to provide the user with a balance between acquaintances and new matches as
a more useful and realistic measure. We achieve this by generating encounter scores
over several filters and allowing application-specific peerselection.

2. Stability: The peer recommendation should be stable over time and insensi-
tive to minor, temporary changes and noise in user behavior.Outliers and anomalies
should be detected and removed.

3. Distributed Operation: ConnectEncshould be able to provide all the func-
tionalities in a distributed fashion without the need for a centralized infrastructure
or trusted third party. All operations should be performed locally on the users de-
vice. Not sharing of user information should be required by the system for privacy
preservation.
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Figure 1.1: Block Diagram overview of theConnectEnc architecture. Dotted lines
enclose the modules ofConnectEnc (Orange colored blocks). Green colored blocks
(1, 2 & 12) illustrates the blocks that interact with other applications and user of the
device. White colored blocks (5, 8 & 9) illustrate the integration of external systems
with ConnectEnc.

Other goals include: resilience (against attacks), power efficiency, and flexibility
to utilize external sources (reputation & recommendation).

1.3.3 Overall Design

An architectural overview of theConnectEncframework and its related subsystems
is provided in Fig. 1.1. Overall there are 3 categories of blocks: 1. Orange colored
blocks (3, 4, 6, 7, 10 & 11) indicating the core components ofConnectEnc, 2. Green
colored blocks (1, 2 & 12) indicating the modules that interact with the applications
and users, and 3. White colored blocks (5, 8 & 9) indicate examples of external
systems that can be integrated withConnectEnc.

All the core components ofConnectEncare fundamental to the design of the
framework. These modules are required to meet the design goals. The basic function-
ality of each of the modules is as follows; TheShort Range Radio Scanningmodule
provides basic encounter information (for e.g., Bluetooth, WiFi AP discovery). The
Location Informationmodule provides the device’s positioning data. This data isnow
received byEncounter FiltersandAnomaly Detectionmodules. TheEncounter Fil-
ters is the block that generates encounter scores using a family of filters (described
in the next section). TheAnomaly Detectionprovides a recommendation regarding
suspicious encounter activities. TheUnified Score Generationmodule combines the
output ofEncounter Filterswith the output fromanomaly detection, recommenda-
tion system, reputation system, andblack and white listsusing the weights provided
by theWeight Generator. TheWeight Generatorprovides weights that decide how
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much importance is to be given to the different inputs toUnified Score Generation.
The selection of weights is done based on the requirements given by the application.

The green colored blocks in Fig. 1.1 indicates how applications and user can
interact with theConnectEncframework. We perceive the applications will interact
with ConnectEncframework by first setting up the requirements by specifyingeither
relatively or absolutely the importance (weight) of each input considered by theUni-
fied Score Generation. Once the weights are selected,ConnectEncwill generate a
ranked ordered list of the encountered peers (Block 1) in theneighborhood. Once the
application finishes the transactions with the neighboringdevices, it provides (op-
tional) feedback about the experience with the users. This feedback is feed into the
Reputationblock.

The white colored blocks are optional and external components of the Con-
nectEncframework. These modules can enrich the peer selection process but are
not required. Any existing systems providing necessary functionality can easily be
integrated with this framework. The ‘Reputation’ block receives peer feedback from
applications based on application’s experience with this peer device. The ‘Recom-
mendation’ block runs an external recommendation service and provides input to the
framework. The ‘White/Black List’ allows users to explicitly give score to a device.
This can empower user to add peers without even encounteringthem.

With this conceptual understanding of the system, we now describe the heart of
ConnectEncframework,Encounter Filters.

1.4 Encounter Filters
Encounter Filtersrate encounters in multiple dimensions so that applications and
users can make a selections based on rich set of choices. Due to lack of space we are
going to discuss and analyze 5 major filters, however, the design of ConnectEncis
modular and can easily integrate more filters (if needed). The filters we propose and
investigate are based on:i. Simple encounter (frequency and duration) ranking and
ii. Spatial Correspondence.

1.4.1 Simple Encounter Ranking

These filters rate encounters by aggregating the encounter data using simple statistics.
They are:

Frequency of Encounters (FE): ranks encountered devices based on total num-
ber of encounters over a window of history, regardless of theduration. So if a peerA
is encountered more number of times than peerB, peerA will get a higher rank than
B. For an encounter session (continuous uninterrupted encounters) FE score for the
peer is increased only once by one. This filter score can be useful for applications
when they have to decide between peers based on the chances ofmeeting again.
Simply put higher FE score means higher chances of meeting.

