Session: Traffic Management and ITS DIVANet *19, November 25-29, 2019, Miami Beach, FL, USA

Vehicular Traffic Density Forecasting through the Eyes of Traffic
Cameras; a Spatio-Temporal Machine Learning Study

Roozbeh Ketabi Mimonah Al Qathrady Babak Alipour Ahmed Helmy
University of Florida University of Florida University of Florida University of Florida
roozbeh@ufl.edu mimonah@ufl.edu babak.ap@ufl.edu helmy@ufl.edu

ABSTRACT KEYWORDS

Forecasting vehicular mobility and density is essential to a wide spatiotemporal modeling, city traffic modeling, deep learning, LSTM,
array of mobile applications, including VANETS, crowd-sourcing, forecasting

participatory sensing, network provisioning, and shared transporta- ACM Reference Format:

tion. Foreca.sting is intr.iTlsically clzompl.ex and scarcity and lack—o.f— Roozbeh Ketabi, Mimonah Al Qathrady, Babak Alipour, and Ahmed Helmy.
scale of vehicular mobility data is adding to the challenge. In this 2019. Vehicular Traffic Density Forecasting through the Eyes of Traffic Cam-
paper, relying on traffic cameras as the main data acquisition tool eras; a Spatio-Temporal Machine Learning Study. In 9th ACM Symposium
and the traffic densities extracted from the images, we explore on Design and Analysis of Intelligent Vehicular Networks and Applications
trends pertaining to density data for the purposes of temporal and (DIVANet ’19), November 25-29, 2019, Miami Beach, FL, USA. ACM, New
spatial forecasting. We investigate the promise of deep learning York, NY, USA, 8 pages. https://doi.org/10.1145/3345838.3356002

by conducting a comparative analysis of conventional (seasonal)
models, and multiple variants of recurrent neural models, based 1 INTRODUCTION
on 40 day-long traffic density data from 58 cameras in London.
Our findings show a dramatic reduction in forecast error using
deep learning, where the best seasonal model gets 0.0176 mean
squared error, and our proposed neural model achieves 0.0067 (62%
less error). This is 10.5% in percentage error, down from 19.3%. We
also design an end-to-end multivariate architecture that forecasts
all the cameras which achieves 0.0125 error (14.5% in percentage
error), but is trained in half the time needed to train 58 cameras
individually. Finally, to forecast locations without explicit monitor-
ing, we build on these insights and investigate spatial relationships
between cameras. We introduce a spatial forecast model similar to

The problem of forecasting (prediction) traffic density has proven
to be a challenging one due to its underlying temporal dynamics
and irregularities in seasonality. Spatial scale of such predictions
(all across the city) and capturing the spatial relations also add to
the challenge. Moreover, in terms of vehicular traffic data, although
there has been a lot of efforts in the transportation community, the
data is generally not publicly accessible. This lack of suitable data
at an expansive scale in time and space causes difficulty in design
and evaluation of predictive models. To overcome these challenges,
in this work, driven by data from publicly available sources, we
analyze and model the behavior of traffic from the viewpoints of
the multivariate model. This results in an average reconstruction traffic cameras. We also conduct a systematic set of evaluations of
error of 0.0169 when every camera is reconstructed based on only forecast schemes, ranging from traditional seasonal-based models

one camera, and goes down to 0.0125 when 8 cameras are used to (e.g.. ARIMA) to deep learning (LSTM-based) forecast.
predict others (on par with that of the multivariate model with all

58 cameras as input). Moreover, a set of 23 cameras is found that
can forecast the other cameras with an error of 0.0086. These re-
sults provide great promise for prediction in future vehicular-based
networks and services.

Several practical formulations of the forecasting problem are
considered in this study. An important point in formulating the
problem, is how far into the future to predict, denoted as the forecast
horizon. Another consideration is the temporal granularity. Going
too fine may result in a lot of noisy data, limiting the predictability.
Going too coarse may result in quantitatively good performance,
CCS CONCEPTS but at the cost of losing potentially useful information. In this work,
we choose 30 minutes as the forecast horizon (it gives enough time
for traffic to change across the city, and is in line with previous
studies [6, 18]). The ‘history window’ considered by the model to
make a prediction is usually a parameter selected through model
optimization and training, or a hyper-parameter (selected through
grid search or advanced algorithms for fine-tuning).

Traffic density is a particularly useful measure as it can be used

« Computing methodologies — Neural networks; Supervised
learning; « Applied computing — Forecasting; Transportation;
« Networks — Mobile networks;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed (dlreCﬂY or lndlrectly) for many appllcat10n5~ Instances of such
for profit or commercial advantage and that copies bear this notice and the full citation applications include urban planning (e.g.’ detecting bottlenecks in
on the first page. Copyrights for components of this work owned by others than ACM d net ks). VANET hich tivit infrastruct

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, road networ S), (e'g" 1gher connectivity Or imirastructure
to post on servers or to redistribute to lists, requires prior specific permission and/or a placement in more dense areas), and participatory sensing (e.g.,
fee. Request permissions from permissions@acm.org. directing sensors to less populated areas to maintain coverage fi-

DIVANet ’19, November 25-29, 2019, Miami Beach, FL, USA

© 2019 Association for Computing Machinery. de.ht.y). We Pulld our analytic framework on density extracts from
ACM ISBN 978-1-4503-6907-7/19/11...$15.00 millions of images by dozens of traffic cameras. Thakur et al. [18]
https://doi.org/10.1145/3345838.3356002 introduced a dataset of vehicular densities spanning several cities

81

https://doi.org/10.1145/3345838.3356002
https://doi.org/10.1145/3345838.3356002

Session: Traffic Management and ITS

around the world for a period of over a month, based on public
traffic camera images. We build on these image density extracts by
creating a data-frame with {camera_id, time, location, and vehicular
density}. The density estimate is based on the foreground pixel
density and background subtraction algorithm [17]. The number
of background pixels naturally changes per camera. But, for the
same camera, higher foreground pixel density results in higher
traffic, which facilitates traffic analysis at camera locations from a
timeseries point of view. To compare various models, density value
for forecasting goals has been min-max scaled to the range [0,1]
globally. Hence, two different cameras with the same density, may
not necessarily have the same number of cars nor occupation.

