The ACQUIRE Mechanism for Efficient Querying
In Sensor Networks

Narayanan Sadagopan T, Bhaskar Krishnamachari $f, and Ahmed Helmy 8

tDepartment of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
narayans@usc.edu

SDepartment of Electrical Engineering - Systems, University of Southern California, Los Angeles, CA 90089, USA
{bkrishna, helmy}@usc.edu

Abstract— We propose a novel and efficient mechanism for
obtaining information in sensor networks which we refer to as
ACQUIRE. In ACQUIRE an active query is forwarded through
the network, and intermediate nodes use cached local information
(within a look-ahead of d hops) in order to partially resolve the
query. When the query is fully resolved, a completed response is
sent directly back to the querying node.

We take a mathematical modelling approach in this paper
to calculate the energy costs associated with ACQUIRE. The
models permit us to characterize analytically the impact of
critical parameters, and compare the performance of ACQUIRE
with respect to alternatives such as flooding-based querying
(FBQ) and expanding ring search (ERS). We show that with
optimal parameter settings, depending on the update frequency,
ACQUIRE obtains order of magnitude reduction over FBQ and
potentially over 60% reduction over ERS in consumed energy.

I. INTRODUCTION

Wireless sensor networks are envisioned to consist of large
numbers of devices, each capable of some limited compu-
tation, communication and sensing, operating under energy
constraints in an unattended mode. These networks are in-
tended for a broad range of environmental sensing applications
from weather data-collection to vehicle tracking and habitat
monitoring [, [2], [3].

With large-scale networks of energy-constrained sensors it
is not feasible to collect all measurements from each device
for centralized processing. It has been argued that it is best to
view such sensor networks as distributed databases [8], [9]. A
central querier/data sink (or collection of queriers/sinks) issues
queries that sources in the network respond to. Due to energy
constraints it is desirable for much of the data processing to
be done in-network, and this has led to the concept of data-
centric information routing, in which the queries and responses
are for named data. Depending on the applications, there are
likely to be different kinds of queries in these sensor networks.
The types of queries can be categorized in many ways, for
example:

« Continuous queries, which result in extended data flows
(e.g. “Report the measured temperature for the next 7
days with a frequency of 1 measurement per hour”)
versus One-shot queries, which have a simple response
(e.g. “Is the current temperature higher than 70 degrees?”)

0-7803-7879-2/03/$17.00(©)2003 IEEE.

« Aggregate queries, which require the aggregation of infor-
mation from several sources (e.g. “Report the calculated
average temperature of all nodes in region X”) versus
Non-aggregate Queries which can be responded to by a
single node (e.g. “What is the temperature measured by
node x?”)

o Complex queries, which consist of several nested or
batched sub-queries (e.g. “What are the values of the
following variables: X, Y, Z?”) versus simple queries,
which have no sub-queries (e.g. “What is the value of
the variable X?) fi

o Queries for replicated data, in which the response to a
given query can be provided by many nodes (e.g. “Is
there at least one target in the area?”) and queries for
unique data, in which the response to a given query can
be provided only by one node.

Flooding-based query mechanisms such as the Directed
Diffusion data-centric routing scheme [4]] are well-suited for
continuous, aggregate queries. This is because the cost of
the initial flooding of the interest can be amortized over the
duration of the continuous flow from the source(s) to sink(s).
However, keeping in mind the severe energy constraints in
sensor networks, a one-size-fits-all approach is unlikely to
provide efficient solutions for other types of queries.

In this paper we propose a new data-centric querying
mechanism, ACtive QUery forwarding In sensoR nEtworks
(ACQUIRE). We shall show that ACQUIRE is well-suited for
one-shot, complex queries for replicated data. As a motivation
for ACQUIRE, we describe a scenario which involves such a
query:

« Bird Habitat Monitoring: Imagine a network of acoustic
sensors deployed in a wildlife reserve. The processor
associated with each node is capable of analyzing and
identifying bird-calls. Assume each node stores any bird-
calls heard previously. The task “obtain sample calls for
the following birds in the reserve: Blue Jay, Nightingale,
Cardinal, Warbler” is a good example of a complex
(because information is being requested about four birds),

1We consider a query to be complex if it consists of several sub-queries that
are combined by conjunctions or disjunctions in an arbitrary manner. Each
sub-query in turn is a query for some variable tracked by the sensor network.