Duration of Encounters (DE): ranks encountered devices based on the duration
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of encounters. Encounter duration can be measured in two ways: i. total duration of
encounters, ii. average session duration per encounter. Anapplication using this met-
rics to decide between peers will find that higher DE score would mean that peer may
have higher chances of having longer duration encounter session. Through our trace
based analysis we find that both measures of DE have a statistically strong correla-
tion with each other. Since, the first measure requires less storage and computation,
we choose its score to represent DE score.

1.4.2 Spatial Correspondence

Spatial Correspondence based measures rate encounters on similar location visita-
tions patterns. Higher spatial correspondence means that the peer is very similar in
visiting locations as the user herself. Selecting a user with higher spatial correspon-
dence means selecting a user who may be encountered more at locations preferred by
the user. Spatial Correspondence can be measure in multipleways, we present some
of those techniques below.

Profile Vector (PV): To capture spatial correspondence, we have designed PV
filter that stores location visitations of a user in a single dimensional vector. It is
assumed for this filter that a device has some localization capability, which is quite
common for today’s devices. Each device maintains a vector.The columns of the
vectors represent the different locations visited by a userand the values stored in
each cell indicate either duration or count of the sessions at that particular location.
At each location visit, the vector is updated with respect tothe location.

To get encounter score, this vector is exchanged with other user and the inner
product of the two vectors is computed. This score is higher if the two PVs are
similar and can be zero, if the users do not have any visited location in common.
Here, implicit weight is given to locations based on the count/duration spend. We
can also provide an option to the user, where locations can have explicit weights.

However, this filter is not privacy preserving and can introduce attacks in the
system, where a peer can tamper with its vector, also there are communication costs
involved in exchanging the vectors. This problem in solved by LV filters at cost of
having lesser information to compute similarity scores with.

Location Vector (LV): LV filter is very similar toPV, except that a user not only
maintains a vector for itself but also for each encountered peer. The columns of the
vectors represent the different locations visited by a userand the values stored in each
cell indicate either duration (LV-D) or count (LV-C) of the sessions at that particular
location. For every encounter, the vector for the encountering peer is updated with
respect to the encounter location. Illustration in Fig. 1.2.

Since vectors for all the encountering peer are maintained locally on the device,
LV requires no exchange of vectors among users for calculating similarity. This is
more privacy-preserving and more resilient to attacks since only first-hand informa-
tion is used (equivalent to what user might have observed). This privacy comes at
the cost of requiring extra storage space for storing vectors for each user. Consid-
erable storage optimization is achieved by storing (for each encountering user) only
the locations where encounters happened. Similarity calculations are similar to PV.
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Figure 1.2: Location Vector LV for a user

Behavior Matrix ( BM): The behavior matrix captures a spatio-temporal repre-
sentation of user behavior. Columns of the behavior matrix denote locations and rows
represent time units (days in our case). The value stored at each cell is a fraction of
the on-line time spent by the user at a particular location ona particular day (see
Fig. 1.3). Each user maintains their own matrix. To get the correspondence score,
users can exchange and compare the two matrices.

To make the behavior similarity check efficient (in terms of space and compu-
tation complexity) and privacy preserving (as only the summary of matrix is ex-
changed), we use the eigen values of the behavior matrix for exchange between the
two users. The eigenvalues are generated using SVD (Singular Value Decomposi-
tion). SVD is applied to a behavior matrixM, such that:

M =U ·Σ ·VT
, (1.1)

where a set ofeigen-behaviorvectors,v1,v2, ...,vrank(M) that summarize the impor-
tant trends in the original matrixM can be obtained from matrixV, with their corre-
sponding weights,wv1,wv2, ...,wvrank(V)

calculated from the eigen-values in the matrix
Σ. This set of vectors is referred to as thebehavioral profileof the particular user,
denoted asBP(M), as they summarize the important trends in userM’s behavioral
pattern. Thebehavioral similaritymetric between two users’ association matrices
A andB is defined based on theirbehavioral profiles, vectorsai ’s andb j ’s and the
corresponding weights, as follows:

Sim(BP(A),BP(B)) =
rank(A)∑

i=1

rank(B)∑

j=1

wai wbj |ai ·b j | (1.2)

which is essentially the weighted cosine inner product between the two sets ofeigen-
behaviorvectors.

BM, like PV, is not privacy preserving, but can provide better spatio-temporal
similarity calculations. Due to its privacy preservation,in the following sections, we
have only used LV filter for spatial correspondence.