For the purposes of this study, we focus on data from the city of
London. First, we clean the data, then apply a variety of forecast
models. We sanitize and setup the dataset, by identifying and se-
lecting 58 cameras (out of ~180) that have contiguous data for 40
days from 9:30 am to 6:30 pm; the first 75% of which is training data,
and the rest is used for evaluation and testing. The model, at a high
level, maps the density value of one or multiple timeseries into the
next expected value. In that sense, it is referred to as nowcasting
in some studies [23]. To evaluate the models, first we establish a
baseline using seasonal timeseries models, and then improve upon
it by modeling the problem using ideas from machine learning and
proposing customized deep learning architectures. Then, we inves-
tigate the power of deep learning in predicting (or reconstructing)
the value of a location (camera) by using the history data only
from other cameras (i.e., the model will not see the history of the
predicted location/camera). To our knowledge, this paper is one of
the first (if not the first) to study this problem.

In short, the questions investigated can be summarized as follows:
1- How predictable is the traffic density (from the viewpoint of the
cameras)? 2- Is it possible to accurately model the city traffic in one
end-to-end model? 3- Is spatial locality expressed through nearby
cameras informative for better forecasts? 4- Is it possible to reduce
the number of observing cameras and use the spatial relations of
the cameras to still forecast the other (missing) cameras?

After discussing the related work in Section 2, the rest of the
paper is organized as follows: First, in Section 3, the dataset is
discussed in details and the models are described starting with
seasonal forecasting methods. Then a recurrent neural model is
presented as an alternative to the seasonal models. Next, we attempt
to forecast the city traffic for all the cameras at once in a multivariate
model. Building on insights from the previous models, we then
explore a hybrid approach where nearby cameras are considered
together to improve the forecast. Finally, in Section 4, the problem
of spatial forecasting (or interpolation) is explored in which a subset
of the cameras are missing from the training entirely. We conclude
with a discussion and remarks in Sections 5 and 6.

2 RELATED WORK

We discuss the related work in two parts. First, we focus on the
dataset, from conception to analysis. Second, we explore previ-
ous attempts at forecasting especially in traffic domain, reviewing
recent advances and applications of machine and deep learning.
The framework to acquire traffic camera images, processing den-
sities and establishing the dataset has been introduced by Thakur

82

DIVANet ’19, November 25-29, 2019, Miami Beach, FL, USA

et al. [18]. Estimates of traffic density are extracted using a back-
ground subtraction algorithm [17] and studied from spatial and
temporal aspects including observance of self similarity [19] and
causality [6]. In particular, Fay et al. [6] have studied the causal-
ity of data from traffic cameras on other cameras using Granger
Networks and have spatiotemporally modeled the city’s traffic by
the means of a Gaussian Process. They then presented forecasts
for traffic based on vector auto-regressive models, showcased on
a real-world dataset of Sydney (part of the global traffic camera
dataset). Their forecast horizon is 30 minutes but they follow a finer
temporal scale where they predict 6 steps in the future (each step
spanning 5 minutes). They achieve a mean-square-error (MSE) in
range [0.03,0.09]. Even though it is not directly comparable with
our results because of differences in problem formulation, we ex-
pect errors to increase with finer temporal granularity and longer
forecast horizons. We aim for improved accuracy, and lower errors.

Various applications have benefited from advancements of ma-
chine/deep learning. Zhang et al. [25] have proposed a trust based
deep reinforcement learning framework for VANETs. Tian et al.
[20] have studied application of ML models for detection of pedes-
trian and vehicles in images used for intelligent transportation
systems. Numerous studies have attempted modeling of traffic pat-
terns, which cannot be comprehensively covered here, a summary
of which is presented. Kamarianakis and Prastacos [12] surveys the
pre-deep learning era, focusing on spatial time-series modeling us-
ing techniques such as Space-Time ARIMA and the Bayesian Vector
Autoregressive (BVAR). Hamed et al. [9] shows a classic example of
ARIMA modeling for traffic volume in urban settings. Wang et al.
[22] have proposed a spatiotemporal convolutional-LSTM hybrid
network that has been able to outperform temporal only or spatial
only networks on travel demand prediction. Zang et al. [24] have
studied traffic speed modeling by the use of a ConvLSTM (intro-
duced in [23] for precipitation forecasting) and CNNs hybrid model.
Jin et al. [11] model city-wide short-term crowd flows with a deep
learning approach that combines LSTM and CNN to capture spa-
tiotemporal patterns. Chakraborty et al. [4] have investigated the
application of the YOLO deep learning model on traffic congestion
detection using camera images. Alipour et al. [2] have investigated
Markov Chains, LSTMs and CNN s for next location prediction tasks.
Polson and Sokolov [16] utilize and tune a deep multi-layer percep-
tron model for short term traffic flow prediction. Tian et al. [21]
combines the power of LSTMs and temporal smoothing techniques
to infer lost data and learn prediction residuals.