149

one-shot (because each sub-query can be answered based
on stored and current data) query, and is for replicated
data (since many nodes in the network are expected to
have information on such birds). Another example of a
complex, one-shot query in this network might be “return
5 locations where a Warbler’s call has been recorded” (the
request for each location is a sub-query).

The principle behind ACQUIRE is to inject an active query
packet into the network that follows a (random or guided)
trajectory through the network. At each step, the node which
receives the active query performs a triggered, on-demand,
update obtaining information from all neighbors within a look-
ahead of d hops. As this active query progresses through the
network it gets progressively resolved into smaller and smaller
components until it is completely solved and is returned back
to the querying node as a completed response.

While most prior work in this area has relied on simulations
in order to test and validate data-querying techniques, we take
here a mathematical modelling approach that allows us to
derive analytical expressions for the energy costs associated
with ACQUIRE and compare it with other mechanisms, and
to study rigorously the impact of various parameters such as
the value of the look-ahead parameter, and the ratio of query
rate to update rate.

The rest of the paper is organized as follows: in section [we
describe some of the related work in the literature. We provide
a basic description of the ACQUIRE mechanism in section
MM In section IM we develop our mathematical model for
ACQUIRE and in section[Mwe compare it with two alternative
mechanisms: flooding based queries (FBQ) and expanding ring
search (ERS). We discuss these results and describe the future
work we are planning to undertake along with our concluding
comments in section [V

Il. RELATED WORK

The ACQUIRE mechanism we describe in this paper is
compatible with a database perspective on sensor networks,
such as has been outlined by Bonnet, Gehrke, Seshadri and
Yao in [9], [14] and by Govindan, Hellerstein, Hong et al. in
[8]. ACQUIRE can be viewed as a data-centric routing mecha-
nism that provides superior query optimization for responding
to particular kinds of queries in sensor networks: complex,
one-shot queries for replicated data.

Intanagonwiwat, Govindan, Estrin and Heidemann pro-
pose and study Directed Diffusion [4], [5], a data-centric
protocol that is particularly useful for responding to long-
standing/continuous queries. In Directed Diffusion, an interest
for named data is first distributed through the network via
flooding (although optimizations are possible for geograph-
ically localized queries), and the sources with relevant data
respond with the appropriate information stream. Also re-
lated to our work are the Information Driven Sensor Query-
ing (IDSQ) and Constrained Anisotropic Diffusion Routing
(CADR) mechanisms proposed by Chu, Hausseker and Zhao
[12].

One recent technique that is close in spirit to ACQUIRE is
the rumor-routing mechanism proposed recently by Braginsky
and Estrin in [16]. Their approach is quite interesting - sources
with events launch mobile agents which execute random walks
in the network resulting in event-paths. The queries issued by
the querier/sink, in a manner somewhat similar to ACQUIRE,
are also mobile agents that follow random walks. Whenever
a query agent intersects with an event-path, it uses that infor-
mation to efficiently route itself to the location of the event.
Rumor routing is, however, primarily a mechanism to lower
the interest-flooding cost for Directed Diffusion in situations
where geographical information may not be available. It is
conceivable to combine rumor routing with ACQUIRE in order
to guide the trajectory taken by queries towards regions of
the network with relevant information. Another approach for
guiding the queries might be the idea of routing along curves,
described by Nath and Niculescu in [15].

The recent work by Ratnasamy, Karp et al. [L1]] presents a
geographic hash table technique for data-centric storage (DCS)
in sensor networks. In estimating the cost of local storage the
authors of [11] assume the use of flooding-based queries, to
which we provide an alternative in this paper. It is also possible
to conceive of using our ACQUIRE scheme in conjunction
with any DCS techniques that result in replication (e.g. for
robustness reasons).