1.4.3 Hybrid Filter ( HF)
Each filter provides a different perspective on an encounteror behavioral aspect. The
hybrid filter provides a systematic and flexible mechanism tocombine the scores



16 � Book title goes here

Figure 1.3: Behavior Matrix for a user

from all filters and present a unified score to the users. The selection of weights
for various filters would depend on several factors including user’s preference and
feedback (check Sec. 1.6.1) and application requirements.A generic Hybrid Filter
score (H) for a userU j can be generated by using the following:

H(U j ) =
n∑

i

αiFi(U j) (1.3)

whereFi(U j) is the normalized score for userU j according to filteri. Theαi is the
weight given to filter scoreFi andn is the total number of filters used. We selectαi

such that
∑

αi = 1, and 0≤ αi ≤ 1.

This linear combination is chosen for its simplicity1. Our implementation allows
users to customize these weights. From the analysis of user feedback (Sec. 1.6.2), we
find that not all the users prefer same weights.

The processing and storage overheads for all the filters are shown in Tab. 1.1.

1.4.4 Decay of Filter Scores

Users may have a change in lifestyle (e.g. move to a differentcity, switch jobs) and
may not very often encounter some of the previously highly rated peers. So, there
may be a need to decay the score of peers, if they have not been encountered in
a while. To design the decay of encounter scores, we borrow from social science
studies that have shown that social relationship are dynamic and require frequent in-
teractions to prevent decay. The strength of relationship wanes with the increase in
time between interactions. This decay follows a exponential decay pattern with half
time dependent on the relationship type [12] (3.5 years for family, 6 months for col-
leagues). We use a similar function to decay the filter scoreswith a user configurable
half-time with 6 months set as default.

1Other non-linear combinations shall be investigated in future work.
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Filter Processing Overhead Storage Overhead
FE O(m) O(n)
DE O(m) O(n)
PV O(m) O(l)
LV O(m) O(nl)
BM O(m) O(ld2) for SVD
HF O(n) O(n)

Table 1.1: Overhead of Filters in terms of processing and storage. Herem is the total
no. of records in the encounter file,n is the no. of unique encountered user,l is no.
of locations visitedd represents the no. of days used for BM calculations. We also
assume thatm>> n.

1.5 Trace Based Analysis
To evaluate our design of Encounter Filters, we consider anonymzied trace sets from
three universities (see Tab. 1.2; the information providedin the traces is anonymized;
name of University U1 is also anonymized). The advantage of using WLAN traces
is that they are much closer to reality in terms of user mobility (also representative
of a larger population) than the existing synthetic mobility models. However, due
to lack of ground truth in WLAN traces, we also collected traces with ground truth
by deployment ofConnectEnc2. The results from the deployment are discussed after
this section. The WLAN traces, much like other real traces, have small percentage of
noise and error. We assume that users associating to same wireless Access Point (AP)
encounter each other as AP range is generally less than 50 meters indoors and most
of the traces are from indoor usage. It is assumed that each unique device (identified
by MAC address) represents a user.

We use the WLAN traces to generate Encounter Filter score foreach user found
in the trace. The WLAN trace is converted to encounter trace for each user by deter-
mining all the other users who had overlapping sessions withthis user at the same
AP (location). Encounter Filters take this encounter traceas an input and produce a
ranked list by encounter score. For analysis, we pick topT% peers of a user from the
ranked list. We investigate three properties of the filters:1. Correlation among filter,
2. Stability, and 3. Small world characteristics.

1.5.1 Filter Correlation

We examine the degree of similarity (correlation) among scores from different fil-
ters. While high similarity indicates redundancy of the filters, low similarity implies
orthogonality of the recommendations. For this investigation, we have considered 9

2MIT Reality Mining [17] traces have ground truth in terms of survey data. However, the average num-
ber friends per person is close to 1 (including several userswho have listed themselves as their friends).
Therefore, this trace set cannot be meaningfully used for evaluations.
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Trace Source U1 USC [22] Dartmouth [1]
Time/duration of trace Fall 2007 Spring 2007 Fall 2005

Start/End time 09/01/07-11/30/07 01/01/07-03/30/07 09/01/05-11/30/05
Unique Locations 845 APs 137 buildings 133 APs

Unique MACs analyzed 34694 32084 4906

Table 1.2: Facts about studied traces
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Figure 1.4: Correlation between the encounter lists produced by various filters at
threshold, T=40%
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Figure 1.5: Comparison of encounter score list belonging todifferent history for
various filters at T=40% (note that the y-axis scale forDE starts at 85% and for
LV −D and BM the scale starts at 35% ).
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Figure 1.6: Average unreachability with varying encounterscore threshold -T and
selfishness -S using DE filter
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week long traces and threshold the score list atT = 40% for varying length (at 1
week interval) of encounter history (results for otherT values show similar trend).