There are three major contributions of this study that differenti-
ate it from the literature: 1. Data-driven study powered by planet-
scale data. Traffic camera’s data, specifically London’s, has not been
studied for forecasting purposes using deep learning, to the best
of our knowledge. 2. The idea of formulating [geo]spatial locality
explicitly as features of a deep learning model that leads to our best
performer (incorporating the idea from vector and simultaneous
autoregressive model into a deep model). 3. We take forecasting
one step further by studying the spatial relations between traffic
observed at different parts of the city showing how traffic can be
predictable from other cameras across the city.

Session: Traffic Management and ITS

10 ® restof cameras .
X target camera [camera_id= 4]
closest neighbors [K=5] .
08 .
g ...
3 []
£ 06 A L) .
= . e
o % 3
T * . ° | = * .
@ .
S 04 ..o . .
7] o’ .
.
.
02 .
.
00 .

00 0z 04 06 08 10
scaled longitude

Figure 1: Distribution of the cameras across space on scaled
map. Camera 4 and the closest five cameras to it shown.

3 METHODOLOGY AND FORECAST MODELS

This section details the data and forecast models. The data used
is processed from London’s traffic camera images. As previously
stated, the original dataset (introduced in [18]), provides us with
a measure of density (achieved through a background subtraction
algorithm) over 42 days in 2010, in few-minutes granularity for
hundreds to thousands of cameras covering large-scale urban areas
across the globe. Metadata of the cameras, is joined with the mea-
surement data and then passed through the data cleaning pipeline.
We focus on London’s data as a first step. Cleaned version of data
used for this study consists of 58 cameras over a span of 40 days,
with contiguous data from 9:30am to 6:30pm in 30 minutes aver-
age aggregates, with at most 2 missing values which are linearly
interpolated. The values are min-max scaled globally to [0,1] range.

Figure 1 shows the location of cameras on a scaled longitude-
latitude plane with a target camera (camera 4) and its neighbors
marked. To get a feel of how the timeseries look like, Figure 2
visualizes camera 4 and its 4 nearby cameras. There are observable
hints of periodicity (a spectrum analysis performed for seasonal
models suggests seasonality of 19 records which corresponds to a
day as the most dominant cycle). Also, it is worth noting that the
timeseries do not express strong trends (seem to have stationary
means). In addition, there seem to be similarities between them,
pointing at the potential of using other cameras (especially cameras
nearby) to improve forecasting. Cross-correlation of three closest
cameras to camera 4 is plotted in Figure 3. Cross-correlation is
calculated as the correlation coefficient of one versus the time-
lagged version of the other timeseries. In our trials (including auto-
correlation of difference between pairs of timeseries and cross-
correlation for each pair), the closest camera seems to have greater
correlation (not shown due to space constraints). However, no other
significant patterns are observed in the data.

The remainder of this section shall detail the forecast models.
We first explore univariate models, where the model can be seen
as a function on tensors of the shape (1, timesteps) where 1 is the
density value of a specific camera, into (1) which represent the

83

DIVANet ’19, November 25-29, 2019, Miami Beach, FL, USA

camera_id = 4

scaled density

scaled density

scaled density

camera_id = 5

scaled density

i
‘\ JUW\,\\ }

[160 200 300 60 560 600 760

scaled density

30-minute time slot.

Figure 2: Sample of timeseries for camera 4 and nearby.

correlation of camera_id 4 versus 8

pearson correlation

correlation of camera_id 4 versus 6

pearson correlation

PN NV
VATV
VAR Y

pearson correlation

) 100 200 300 400 500
Lag (in number of 30-minute slots)

Figure 3: Cross Correlation functions of three closest cam-
eras to camera 4 shows periodic correlation between them
suggesting spatial relations may help explain some of vari-
ability of the model. X axis is the number of lags in 30 min
increments.

very next value for the density of that camera. Then we explore
the multivariate model, of shape (58, timesteps) — (58) where 58
represent all the cameras. In other words, all cameras are used
as input over time and the next value of them all is predicted by
the model (a snapshot of the city’s traffic as seen by the cameras).
Then a hybrid approach is suggested where for a target camera
we consider its neighbors in the input but only forecast that target
camera (i.e. (K, timesteps) — (1)). As mentioned earlier in the
introduction, all or parts of the first 75% of the timeseries are used
for training and the remaining 25% is kept for evaluation. Mean
Square Error (MSE) is used for both training and evaluation. In
evaluating neural models, the actual input is fed to the trained model
(and not the predicted values). Mean Absolute Percentage Error
(MAPE) and Mean Exponential Error (MEE, an exaggerated version
of MSE) were also studied as training loss functions and found not

Session: Traffic Management and ITS

leading to meaningful improvement of MSE for evaluation. The
evaluation metric of MSE is calculated over all the predicted values.
Mathematically, if y; is the value at timestep i, and y; is the predicted
value at that time and N is the length of the predicted period:

i —y))
N

After discussing the models, the results are presented in Table 1. In
addition, we compare the evaluation performance of the models by
the means of their empirical cumulative density using percentage
error and coefficient of determination (R?) in Figure 8. percentage
error is defined as the mean absolute error normalized over range of
each camera (since the density value is scaled to [0,1] range globally).
All the metrics agree on the performance of the predictors.