Our work also has some similarities to techniques proposed
for searching in unstructured peer-to-peer (P2P) overlay net-
works on the Internet. In particular, [L7] discusses the possi-
bility of launching k-random walks through the unstructured
P2P network for discovering required files/data.

Our ACQUIRE mechanism combines a trajectory for active
queries with a localized update mechanism whereby each node
on the path utilizes information about the all nodes within a
look-ahead of d hops. The size of this look-ahead parameter ef-
fects a tradeoff between the information obtained (which helps
reduce the length of the overall trajectory) and the cost for
obtaining the information. This look-ahead region is somewhat
similar in spirit to the notion of zones in the Zone Routing
Protocol (ZRP) [13] and to the notion of neighborhoods in the
Contact-based Architecture for Resource Discovery (CARD)
[10] developed for mobile ad-hoc networks.

I11. BAsic DESCRIPTION oF ACQUIRE

In order to explain ACQUIRE, it is best to begin first with
an overview of traditional flooding-based query techniques. In
these techniques, there is a clear distinction between the query
dissemination and response gathering stages. The querier/sink
first floods several copies of the query (which is an interest
for named data). Nodes with the relevant data then respond.
If it is not a continuous/persistent query (i.e. one that calls for
data from sensors for an extended period of time as opposed
to a single value), then the flooding can dominate the costs
associated with querying. In the same way, even when data
aggregation is employed, duplicate responses can result in
suboptimal data collection in terms of energy costs.

150

By contrast, in ACQUIRE there are no distinct
query/response stages. The querier issues an active query
which can be a complex query, i.e. can consist of several sub-
queries, each corresponding to a different variable/interest.
The active query is forwarded step by step through a
sequence of nodes. At each intermediate step, the node which
is currently carrying the active query (the active node) utilizes
updates received from all nodes within a lookahead of d
hops in order to resolve the query partially. New updates are
triggered reactively by the active node upon reception of the
active query only if the current information it has is obsolete
(i.e. if the last update occurred too long ago). After the
active node has resolved the active query partially, i.e. after
it has utilized its local knowledge to answer as much of the
complex query as possible, it chooses a next node to forward
this active query to. This choice may be done in a random
manner (i.e. the active query executes a random walk) or
directed intelligently based on other information, for example
in such a way as to guarantee the maximum possible further
resolution of the query. Thus as the active query proceeds
through the network, it keeps getting “smaller” as pieces of
it become resolved, until eventually it reaches an active node
which is able to completely resolve the query, i.e. answer
the last remaining pieces of the original query. At this point,
the active query becomes a completed response and is routed
back directly (along either the reverse path or the shortest
path) to the originating querier.

The ACQUIRE scheme with a look-ahead of 1 is illustrated
in figure [

IV. ANALYSIS OF ACQUIRE
A. Basic Model and Notation

Consider the following scenario: A sensor network consists
of X sensors. This network tracks the values of certain
variables like temperature, air pressure, humidity, etc. Let
V = {V,V,,...Vn} be the N variables tracked by the
network. Each sensor is equally likely to track any of these
N variables. Assume that we are interested in finding the
answer to a query Q@ = {Q1,Q2,...Qa} consisting of M
sub-queries, 1 < M < N and Vi : i < M,Q; € V.
Let Sy, be the average number of steps taken to resolve a
query consisting of M sub-queries. We define the number of
steps as the number of nodes to which the query is forwarded
before being completely resolved. Define d as the look-ahead
parameter. Let the neighborhood of a sensor consist of all
sensors within d hops away from it. We model the size of a
sensor’s neighborhood (the number of nodes within d hops)
as a function of d, f(d), which is assumed to be independent
of the particular node in question. We also assume that all
possible queries Q) are resolvable by this network (i.e. can be
responded to by at least one node in the network).