As Fig. 1.4 shows, the trends are similar across the traces.LV −D andLV −C
filter results show∼70% similarity as the list stabilize around 9 weeks of history.
FE v.s.DE stabilize around 60% to 70%. Rest of the filters stabilize between 55%
to 30%, meaning they produce different sets of lists. The lowsimilarity indicates that
filters are not redundant and can be used to generate rich set of recommendations.

1.5.2 Filter Stability
When an application requests node recommendation, giving the criterion for selec-
tion, it may want to know if this recommendation will hold true in future. For e.g.
will a peer who had frequent encounters in the past, maintains a similar trend in
future (user is assumed to maintain same lifestyle). Basically, areConnectEnc’s rec-
ommendations stable in time? Moreover instability can confuse users and reduce the
effectiveness of in-application cache. Therefore, it is imperative to examine stability
in the peer recommendation over time. We investigate the stability of the peer lists at
T = 40% using 9 weeks of U1 traces (otherT values and traces show similar trend).
Peer lists from multiple trace lengths are used to examine stability.

More than 90% similarity is found between 1 and 9 weeks trace for DE, FE and
LV-C filters (see Fig. 1.5), implying that users selected in 1st week of encounter
continued to be in the peer recommendation list of 9 week longencounter history.
BM filter shows high stability when the difference in historyis less than 2 weeks
( 80%) and falls to 55% for 1 week and 9 weeks. The LV-D filter shows similarity
of about 40% between any list, implying that every week the list changes by 60%.
This indicates that users may encounter regularly (by stability in LV-C) but may
spend different amount of time encountering over the weeks.Overall, we note that
some filters (DE, FE, and LV-C) stabilize in just 1 week of history, which makes
them suitable for recommendations when encounter history is short. The time interval
between the recommendation list regeneration can also be long (reducing processing
requirements).

1.5.3 Graph Analysis
We analyzed the effect of peer recommendations on the network graph and compared
it with the regular and random graphs while increasing selection threshold (T)(using
DE filter, other filters show similar results). An edge is added between a pair of
nodes only when atleast one of them is peer recommended by each other (un-directed
graph). We note that clustering coefficient (CC) [7] of the network increases withT%
and the path length (PL) decreases with increase inT%. For e.g., using 9 week U1
trace, CC is 0.171 atT = 10% and becomes 0.201 atT = 100%. However, in the
same scenario Path Length decreases from 3.64 to 2.59. More than 99% of the nodes
were connected even atT = 10%.

A small world analysis is performed as described in [7]. We find that normalized
CC (NCC) is close to CC of regular graph and the normalized PL (NPL) is close to
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Figure 1.7: Normalized Clustering Coefficient and Path Length

PL of the random graph (Fig. 1.7 shows NCC and NPL for different lengths of traces
and values ofT). It appears that network created by peer recommendations is a small
world network (results for other traces are similar).

1.6 Implementation & Simulation
In this section we show our validation of three major questions regarding the de-
sign of ConnectEnc: i. Do people prefer connecting with peers they already have
some information on, ii. IsConnectEncable to discover peers that users may want to
connect to?, and iii. CanConnectEncrecommendations be useful in a P2P commu-
nication scenario? First point is to check the premise of ourassumption that a user
may have preferences in selecting a peer that in a way can affect how application se-
lect neighbors (user may add constraints such as I only want to play this game when
there are higher chances of finishing this game later). We tackle this question with a
survey. The second point is to validate that if users prefer selecting peers who have
higher encounter score, isConnectEncable to discover them? We perform a user
study usingConnectEncmobile application to address this question. For the third
point, we take DTN routing as our P2P application. We show, with the help of large-
scale trace-driven simulations thatConnectEncrecommendations can lead to better
routing in DTN networks having selfish nodes.

1.6.1 Survey

To investigate whether people prefer connecting with peersthey already have some
information on, we conducted a survey at a major computer network conference, this
population has good understanding of computer networks. Participants were asked
to indicate their willingness to communicate (using P2P applications) under different
scenarios on a scale of 1 to 10. We received 32 usable responses. As Fig. 1.8 shows,
willingness of the users to cooperate with unknown user/device is low (mean is 2.31).
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Figure 1.8: Survey Results showing user’s propensity to communicate with other
users in various communication scenarios

However, willingness increases when users have knowledge about the encounter his-
tory. This reinforces the approach ofConnectEncof using encounters to make peer
selection. We also observe that users give more importance to combined scores (FE
andDE score are high) than individual scores (FE is high orDE is high). This jus-
tifies ConnectEnc’s use of Hybrid Filter for combining encounter scores. Standard
deviations in results suggest that although most users wantinformation about en-
countered users before cooperating, the individual importance of the filters may vary.
This flexibility is made available inConnectEnc’s Hybrid Filter (more generically by
Unified Score Generation) by assigning weights according touser’s preference.