MSE =

3.1 Univariate Seasonal Models

To establish a baseline, we look into four seasonal models: sea-
sonal naive, ARIMA (Auto-Regressive Integrated Moving Aver-
age), TBATS (Trigonometric seasonal, Box-Cox transformation,
ARMA residuals, Trend and Seasonality), and Holt-Winters (addi-
tive). These models have been previously studied and summarized
in [1]. To keep the article focused, an intuitive description of the
models is given and details of mathematics of the models are left
out (more details can be found in [7]). In the seasonal naive model,
the predicted value is equal to the last value from the same sea-
son. In this study, a power spectrum analysis of 30 minutes time
slots for the mean scaled density of all cameras reveals one day
as the dominant cycle. As a result, one day is considered as the
season in the model. The ARIMA model describes the autocorre-
lations in data. A seasonal ARIMA model is formed by including
additional seasonal terms in the ARIMA model, and can be written
as ARIMA(p, d, q)(P, D, Q)mm, where m= number of periods per sea-
son. The uppercase notation is used for the seasonal parts of the
model, and the lowercase notation for the non-seasonal parts of the
model. The seasonal part of the model consists of terms that are
very similar to the non-seasonal components of the model, but they
involve backshift of the seasonal period. For example, d is the order
of first differencing, and D is the order of seasonal differencing. Au-
toregressive AR(p) implies current values depend on its p-previous
values. Moving average MA(q) means the current deviation from
the mean depends on g-previous deviations, where g is the order of
MA process. We used auto.arima model [8], which return the best
ARIMA model according to Akaike information criterion (AIC), but
it is not necessarily the best in terms of prediction error (as AIC
is a model selection criterion penalizing more complex models).
The order of differencing d is based on the KPSS test and order
of seasonal differencing is based on OCSB test. The TBATS model
is used to model series exhibiting multiple complex seasonalities
[5]. It uses a combination of Fourier terms with an exponential
smoothing state space model and a Box-Cox transformation. The
Holt-Winters seasonal model comprises the forecast equation and
three smoothing equations for level ¢;, trend b;, and seasonal com-
ponent denoted by s;, with smoothing parameters «, * and y. In
this study, we use the additive seasonal method since the seasonal
variation is roughly constant. In this method, the seasonal com-
ponent is expressed in absolute terms in the scale of the observed
series, and in the level equation, the series is seasonally adjusted by

84

DIVANet ’19, November 25-29, 2019, Miami Beach, FL, USA

n —— Actual

Il — - Seasonal Naive

| ---- auto.Arima
| -—- TBATS

| = Holt-Winter

scaled density
02 03 04 05
! !

0.1

0 25 50 150 175

75 100 125
time (in 30 min slots)

Figure 4: Forecast versus actual for seasonal prediction mod-
els camera-48. Horizontal axis represents time in 30 minute
bins, with 0 being at the start of evaluation set (the last quar-
ter of the data).

subtracting the seasonal component. More detail about this model
can be found in [7]. The models are trained for each camera us-
ing their scaled density for 30 days. Then, the models are made to
predict the next 10 days. Statistical prediction errors distributions
are shown in figure 7, with the TBATS model outperforming other
seasonal models.

The model’s prediction accuracy varies between cameras, where
it provides a better result with cameras that have seasonal patterns
such as in Figure 4, but predict with lesser accuracy in Camera4
(camera with id 4 in the dataset), as in Figure 9.

3.2 Univariate Recurrent Neural Model

Recurrent Neural Networks (RNN) have been proposed and stud-
ied for a long time but they have attracted a lot of attention only
recently. In particular, Long Short Term Memory (LSTM) cells have
been very powerful at capturing temporal patterns (even those
that have occurred in the distant past) [10]. These cells are the pri-
mary recurrent unit in our models. Important parameters of such
a model include timesteps (how many timesteps to consider for
each training samples), number of units in a cell, and regularization
and dropof rates (used to prevent over-fitting). Note that train-
ing samples are overlapping (generated by a rolling window over
time on the cameras) and our LSTMs used maintain state across
different batches, so that they would see the whole timeseries after
one epoch (one pass over the training set). The model is simply a
sequential model where a LSTM cell is fed into a tiny perceptron
and is trained against mean squared error as the loss function. We
observe that varying the batch size of the training data, yields no
noticeable gains in loss value or training speed (likely due to the size
of the data). Hence, a batch size of 1 is used. We also explore adding
more parameters to the model (via adding layers or more units), but
no significant gains are obtained. Thus, we adopt a simple model
consisting of one unidirectional LSTM cell (and one perceptron to
project to density value). For our neural network models, we use
Keras and Tensorflow platform. Hyperparameter tuning is done
via Microsoft Neural Network Intelligence (NNI). Adam optimizer
[15] is used for the training. The training is done on CPU (where
we observed speed ups in range 2x to 6x compared to GPU). This
might be partially influenced by the sequential nature of the RN Ns,
batch size of 1 and relatively small size of the training set (GPUs

Session: Traffic Management and ITS

outshine CPUs when large matrix computations can be done in
parallel). The average MSE achieved by this model is ~ 0.0073 1.

3.3 Multivariate Recurrent Neural Model

In the multivariate RNN model, we forecast a snapshot of city’s
traffic all at once. We conjecture that utilizing more cameras into a
multivariate model allows for learning patterns between the cam-
eras, and in turn help with the overall performance (as measured by
evaluation MSE). The model’s architecture is visualized in Figure 5.

