A Comparative Study of Mobility Prediction Schemes for Grid Location Service (GLS)

Students: Gurpreet Grewal, Saurabh Pradhan, Shshank Sharma, Venugopal Alatzeth,

Faculty: Ahmed Helmy

Department of Electrical Engineering

University of Southern California

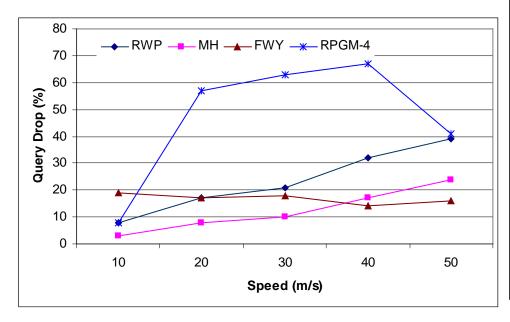
ggrewal, sapradha, shshanks, alatzeth@usc.edu

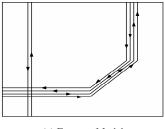
helmy@usc.edu

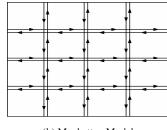
http://nile.usc.edu/~helmy/GLSPrediction/grp1.html

Grid Location Service (GLS)*

- Distributed based on geographic location information
- -Grid-like structuring of the ad-hoc network (scalable)
- -Each node updates its location servers
- Density of Location Servers reduces away from node


	90	38				39	
70			37	50		45	
91	62	5			51		11
	1				35	19	
29		41 (23)	63	41		72	
87 87	4 14	72	B: 17		28	10	
							20
32	98	55	61	6	83 21		

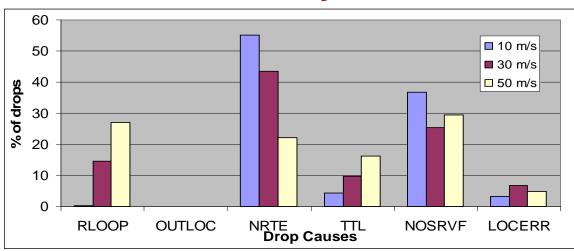

Problem and Approach


- Errors in location information with GLS
 - Low frequency of location update to higher order location servers
 - Query to a location server fails when a node moves far away from its previous location (mobilityinduced errors)
- Need more accurate location information
- Prediction can help improve performance by reducing errors
 - Implemented in Location Servers
- Prediction of
 - Location Coordinates
 - Grid ID of the node's location

GLS Query Loss Analysis

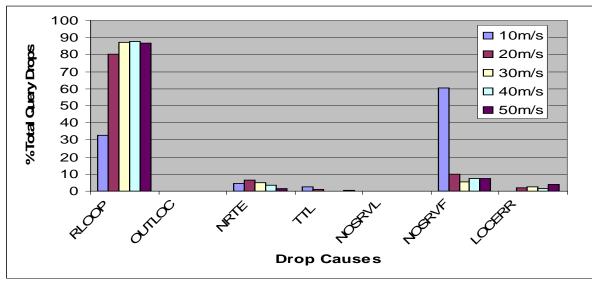
- Mobility Models (IMPORTANT Mobility Tool*)
 - Freeway (FWY) Manhattan (MH)
 - Random Way Point (RWP)
 - Ref Point Group Mobility (RPGM) 4Grps
 - Trace-based Mobility Pattern (in progress)
- Simulation Parameters
 - Nodes: 100, Node speed (10m/s 50m/s)
 - Simulation Area (1000m x 1000m)

(a) Freeway Model


(b) Manhattan Model

Analysis

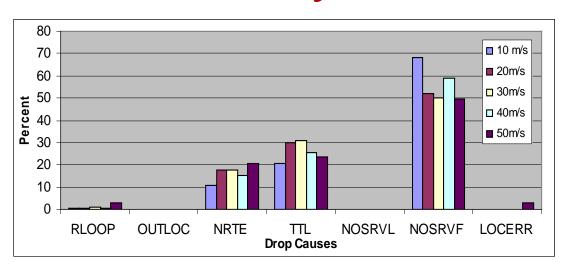
- Query drop varies widely with mobility pattern
- Observed up to $\sim 20\%$ drop (10m/s) and $\sim 70\%$ drop (at 40m/s)
- Main causes of query drop
 - RWP: mobility-induced location errors
 - RPGM: clustering of groups and network partitioning
 - FWY: non-grid-like map
 - Many drops due to voids

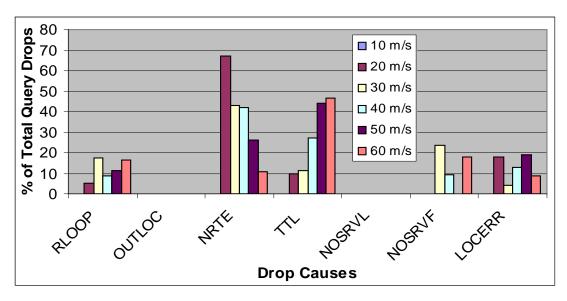

³

GLS Query Failure Analysis

Random Way-Point

Query drops rise from 8% at 10m/s to to 40% at 50 m/s. Main reasons for drop are the mobility-induced RLOOP and TTL drops.