1.6.2 ConnectEnc Application

To investigate whetherConnectEncis able to discover peers that users may want to
connect to, we developed aConnectEncmobile application and conducted a user
study. The application measures the mobile encounters (over Bluetooth radio) and
rates the peer devices based on the score ofEncounter Filters. The application allows
user to mark a device as trusted if they would like to have any P2P communication
with that device in the future. We collect this selection data and correlate the user
selections withConnectEncrecommendations (based on encounter score) to validate
our approach.

Currently,ConnectEncis available for Android platform and Linux based Nokia
Tablet N810 [2]. It provides the ability to rate encounter users based on FE, DE,
LV and Hybrid filters. Encountered users can be sorted by any filter and weights
for the Hybrid filters are user configurable. If some of the encountered users are
currently discoverable, their listing would have a green circular mark as shown in
Fig. 1.9A. The application provides inbuilt facilities forscanning Bluetooth devices
and Wireless Access Points (for localization as GPS is energy-wise expensive. User
can select GPS, if needed). On selecting a particular user, encounter details (Fig. 1.9B
are presented and clicking on the map option one can see encounter locations on
map (Fig. 1.9C). Apart from the filter scores, other statistics such as distribution
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A B C

Figure 1.9: Selected screenshots ofConnectEnc application (earlier it was named
iTrust). Fig. A. shows the main screen where encounter usersare sorted by the filter
score (Names and MAC are blurred intentionally). Current encounters marked with
Green circles. Marked known users are shown in Blue color. Fig. B. shows details for
an encountered user. Fig. C. shows user encounters on Map. Red colored annotation
is added to show the application flow

of encounters with a peer over time are also available. Encountering devices can
be rated for trust (P2P communication oriented) by the user on the scale from -
2 (no Trust) to 2 (high Trust). This application is also capable of providing peer
selection information to other applications. This application can also be used a social
discovery application, where it can alert user about neighboring peer devices and
give context by showing history and location of past encounters. We note that use of
ConnectEncdoes not affect privacy of the users.ConnectEnconly stores information
on discoverable Bluetooth devices. Any Bluetooth capable device can capture the
same information thatConnectEnccaptures.

Application Evaluation: 22 students (grad and undergrad) from CS major ran
ConnectEncapp for atleast a month. Users were asked to mark devices theytrust
(for P2P communication) in the application. On average, thenumber of trusted peer
marked by each user is 15 and the number of unique devices encountered per user
is 175. We use this data to investigate if recommendation byEncounter Filterscor-
relates with trusted user identification. We note that not all encountered users who
may be trusted/non-trusted may have been marked and not all trusted users may have
discoverable Bluetooth. This issue will be of lesser concern as the adoption ofCon-
nectEncincreases.

We rated the performance ofConnectEncfor each of the 5 filters (including Hy-
brid Filter, referred as Combined Filter (CF) in the app, with equal weights) on 2
metrics, 1: number of trusted peers in range top 1 to 10, 11 to 20, etc ofConnectEnc
recommendations (also known as Precision metric in Information Retrieval litera-
ture) and 2. fraction of encounter peers needed (from top) tocapture ‘x’% of trusted
peers for each filter. The above metrics are chosen to measurehow well the filters
perform when compared to user’s selection. Here ranking is based on the filter score.

For metric 1, we note thatConnectEncis able give high ranks to trusted peers



Encounter-based Opportunistic Social Discovery in MobileNetworks � 25

1 to 10

11 to 20

21 to 30

31 to 40

41 to 50

51 to 60

61 to 70

71 to 80

80 to End

0

10

20

30

40

50

P
er

ce
nt

ag
e 

of
 K

no
w

n 
U

se
rs

Rank Ranges

 FE
 DE
 LVC
 LVD
 Hybrid

A.

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

45

P
er

ce
nt

ag
e 

of
 E

nc
ou

nt
er

ed
 u

se
r (

D
es

ce
nd

in
g 

Fi
lte

r s
co

re
)

Percentage of  Known Users Included

 FE
 DE
 LVC
 LVD
 Hybrid

B.