After running hyperparameter tuning on NNT using the tree-
structured Parzen estimator (TPE) algorithm [3] for 72 hours (1000s
of trials), on a very large nested parameter search space, the winner
state employs: i- 320 rectified linear units in a time-distributed
manner, applied across each time slice of input for all the studied
cameras, ii- 160 units in each direction of the Bidirectional LSTM
cell (stacking LSTMs resulted in missing timeseries details and
noticeably lower performance), and iii- a three-layer perceptron
as output projection part of the model with sigmoidal activation
functions (2 hidden layers). Dropout and L2 regularization are used
to prevent over-fitting. This resulted in 672,918 trainable parameters
for the model that can be trained in ~25 minutes (on a hexa-core
8th-Gen Intel-i7 laptop CPU) before the early-stopping criteria of
‘no improvement of 0.0001 for 10 epochs’ is met. The training loss
function here is the same MSE. Note that because of the nowcasting
nature of the model, for each training example, it predicts a vector
of values (of length 58) and thus the value of the loss is the average
of the squared errors of all of the cameras at that point (averaged
over time, for each epoch). This is different than the way MSE is
used in the evaluation. For the evaluation, for each camera, each
timeseries’ squared error is averaged first, and then those values
are averaged to obtain the final metric. This is done to be consistent
with per-camera models. With all these settings, the model could
achieve an evaluation MSE of 0.0125. This model on its own does
not perform better than univariate models as it results in generally
smoother functions not capturing the spikes, but it has a noticeably
shorter training time. These insights also pave the way for the
hybrid model and spatial forecasting.

3.4 Hybrid Model

The univariate model is trained against a loss function based on the
average of all cameras’ errors. In other words, it aims at minimizing
the average, which results in overall smoother figures comparing
to when each camera/location model is trained individually. To
allow for this per-location (per-camera) optimization, we build a
hybrid model that targets each camera individually, but incorpo-
rates the nearby cameras’ data as input features to the model (in
some sense the model becomes aware of its spatial locality) resulting
in a (K, timesteps) — (1) model, where K € {1, ..., 58} represents
the number of cameras to consider together. The next question
then becomes, what is the optimal K, i.e., how many neighboring
cameras should be considered together for? To answer this, along
with the best possible performance for this model, we parameterize
the model on K and run hyperparameter tuning on it.

IThis may not be the best achievable performance as each camera’s model was not
individually tuned and rather the same hyper-parameters as the hybrid model were
used to be comparable.

85

DIVANet ’19, November 25-29, 2019, Miami Beach, FL, USA

mput: | (1,38, 58)

input_1: InputLayer
(1,38, 58)

output:

I

. o . L input: (1, 38, 58)
time_distributed_1(dense_1): TimeDistiibuted(Dense)
output: | (1, 38, 320)
. o) o input: | (1, 38, 320)
time_distributed_2(dropout_1): TimeDistributed(Dropout)
output: | (1, 38, 320)
input: | (1,38, 320)
bidirectional_1(lstm_1): Bidirectiona(LSTM)
- - output: (1, 320)

I

mput:

(1, 320)
(1, 60)

dense 2: Dense

output:

I

dropout_2: Dropout

)

mput:

mput: | (1. 60)

(1. 60)

output:

(1, 60)

dense_3: Dense
- (1, 160)

output:

)

dropout_3: Dropout

I

nput:

nput: | (1, 160)

(1, 160)

output:

(L. 160)

dense_4: Dense
- (1, 58)

output:

Figure 5: Architecture of the multivariate forecast model.
TimeDistributed applies a mapping (Dense layer) to each
time slice of the input tensor (across all cameras). A mul-
tilayer perceptron with 2 hidden layers is applied to the pro-
jections of LSTM, mapping it to the desired prediction.

For illustration purposes, without loss of generality, we show the
tuning results for one camera (camera 4) in Figure 6. As observed,
we find that shorter timesteps are preferred for each training sample,
even though we use stateful LSTMs that remember the patterns
across batches over longer periods of time. Also, fewer number of
neighbors are preferred over more cameras, suggesting the spatial
locality plays a role in this (as larger values of K implies cameras
that are further away). The set of best parameters extracted is
applied for all the cameras 2. The training time varies per camera,
resulting in a total time of ~45 minutes.

Comparing the three presented deep-learning models on camera
4, the multivariate model achieves 0.0093, univariate model achieves
0.0075, and finally, the hybrid model results in MSE of 0.0059 (which
is over 21% improvement, compared to the univariate model). A
sample of forecasts is plotted in Figure 9 3. The average error for
all the cameras using this hybrid model is 0.0067 (versus 0.0073 for
the univariate model).

?Hyperparameter tuning for each camera is a time-consuming task as it involves
hundreds to thousands of trials.
3More figures are available at https://github.com/rzbhk/eyes_of traffic_cams

https://github.com/rzbhk/eyes_of_traffic_cams

Session: Traffic Management and ITS

timesteps Istm_units K
500 500 50
400 400 40
300 300 30
200 200 20
100 L100 L1o
2 Lq =

DIVANet ’19, November 25-29, 2019, Miami Beach, FL, USA

Istm_dropout Istm_recurrent_dropout dense_|2reg
05 05 r0.001
0.4 04 - 0.0008
0.3 03 - 0.0006
to2 02 -0.0004
0.1 01 - 0.0002
0) 0

Figure 6: Results of hyper-parameter tuning for hybrid model for Camera4 (brighter greens are lower errors). There is an
interesting trend in general: Fewer timesteps (for short term dependencies, though the stateful LSTM will remember these de-
pendencies for longer periods of time) with reasonable number of LSTM units (adding more doesn’t help), and fewer neighbors

(K=5) result in better performance (lower errors).

Table 1: Forecast errors (MSE) of the various studied models.

Lower is better.