Initially, let sensor x* be the querier that issues a query @
consisting of M subqueries. Let d be the look-ahead parameter
i.e each sensor can request information from sensors d hops
away from it. In general when a sensor x gets a query it does
the following:

LEGEND
—y Active Query

= == == = = Complete Response

............... # Update Messages

Fig. 1

ILLUSTRATION OF ACQUIRE WITH A ONE-HOP LOOKAHEAD

(d = 1). AT EACH STEP OF THE ACTIVE QUERY PROPAGATION,
THE NODE CARRYING THE ACTIVE QUERY EMPLOYS KNOWLEDGE

GAINED DUE TO THE TRIGGERED UPDATES FROM ALL NODES
WITHIN d HOPS IN ORDER TO PARTIALLY RESOLVE THE QUERY. AS
d BECOMES LARGER, THE ACTIVE QUERY HAS TO TRAVEL FEWER
STEPS ON AVERAGE, BUT THIS ALSO RAISES THE UPDATE COSTS.

WHEN d BECOMES EXTREMELY LARGE, ACQUIRE STARTS TO

RESEMBLE TRADITIONAL FLOODING-BASED QUERYING.

1) Local Update: If its current information is not up-to-
date, « sends a request to all sensors within d hops away.
This request is forwarded hop by hop. The sensors who
get the request will then forward their information to
x. Let the energy consumed in this phase be E,pdate.
Detailed analysis of E,pq4.:e Will be done in section
n=a

2) Forward: After answering the query based on the infor-
mation obtained, x then forwards the remaining query
to a node that is chosen randomly from those d hops
away.

Since the update is only triggered when the information is
not fresh, it makes sense to try to quantify how often such
updates will be triggered. We model this update frequency by
an average amortization factor ¢, such that an update is likely
to occur at any given node only once every ¢ queries. In other
words the cost of the update at each node is amortized over
¢ queries, where 0 < ¢ < 1. For example, if on average an
update has to be done once every 100 queries, ¢ = 0.01. R
After the query is completely resolved, the last node which

2|t might be convenient to think of every datum having a time duration
during which it is valid. During this period, all queries for the corresponding
variable could be answered from the value cached from previous triggered
updates. E.g. a sample bird call might have a longer validity period than a
temperature reading.

151

has the query returns the completed responseﬂ to the querier
2* along the reverse path B. We use « to denote the expected
number of hops from the node where the query is completely
resolved to x*.

Let Sas be the average number of steps to answer a query of
size M. Thus, the average energy consumed to answer a query
of size M with look-ahead d can be expressed as follows:

Eavg = (CEupdate + d)S]u + « (1)

Now, if d = D, where D is the diameter of the network, x*
can resolve the entire query in one step without forwarding
it to any other node. However, in this case, Eypdace Will be
considerably large. On the other hand, if d is too small, a larger
number of steps Sy, will be required. In general, S, reduces
with increasing d, while E,p,qq:e increases with increasing d.
It is therefore possible, depending on other parameters, that the
optimal energy expenditure is incurred at some intermediate
value of d. One of the main objectives of our analysis is to
analyze the impact of parameters such as M, N, ¢, and d
upon the energy consumption E,,, of ACQUIRE.

B. Steps to Query Completion

Consider the following experiment. Each sensor tracks a
value chosen between 1 and N with equal probability. Fetching
information from each sensor can be thought of as a trial.
Define a “success” as the event of resolving any one of the
remaining queries. Thus, if there are currently M queries to
be resolved, then the probability of success in each trial is
p = % and the probability of failure is ¢ = 2. Thus,
the expected number of trials till the first success is + = %
Now the whole experiment can be repeated again with one
less query, and the time to answer another query is % and
so on. Let o be the number of trials till M successes i.e. the

resolution of the entire query. It can be seen that

S

M
E(om) =N M%Hl = NH(M) @)
1=1

where H (M) is the sum of the first M terms of the harmonic
series. It is known that H(M) ~ In(M) + ~, where v =
0.57721 is the Euler’s constant. Thus

Elopm)~ N(InM +) ?3)

Since we consider fetching information from f(d) sensors as
1 step, then the number of steps to query completion Sy, is

3We note that it also makes sense to return partial responses back to the
querier, as each sub-query is resolved along the way. This would reduce the
energy and time costs of carrying partial responses along with the partial
query. Our analysis thus overestimates the energy cost, and could be tightened
further in this regard.