Figure 1.10: ConnectEnc evaluations based on application usage. Fig. A shows the
percentage of trusted users in 1 to 10 Top user, 11 to 20 Top users for each filter. Fig
B. shows fraction of encounter users needed (from top) to capture ‘x’% of trusted
users for each filter

(Fig. 1.10A.). On average, out of top 10 ranked peers recommended by FE, DE and
CF, 5 (50%) or more peers are marked trusted. We see that LV filter’s top 10 ranks
have 3 to 4 peers on average, however, if we consider top 20 peers, all filters capture
6-8 trusted peers (more than 50% of the total trusted peers).The number of trusted
peers in rest of the ranges continue to fall except in the lastrange as it contains all the
peers ranked beyond 80. For all the filters, there is a strong statistically significant
correlation between the score and the rank of trusted peers (e.g., for LVC, r=0.84, p
<0.01). Evaluations using metrics 2 shows that 80% of the trusted peers are captured
by top 25% of the encountering peers as ranked by the filters and their is a strong
statically significant correlation (Fig. 1.10B.). This shows users willingness to trust
others (for P2P communicaton) in a mobile network to statistically correlate with
recommendation given byConnectEnc. We also note that there are peers who have
high rank, yet they are not trusted. We believe, these can be the encountered peers,
who are very similar to the user and can provide new interaction opportunities to the
user and can be utilized by other mobile applications (including social networks).

Another finding from the deployment is that average storage requirement for
ConnectEncto store one month of data is 6.2MB including raw and processed data
(75MB per year). This implies that with the current availability of mobile devices
with multi GB storage capacity, ConnectEnc’s storage requirements can easily be
met. We have also used this deployment data to create an energy efficient encounter
scanner as explained below.

Energy Efficiency:Scanning of Bluetooth and WiFi devices consumes consider-
able power (since the scanning process is periodic). After receiving the traces (which
were scanned at 1 min interval), we noted that due to spatial locality in the traces,
we can skip the scanning rounds if we find the same devices again in the next round,
assuming that the user remains in the same location. The number of rounds we skip
is (2n−1), wheren is number of times same devices are found consecutively, with
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an upper threshold (MaxThres). If after a scan round, the devices change, we make
n= 0. We note that reducing scanning period increases the loss of encounter infor-
mation. Since we have the ground truth (traces scanned at 1 min), we can find out
the information lost using L1 norm on the distribution of AP (Wifi trace) and Blue-
tooth devices in both the cases. We note thatn= 2, gives us 64% saving in scanning,
yet the loss is of 6.5%(more in Tab. 1.6.2). Current version of ConnectEncapplica-
tion incorporates this energy efficient scan mode. We also foresee thatConnectEnc
framework can save considerable energy when multiple P2P application are running
by providing encounter information to all the application and thus preventing each
of those applications from running their own scanning process.

MaxThres Loss(W)% Saving(W)% Loss(B)% Saving(B)%
3 6.52 64.21 6.79 66.31
7 10.52 75.27 11.40 76.61
15 15.11 81.53 15.02 82.29

Table 1.3: Tradeoff between saving in terms of scans and lossof information, W and
B indicates Wifi and Bluetooth trace resp.

1.6.3 Simulation Evaluation

To test the utility ofConnectEncrecommendations on a larger scale, we use trace-
based simulation. The goal of this simulation is to investigate if ConnectEncrecom-
mendations can make a difference in routing messages over a Delay Tolerant Net-
work (DTN) with selfish nodes. DTNs are infrastructure-lessnetworks that work on
the cooperation among the nodes. Since nodes spend their resources in routing mes-
sages, the nodes may only route messages for nodes they know or when they have
some incentives (thus become selfish). Here we useConnectEncframework to help
a node decide from which of its peers to accept packets and route it further while
being selfishness to other peers. SinceConnectEncselects nodes that are similar in
terms of spatio-temporal similarity, several nodes havinghigh encounter score may
be already know to the user (Homophily [29]). Therefore routing messages for nodes
that have high encounter score may give the user social incentive [24].

Setup: To examine the effectiveness ofConnectEnc, we use epidemic routing
protocol [34]. Epidemic routing performs a controlled flooding and has been proved
to provide lower bound in performance in terms of hops, delayand unreachability.
These properties make it an appropriate tool for the purposeof our evaluations. We
use WLAN traces (converted into encounter trace) from 3 campuses for this simula-
tion.

Fig. 1.11 shows the flow chart forConnectEncrouting used by each node. When
a node receives a message from peer with encounter score above a thresholds (T), it
accepts the packet and attempts to route it. Otherwise, the node accepts the packet
based on factors such as user-configured selfishness. The selfishness is defined as the
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Figure 1.11: Flow chart for DTN routing usingConnectEnc ’s peer selection
probability (S) that a node will not accept and route packets for a peer who isbelow
a set encounter score threshold.