AVG STD MEDIAN | MIN MAX
Hybrid. RNN 0.0067 | 0.0036 | 0.0063 0.0018 | 0.0184
Univar. RNN 0.0073 | 0.0037 | 0.0073 0.0020 | 0.0177
Multivar. RNN | 0.0125 | 0.0062 | 0.0115 0.0027 | 0.0328
TBATS 0.0176 | 0.0092 | 0.0162 0.0036 | 0.0464
Season. ARIMA | 0.0243 | 0.0140 | 0.0235 0.0039 | 0.0621
Season. Naive 0.0313 | 0.0202 | 0.0257 0.0044 | 0.0965
HoltWinter 0.0341 | 0.0251 | 0.0250 0.0049 | 0.1355

0.10

Forecast Errors (MSE)

4#4%%${

HYBRID.RNN UNIVARIATE.RNN MULTIVARIATE

0.00

TBATS
Prediction Models

Arima SeasonalNaive HoltWinter

Figure 7: Summary of forecast errors (MSE) of all models for

all cameras.
W / / /

04
—— multivar
univar
02|

—=— hybrid
| — —— thats

—=— multivar
univar
| —=— hybrid
—— thats

o o o

Cumulative Density

s
Cumulative Density

0.0
50 75

160 125 150 175 200 225 250 06 08 10
Percentage Error Cueffmsnt of determination

() (b)

Figure 8: ECDF of percentage error (a) and coefficient of de-
termination R? (b) for the models. The more a curve is to left
is better for (a) and the more to the right is better for (b). The
best performer (hybrid) has an error of ~10%.

86

—— Actual
A ~ — Seasonal Naive
--- auto.Arima
0 -—- TBATS
>c | \ — = Holt-Winter
g | ;
< L
s -
o
Tm
31
o
« —
<=
o
0 25 50 1 150 175
time (in 30 min slots)
0.6 — actual
--—- multivariate
_4?0'5 --—- univariate
a J
Soal hybrid
°
o
903
[
7 0.2
0.1

0 25 50 75 100 125
time (in 30min slots)

175

Figure 9: Forecast versus actual for seasonal models (top)
and neural models (bottom) for Camera4. Horizontal axis
represents time in 30 minute bins, with 0 being at the start
of evaluation set (the last quarter of the data). The hybrid
model seems to better capture rise and falls.

4 SPATIAL FORECAST

Spatial interpolation is particularly useful in understanding the
patterns of traffic across the city with limited vantage points.

Fay et al. [6] have studied the relations between the cameras
by the use of Granger Causality test (in a causality network). It
was found that, simply put, consistent patterns of correlation exists
between nearby cameras (possibly due to the effects of congestion
propagation). We plotted the cross-correlation and autocorrelation
of mutual differences between the cameras (in a similar manner to
Figure 3; not shown due to its size) and observed repeating patterns
of correlation between many of the cameras (even over the larger
distances). This suggests that some of the observed spatial correla-
tions, over long-time windows, are spurious as they all appear to
depend on temporal structures (i.e., diurnal and daily schedules).

Session: Traffic Management and ITS

Table 2: Spatial forecast average and best errors out of 10
random trials with varying number of input cameras (N).

N | Average Error | Min Error
1 0.0169 0.0125
2 0.0138 0.0114
4 0.0132 0.0113
8 0.0125 0.0114
16 | 0.0115 0.0102
32 | 0.0116 0.0096

Building on these findings, we investigate a multivariate model
(N, timesteps) — (M) where N denotes the number of input cam-
eras, and M denotes the number of cameras (or locations) to predict.
The model architecture resembles that of the hybrid model (Sec-
tion 3.4) but with multiple output targets fed into an average loss
function (similar to the multivariate model, in section 3.3). In this
experiment, the two sets of input and output cameras are exclu-
sive, i.e., to predict the traffic density at CameraX’s location, no
information about CameraX values is seen explicitly by the model.

For each input size N, a random choice of size N from all the 58
cameras is drawn (this is repeated over 10 trials). All the remaining
cameras are considered in the output (target) camera set. The results
are presented in Table 2. With only one camera as input, we can
reconstruct the future of the target cameras (the rest of 57 cameras)
with an average error (MSE) of 0.0169, while with a proper choice
of input camera, errors as low as 0.0125 are possible. This is as good
as the multivariate RNN model where all the cameras are fed in as
inputs. With increase in the number of cameras in the input set,
the error seems to drop. However, this may be an artifact of the
number of target cameras going down; harder-to-forecast cameras
may have been included in the input set and hence excluded from
the output. In all cases the gap between the min and the mean error
suggests that the choice of input cameras matters for this purpose.
That is, to select good vantage points, the ones which result in
a better reconstruction of other timeseries are better candidates.
Figure 10 presents a sample of forecast vs. actual for Camera4
(always guaranteed to be in the output and excluded from the input).
Reconstructed signals (through forecast) closely follow the original
trends. With increase in number of input cameras, the forecast
becomes better in capturing the periods when density stays low
or high. Comparing to regular forecasts we observe more noise in
reconstructed timeseries in general.

As a final investigation, we seek to find the optimal size and
the set of input cameras to forecast other cameras’ traffic with
least error. To achieve this, we formulate the problem as a hyper-
parameter optimization, in which the size of input and seed of
the random number generators (RNG) are considered among the
parameters. The number of input cameras is upper-bounded by
half the total number of cameras, so at least one half of cameras
are being used as targets. The results suggest a set of size 23 can
reconstruct the remaining cameras (i.e., 35) with the average MSE
of 0.0086. The location of the selected cameras is shown on the
scaled map (lon-lat) plot in Figure 11.

87

DIVANet ’19, November 25-29, 2019, Miami Beach, FL, USA

Camera4 spatial forecasts with varying number of input cameras

0.3

scaled density

o
N

)
o

75 100 125 150 175
time (in 30min slots)

Figure 10: Forecast versus actual (shown in solid blue) for
Camera4 versus N=2, 8, 32 number of input cameras. Note
this camera is always excluded from the input set.