4If additional unicast or geographic routing information is available, the
completed response can also be sent back along the shortest path back from
the final node to the querier.

given by B:

E(om) _
f(d)

N(n M +)
f(d)

Sar = 4)

C. Local Update Cost

The energy spent in updating the information at each active
node that is processing the active query E,pqqte Can be
calculated as follows. Assume that the query @ is at the
active node z. Given a look-ahead value d, = can request
information from sensors within d hops away. This request
will be forwarded by all sensors within d hops except those
that are exactly d hops away from x. Thus the number of
transmissions needed to forward this request is the number of
nodes within d — 1 hops, f(d —1). The requested sensors will
then forward their information to x. Now, the information of
sensors 1 hop away will be transmitted once, 2 hops away
will be transmitted twice,... d hops away will be transmitted
d times. Thus,

d
Eupdate = (f(d = 1) + Y _iN(i)) (5)
i=1

where N(¢) is the number of nodes at hop <.

D. Total Energy Cost

We make the assumption that each active node forwards the
resolved query to another node that is exactly d hops away,
requiring d transmissions. Hence the average energy spent in
answering a query of size M is given as

Eavg = (CEupdate + d)SM + « (6)

where « is the expected number of hops from the node where
the query is completely resolved to the querier z*. This is the
cost of returning the completed response back to the querier
node. This response can be returned along the reverse path in
which case « can be at most dS,;. Thus,

Eavg - (CEupdate + 2d)SM (7)

Special Case: d = 0 - Random Walk If the look-ahead d =
0, the node z will not request for updates from other nodes.
2 will try to resolve the query with the information it has,
and will forward the query to a randomly chosen neighbor.
Thus, in this case, ACQUIRE reduces to a random walk on the
network. On an average it would take E(o /) steps to resolve
the query and E(o) steps to return the resolved query back
to the querier z*. Thus,

Eavg = 2E(O’]u) (8)

SHere, we make an assumption that f(d) new nodes will be encountered
at every node where the query is forwarded. However, due to overlap, the
number of new nodes actually encountered might be a fraction of f(d) i.e.
(1 —9)f(d), where 6 € (0,1), is a measure of the average overlap of the
neighborhoods of successive nodes handling the query. Note that ¢ should be
low for ACQUIRE to perform well.

152

3
=3

c=01
e =005
— ¢=0.03
c=001
c=1

5
T
|

2
T
|

Average Energy Consumed to Answer the Given Query
g
T
|

L
6 B 10

4 3
Look-ahead Parameter (d)

Fig. 2
EFFECT OF ¢ AND d ON THE AVERAGE ENERGY CONSUMPTION OF THE
ACQUIRE sCHEME. HERE, N = 100 AND M = 20

> =
T T

Optimal Look-ahead (d*)
-
T

ol y PSR
0.1 1
Amortization Factor (¢)

ol v v il
0.01

Fig. 3
EFFECT OF ¢ ON d* FOR N = 100 AND M = 20. THE X-AX1S1S PLOTTED
ON A LOG SCALE.