The performance of epidemic routing is measured using threemetrics: i. Un-
reachability - the number of nodes out of all receivers that could not be reached by a
given source,ii. Delay - the ratio of average time taken by a message to reach all the
possible receivers over the max possible delay, andiii. Overhead - average number of
hops a message took to reach all the possible receivers usingthe shortest path. Since
overhead and delay were seen to vary directly with unreachability, we have skipped
their results.

For the simulations, we use first 60 days of traces to create preliminary encounter
scores and run epidemic routing on traces for next 30 days. Encounter scores are
updated weekly during the run of epidemic routing (to mimic amobile device as
computing encounter scores after every encounter or daily would be resource in-
tensive for the device). Around 800 nodes are randomly selected as sources for the
epidemic routing.

Results: Intuitively, selfishness should cripple the connectivity in the network.
Fig. 1.6 shows that the network unreachability increases asS increases (andT = 0).
To the benefit of our scheme, we find that as social incentive inintroduced based
on the encounter scores in the network, the effect of selfishness is reduced. Here
we use encounter scores from DE filter (other filters show similar trend). For U1,
whenT = 0% andS= 0.9, unreachability increases by 83% from the case when
S= 0. However, increasing threshold toT = 40% (S= 0.8) unreachability remains
only 31% from the case whenS= 0. Likewise, for Dartmouth, whenT = 0 and
S= 0.9, unreachability increases by 40% from the case whenS= 0. However, in-
creasing threshold toT = 40% (S= 0.9) unreachability remains only 10% from the
case whenS= 0. For USC,T = 0 andS= 0.9 increases unreachability by 1.7% of
the case whenS= 0. However, increasing threshold toT = 40% (S= 0.9) brings
unreachability to only 0.48% from the case whenS= 0. The effect ofConnectEnc
peer recommendations is higher when selfishness is high, which makesConnectEnc
more suitable in networks with high selfishness. The effect of peer selection byCon-
nectEnc(or selfishness) is not significant in USC traces, which couldbe a result of
high unreachability in the network even atS= 0 (5 times of U1 or Dartmouth).

We now compare the performance of Hybrid Filters (using 5 different weight
combinations). The highest unreachability (worst performance) is produced by us-
ing only theBM filter score and the lowest by using theFE filter (Fig. 1.12). The
combination of filters at equal weights has unreachability close toFE filter. This
analysis shows that, that combination of filter scores can produce better results (an
also avoids user confusion) than using individual filters. Better performance ofFE
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Figure 1.12: Hybrid filter results when T=40%. Number on the legend indicated the
ratio of score from each filter. For e.g., 1211 impliesαDE = 0.2, αFE = 0.4, αLV−D =
0.2, and αBM = 0.2 and 0100 impliesαDE = 0, αFE = 1, αLV−D = 0, and αBM = 0
(Sec. 1.7.3)

over BM does not implies that we should not useBM but it implies that for this
particular applicationFE is a better Encounter Filter.

1.7 Other Modules
This section discusses the remaining modules as mentioned in the architecture dia-
gram (Fig. 1.1). These modules are not needed for basic functionality of ConnectEnc,
but can enhance its capabilities. These modules include Anomaly Detection, External
Inputs and Unified Score Generation. Due to unavailability of any suitable existing
anomaly detection system, we have designed our own. External Inputs and Unified
Score Generation are provided to give a high-level idea about the framework, how-
ever, more research in the future is needed.

1.7.1 Anomaly Detection

Incorporating resilience to attacks is a primary requirement for our design. Here,
the attack on theConnectEncsystem includes an attempt by a peer to gain encounter
score in a relatively short time by injecting many encounterevents (e.g., via stalking).
A growth of encounter scores in this fashion can be considered an anomaly (or an
attack), and a specialized anomaly detection system is needed to combat such attacks.
SinceConnectEncscores individual encountered peers, at present we consider single
attacker scenarios.

An attacker would want to get a high encounter score as soon aspossible to have
high returns for limited effort. The goal of the anomaly detection design would then
be to considerably raise the level of effort needed for a successful attack, to be no
less than genuine trusted nodes and friends, which may entail weeks of consistent
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encounters at trusted locations by the attacker. The spatio-temporal granularity of
the filters determines such attack effort and provides us with the anomaly we aim to
detect. Note that in our implementation,Unified Score Generationtakes input from
the anomaly detection unit. The role of anomaly detection would then be to raise a
red flag (and also lower the unified encounter score of a peer) on suspicion of attack.

Anomaly detection, theoretically, can be achieved using supervised or unsuper-
vised learning techniques. However, due to present lack of learning data (from real
attacks), we only consider unsupervised technique. Our anomaly detection investi-
gates the evolution of encounter patterns over time (without information exchange
between nodes). The anomaly detection mechanism considersthe growth slope of
encounter statistics (including scores generated by theEncounter Filters). The de-
tection system learns normal behavior over time, and incorporates deviations from
the normal to detect suspect nodes and trigger user alerts.