1.0 x selected inputs .
e target outputs
0.8 .
g <
é 0 6 .. il *
= x . . 5t
= o ¥ : .x.. x *
o x e ® - x
2oa s
Iv] . *
w % . .
L)
x
0.2 x
-
0.0 .
0.0 0.2 0.4 0.6 0.8 10

scaled longitude

Figure 11: Selected input cameras can reconstruct the re-
maining cameras (in black) with minimal error (found by
hyper-param tuning).

5 DISCUSSION

So far, we have explored the applications of deep learning particu-
larly recurrent neural networks for traffic density prediction. These
findings have potential use-cases in various fields including trans-
portation, urban planning, communication infrastructure, resource
provisioning and vehicular networking. A direct application of our
traffic forecasting involves training these models every month with
new data (which takes less than an hour), and online prediction of
traffic and congestion for the next 30-minute time windows. Real-
time data feeds need to provide the models with most recent actual
values, as was done in our study. Below is a list of our ongoing and
planned efforts:

o A more sophisticated multivariate model with spatial attention
as latent features shall be evaluated. The applicability of more
recent alternatives to RNNs such as attention based models (i.e.
Transformer) also remains to be explored. The performance goal,
pictorially explained, is to push the blue (multivar) curve on
Figure 8a towards the left.

Session: Traffic Management and ITS

e Forecast of traffic fed into city-wide simulations at a microscopic
level [13], enables us to study further dynamics of the road, and
applications such as shared transportation [14].

o A more comprehensive study of the spatial aspect shall be un-
dertaken, potentially by comparing and contrasting to Gaussian
Processes and boosting methods (e.g., XGBoost).

o An effort is planned to alleviate the effects of the image process-
ing limitations. As mentioned earlier, the density number is not
easily comparable from camera to camera or city to city. We shall
investigate extracting car counts from images using recent deep
learning models and establish a car count per time dataset.

e A recent effort is under way to collect recent images of traffic
cameras, e.g., from London. We plan to repeat the study on the
newer data to fortify the findings. The newer data has a wider
time-span enabling study of longer temporal effects and more
thorough cross validation schemes, and higher camera density,
enabling finer spatial analysis studies.

e An extension is planned to take steps beyond nowcasting and
try to forecast longer term futures.

e An extension is planned to study several other cities from the
dataset (Washington DC., Seattle, Sydney, Toronto, etc.).

6 CONCLUSIONS

In this paper we investigated various aspects of spatio-temporal
traffic forecasting based on processed densities from 58 traffic cam-
eras spanning 40 days. We studied the traffic patterns from temporal
(forecast) and spatial (interpolation) aspects. We summarize our
findings and contributions as:

o We investigate seasonal and neural models for traffic density
forecasting from individual cameras point of view. LSTMs in
particular are able to capture short term relationships that happen
across long periods of time (hence the name) and are capable of
modeling temporal phenomena that does not necessarily exhibit
strong seasonal patterns. We found that deep learning models
outperform seasonal (conventional) models in all cases (11.1%
average percentage error vs. 19.3%).

e We propose an end to end neural architecture which can model
the snapshot of traffic (all the cameras) with reasonable perfor-
mance (14.5% percentage error) that trains in half the time of
training 58 individual regressors based on hybrid model.

o Borrowing from ideas of simultaneous timeseries, we incorporate
nearby cameras as input features of the deep learning model
resulting in ~ 8% reduction in MSE (0.0067 vs 0.0073) and 0.6%
reduction in percentage error (at 10.5%).

o Finally we explore forecasting vehicular density without explicit
historic information about traffic at camera locations. We showed
that it is possible to predict the rest of the city’s traffic, with lim-
ited number of vantage points (23 cameras can reconstruct the
rest with only 0.0086 error). This finding provides great promise
and interest to further advance the multivariate model to auto-
matically extract relevant spatial information.

ACKNOWLEDGMENTS

This project was partially supported by NSF grant 1320694, UF
Informatics Institute and Najran University, Saudi Arabia.

88

DIVANet ’19, November 25-29, 2019, Miami Beach, FL, USA

REFERENCES

(1]

[2

[3]

=
)

[13

[14

(15]

=
&

(17

[18

[19

[20]

[21]

[22]

[23

[24

[25

Mimonah Al Qathrady and Ahmed Helmy. 2017. Improving BLE Distance Estima-
tion and Classification Using TX Power and Machine Learning: A Comparative
Analysis. In Proceedings of MSWiM’17. ACM, Miami, FL, USA, 79-83.

Babak Alipour, Leonardo Tonetto, Roozbeh Ketabi, Aaron Yi Ding, Jorg Ott, and
Ahmed Helmy. 2019. Where Are You Going Next? A Practical Multi-dimensional
Look at Mobility Prediction. Proceedings of MSWiM (2019).

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. 2011. Algo-
rithms for hyper-parameter optimization. In Proceedings of NIPS’11. 2546-2554.
Pranamesh Chakraborty, Yaw Okyere Adu-Gyamfi, Subhadipto Poddar, Vesal Ah-
sani, Anuj Sharma, and Soumik Sarkar. 2018. Traffic Congestion Detection from
Camera Images using Deep Convolution Neural Networks. Transportation Re-
search Record 2672, 45 (2018), 222-231. https://doi.org/10.1177/0361198118777631
Alysha M De Livera, Rob] Hyndman, and Ralph D Snyder. 2011. Forecasting time
series with complex seasonal patterns using exponential smoothing. J. Amer.
Statist. Assoc. 106, 496 (2011), 1513-1527.