Manhattan

Query drops rise from 3% at 10m/s to to 25 % at 50 m/s. At higher speeds (above 20m/s), more than 85% of drops occur due to RLOOP. Other drop reasons stay relatively constant.

- RLOOP Routing Loop detected, NRTE No Route due to voids, TTL Time-to-Live expired
- NOSRVF No Location Server, OUTLOC Outdated destination location
- LOCERR Outdated location of location-server

GLS Query Failure Analysis

Freeway

- Key feature is geographic restrictions, more severe than the Manhattan model.
- Query failure rate stays between 15-20% across the speed range. Inability to find a location server is the major reason for query failures.

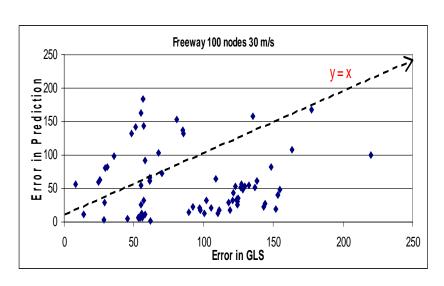
RPGM - 4 Groups

- At higher speeds (above 20m/s), query failure rates of about 60% are observed, mainly due to TTL drops.
- Communication pattern (inter group or intra group) has major impact on query failure rate; a query to find a target node in the same group is more likely to be successful than a query for a node in a different group.

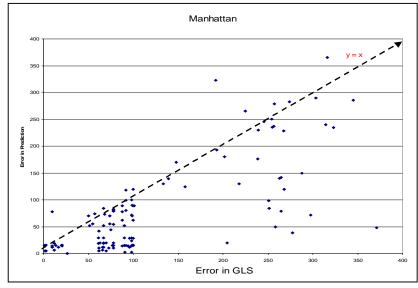
Mobility Predictions Schemes

Velocity Based Prediction

- Linear Velocity Prediction (LVP)
 - Speed Estimation
 - $S_x=(X_k X_{k-1}) / (t_k t_{k-1}),$
 - $S_V = (Y_k Y_{k-1}) / (t_k t_{k-1})$
 - Location Estimation
 - $X_{est} = X_k + S_x x (t_{k+1} t_k)$
 - $Y_{est} = Y_k + S_v x (t_{k+1} t_k)$
- Weighted Velocity prediction (WVP)

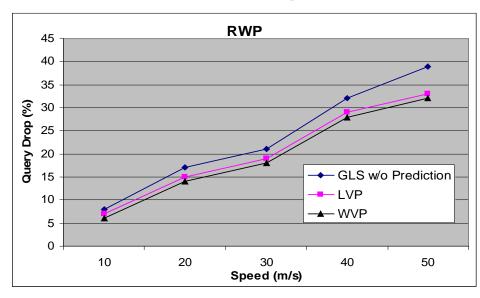

•
$$S_{x \text{ ave}} = \alpha S_{x \text{ ave}} + (1-\alpha) S_{x}$$

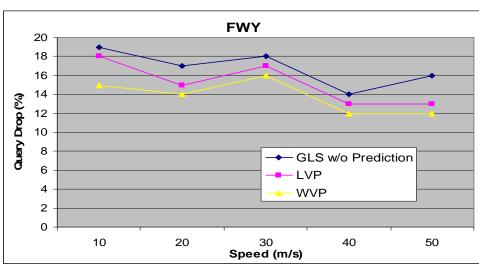
- Intelligent Map Based*
 - RLOOP and OUTLOC can be reduced with prediction
 - TTL and NRTE can be reduced using face routing

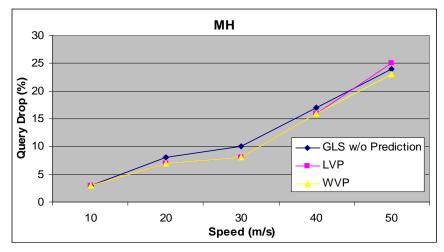

History Based Prediction

- O(1) Markov Recent History Based
- O(2) Markov Recent History Based*

Comparison of Location Errors


- Graphs show errors in GLS vs predicted location values using LVP
- The x and y-axes the errors in location returned by GLS and the linear velocity-based (LVP) predictor, relative to the ns GOD object.
- Points below the y=x line signify predicted value being better than the GLS location value.




	RWP	MH	FWY
Scenarios			
Improved	64-70%	57-59%	68-72%

Prediction can improve location accuracy. But does this lead to improved query success rate?

Comparison of Query Errors

- WVP performs better than the LVP and GLS without prediction
 - LVP is affected by transient changes
 - WVP uses smoothed estimates to dampen effects of transients and dynamics in velocity
- Max improvement less than 10% even for high speeds
- Main problems occur due to greedy forwarding (cannot be corrected using prediction at the location servers)
- Manhattan and Freeway models geographically restrict mobility. Knowledge of map, streets, may help improve location accuracy even further. (under investigation)
- O(1) Markov recent history-based Grid prediction shows minimal improvement due to coarse granularity

Work in Progress

- Map based velocity prediction
 - Use geographic restriction information to validate predicted locations
- O(2) Markov Model
 - Use recent history for string/pattern search.
 - Expected to provide better matching and improves performance for recurring mobility patterns.
- Improvement in granularity of grids using sub-grids
 - Break down the GLS grid into smaller sub-grids and store patterns for those in order to provide a better granularity for prediction using history based schemes.