Based on the approach mentioned above, we have create and tested this anomaly
detection system with the help of trace-driven simulations(and by creating an at-
tacker’s model). The anomaly detection, we designed, is able to detect attackers with
less than 8% false positives and 6% false negatives. However, to due to lack of space,
we are skipping the details.

1.7.2 External Inputs
i. Recommendation & Reputation Systems:ConnectEncis designed to take inputs
from existing recommendation [32, 18] and reputation systems [10].ConnectEnccan
alsobootstrapa recommendation system, since recommendation system scores start
to evolve only after initial direct interaction. Recommendation systems can receive
peer recommendations from other peers. Reputation system can receive feedback
on peers from applications and utilize it to raise overall score of a peer who has
low encounter score but high reputation (or reduce the scorefor a peer with bad
reputation).

ii. Blacklist & Whitelist: User can use these lists to explicitly add and rate (in-
cluding not encountered) users. This functionality allowsaddition of infrequently
encountered yet known peers.

1.7.3 Unified Score Generation
ConnectEncneeds to provide easily understandable information to the application or
the user. Providing scores from independent modules separately may confuse the user
or complicate an application design. As a first step to simplify the output, we earlier
created a Hybrid Filter (HF), combining the Encounter Filter scores. A similar idea
can be used to combine the scores from all the modules discussed above and generate
a single encounter score for an encountered peer. The scorescan be combined using
the following:

U(Pj ,α,β ,δ ) = δH(Pj ,α)+ (1− δ )(
m∑

i=1

βiRi(Pj))) (1.4)
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whereU(Pj ,α ,β ,δ ) represents the unified encounter score for an encountered
peerPj , it is always between 0 (lowest) and 1 (highest).H(Pj) is the score from
Hybrid Filter.βi represent the weights for other normalized external inputs(Ri) such
as anomaly detection, recommendation system, reputation systems among others.
Here

∑m
i=1 βi = 1 and 0≤ βi ≤ 1. The factorδ decides the combination ratio of

Hybrid Filter and other external inputs.δ varies between 0 and 1, so the combined
score is also between 0 and 1. If the peer (Pj ) is included inwhitelist then this peer
automatically gets the highest encounter score. However, if a peer exists inblacklist,
she will be always be removed before sending the list to an application or the user.

The modules discussed in this section are presented for the sake of completion
and would require further research in the future (out of scope for this work). For
e.g, a challenge now lies in finding out the correct weights (α,β ,&δ ) to combine
different inputs. These weights depend on the user and application preferences.

1.8 Conclusion and Future Work
This work introduces,ConnectEnc, an effective encounter based framework for
making informed peer selection choices in mobile P2P applications in an efficient,
privacy-preserving and resilient manner.ConnectEncis driven byEncounter Filters
that leverage increased sensing capabilities of the mobiledevices and their close as-
sociation with users, which enables them to capture peer similarity with encountered
devices at multiple levels.

We use four novelEncounter Filters, based on encounter frequency, duration, lo-
cation behavior-vector and behavior-matrix. The score reflects the level of similarity
to aid the user or application to select peers in coordination with personal prefer-
ences, location priorities, contextual information and/or encounter based keys. The
calculations are fully distributed eliminating the need for any server or trusted third
party.

Three phase evaluation reveals that most filters possess high stability and form
a small world among the users. A series of surveys and participatory experiments
shows that statistically strong correlation exists between the filter scores and the se-
lection of peers. This validates the Encounter Filter basedapproach used byCon-
nectEnc. Selfishness analysis using social incentive based epidemic routing shows
that it is possible to efficiently use peer recommendations by ConnectEncwithout
sacrificing network performance in DTNs. Further, resilience to attack using anomaly
detection achieves less than 10% false positives and 7% false negatives.

ConnectEnchas been designed to inspire several potential applications that can
be enabled in future. However, there are a few avenues that require further research.
In future, we plan to address some of these questions such as handling multiple de-
vices belonging to a user or MAC address spoofing (several techniques exist [37])
are part of future research. Future work will include analysis of other filters for mea-
suring behavioral similarities. We also want to develop anddeployConnectEncfor
popular mobile platforms and study the effect of its usage ona larger scale. There is
a need to conduct more research in order to understand how to effectively leverage



Encounter-based Opportunistic Social Discovery in MobileNetworks � 31

P2P connections in mobile societies. We hope that this research contributes to that
effort.
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