Damien Fay, Gautam S Thakur, Pan Hui, and Ahmed Helmy. 2013. Knowledge
Discovery and Causality in Urban City Traffic: A study using Planet Scale Ve-
hicular Imagery Data. In Proceedings of the Sixth ACM SIGSPATIAL International
Workshop on Computational Transportation Science. ACM, 67.

Rob J H. and George A. 2014. Forecasting: principles and practice. OTexts.

Rob J H., Yeasmin K., et al. 2007. Automatic time series for forecasting: the forecast
package for R. Number 6/07. Monash University.

Mohammad M. Hamed, Hashem R. Al-Masaeid, and Zahi M. Bani Said. 1995.
Short-Term Prediction of Traffic Volume in Urban Arterials. Journal of Trans-
portation Engineering 121, 3 (1995), 249-254.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Wenwei Jin, Youfang Lin, Zhihao Wu, and Huaiyu Wan. 2018. Spatio-Temporal
Recurrent Convolutional Networks for Citywide Short-term Crowd Flows Pre-
diction. In Proceedings of ICCDA’18. ACM, New York, NY, USA, 28-35.

Yiannis Kamarianakis and Poulicos Prastacos. 2006. Spatial Time-Series Modeling:
A review of the proposed methodologies. Working Papers 0604. University of Crete,
Department of Economics. https://ideas.repec.org/p/crt/wpaper/0604.html

R. Ketabi, B. Alipour, and A. Helmy. 2017. En route: Towards vehicular mobility
scenario generation at scale. In 2017 IEEE Conference on Computer Communica-
tions Workshops. 839-844. https://doi.org/10.1109/INFCOMW.2017.8116485
Roozbeh Ketabi, Babak Alipour, and Ahmed Helmy. 2018. Playing with Matches;
Vehicular Mobility through Analysis of Trip Similarity and Matching. Proceedings
of SIGSPATIAL’18 (2018).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Nicholas G. Polson and Vadim O. Sokolov. 2017. Deep learning for short-term
traffic flow prediction. Transportation Research Part C: Emerging Technologies 79
(2017), 1 - 17. https://doi.org/10.1016/j.trc.2017.02.024

Gautam S Thakur, Mohsen Ali, Pan Hui, and Ahmed Helmy. 2012. Comparing
background subtraction algorithms and method of car counting. arXiv preprint
arXiv:1202.0549 (2012).

Gautam S. Thakur, Pan Hui, and Ahmed Helmy. 2012. A Framework for Realistic
Vehicular Network Modeling Using Planet-scale Public Webcams. In Proceedings
of the 4th ACM International Workshop on Hot Topics in Planet-scale Measurement
(HotPlanet ’12). ACM, New York, NY, USA, 3-8.

Gautam S Thakur, Pan Hui, and Ahmed Helmy. 2013. On the existence of self-
similarity in large-scale vehicular networks. In Wireless Communications and
Mobile Computing Conference IWCMC), 2013 9th International. IEEE, 1756-1761.
Daxin Tian, Chuang Zhang, Xuting Duan, Jianshan Zhou, Zhengguo Sheng, and
Victor Leung. 2017. The Cooperative Vehicle Infrastructure System Based on
Machine Vision. In Proceedings of DIVANet’17. ACM, New York, NY, USA, 85-89.
https://doi.org/10.1145/3132340.3132347

Yan Tian, Kaili Zhang, Jianyuan Li, Xianxuan Lin, and Bailin Yang. 2018. LSTM-
based traffic flow prediction with missing data. Neurocomputing 318 (2018), 297 -
305. https://doi.org/10.1016/j.neucom.2018.08.067

D. Wang, Y. Yang, and S. Ning. 2018. DeepSTCL: A Deep Spatio-temporal Con-
VLSTM for Travel Demand Prediction. In 2018 International Joint Conference on
Neural Networks (IJCNN). 1-8. https://doi.org/10.1109/[JCNN.2018.8489530
SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. In Proceedings of NIPS’15. 802-810.

D. Zang, J. Ling, Z. Wei, K. Tang, and J. Cheng. 2018. Long-Term Traffic Speed
Prediction Based on Multiscale Spatio-Temporal Feature Learning Network. IEEE
Transactions on Intelligent Transportation Systems (2018), 1-10. https://doi.org/
10.1109/TITS.2018.2878068

Dajun Zhang, F. Richard Yu, Ruizhe Yang, and Helen Tang. 2018. A Deep Re-
inforcement Learning-based Trust Management Scheme for Software-defined
Vehicular Networks. In Proceedings of DIVANet’18. ACM, New York, NY, USA,
1-7. https://doi.org/10.1145/3272036.3272037

https://doi.org/10.1177/0361198118777631
https://ideas.repec.org/p/crt/wpaper/0604.html
https://doi.org/10.1109/INFCOMW.2017.8116485
https://doi.org/10.1016/j.trc.2017.02.024
https://doi.org/10.1145/3132340.3132347
https://doi.org/10.1016/j.neucom.2018.08.067
https://doi.org/10.1109/IJCNN.2018.8489530
https://doi.org/10.1109/TITS.2018.2878068
https://doi.org/10.1109/TITS.2018.2878068
https://doi.org/10.1145/3272036.3272037

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology and Forecast Models
	3.1 Univariate Seasonal Models
	3.2 Univariate Recurrent Neural Model
	3.3 Multivariate Recurrent Neural Model
	3.4 Hybrid Model

	4 Spatial Forecast
	5 Discussion
	6 Conclusions
	Acknowledgments
	References