E. Optimal Look-ahead

If we ignore boundary effects, it can be shown that N (i) =
47 and f(d) = (2d(d+1))+1 for a grid of sensors (each node
having 4 immediate neighbors). By combining the expressions
in equations B B [and these expressions for N (i) and f(d),
it can be shown that for such a grid of sensors:

N(In M +) 4d® 4 12d? — 4d + 3
3 2% + 2d + 1

2d
FNI M+ 9) g

c
Eavg = {

})

In order to determine the value of the look-ahead parameter
which minimizes this energy cost, we need to take the deriva-
tive of this expression with respect to d and set it equal to
zero. Performing this differentiation, we find that the optimal
look-ahead d* is the real solution to the following equation:

4ed* 4 8cd® 4 22¢d® + 6¢d — 5e— 6d* +3=0 (10)

The expression shows that d* varies only with the amortiza-
tion factor ¢ and not with the parameters M or N. In general
the lower c is, the higher will be the look-ahead parameter
d*. The variation of E,,, for ACQUIRE with respect to d
for different ¢ and the impact of ¢ on the optimal look-ahead
parameter d* are shown in figures Pl and B3 respectively.

We can now explain why ACQUIRE is well-suited for
complex one-shot queries for replicated data. Other schemes
such as flooding based querying (which we examine in greater
detail next) are better suited for continuous queries because
they incur lower delay and the initial cost of flooding the
interest can be negligible compared to the total information
flow between sources and the sink/querier. ACQUIRE is good
at solving complex queries because, as our analysis shows, its
energy costs scale logarithmically with the size of the query
M. Finally, data replication is important to reduce the energy
costs of ACQUIRE - the analysis here essentially assumes that
the fraction % of the nodes have the data being queried for.
Hence the energy costs (which were shown to be linear in V)
are inversely proportional to the degree of replication.

V. COMPARISON

We now analyze two other approaches, flooding-based
querying (FBQ) and the expanding ring search (ERS), in order
to compare them with ACQUIRE.

A. Flooding-based Querying (FBQ)

In FBQ, the querier x* floods a request to all nodes in the
network. All nodes with relevant variables respond.

Let Nquq(i) be the expected number of nodes at hop 4 that
can resolve some part of the query. This is equal to N(i)%,
where N (4) is the total number of nodes at hop i. Assume all
nodes are within R hops of the querier, then it can shown that
for FBQ,

Eavg =

uE

= (F(R)+ 5 D_iN@)e (11)
=1

For a grid with X nodes, R « /X, and from equation (T,

it follows that for a given M, N and ¢, Eq,, o< X3/2.

B. Expanding Ring Search (ERS)

In ERS, at stage 1, the querier x* will request information
from all sensors exactly one hop away. If the query is not
completely resolved in the first stage, =* will send a request
to all sensors two hops away in the second stage. Thus, in
general at stage 4, «* will request information from the N (7)

153

sensors exactly ¢ hops away. The average number of stages
tmin taken to completely resolve a query of size M can be
approximately determined as follows (assuming a grid where
N (i) = 44):

tmin

Z N(i) = N(In M + ~)

= 2(tmin)2 + 2tmin - N(lnM + ’Y) =0 (12)

In ERS, at stage 4, all nodes within 7 —1 hops of the querier
x* will forward the z*’s request. Let NV,,4(¢) be the expected
number of nodes at hop ¢ that will resolve some sub-query.
The response from these nodes will be forwarded over i hops.
There are a total of ¢,,;, stages. Thus, the total energy cost is
given as follows:

tmin

(D (f(i = 1) + iNawg (§)))e

i=1

Eavg = CEupdate =

tmin tmin

(Z fli—1)+ Z iNgug(i))c
=1 1=1 (13)

£G-D
It can be shown that for ERS, Ny.(i) ~ N (i)(M=7—).

C. Comparison of ACQUIRE, FBQ and ERS

These schemes were compared across different values of ¢
chosen in the range of [0.001,1]. For ACQUIRE, the look-
ahead parameter was set to d* for a given value of c¢. We
refer to this version of ACQUIRE as ACQUIRE*. Equations
(@3, @ and @) (with d = d*) were used in the comparative
analysis. For the initial comparisons, N = 100 and M = 20.
Using these values for M and N in equation ([I2), we obtain
tmin = 13. This value of t,,;, is then used in equation ([@I3).

As figure E shows that ACQUIRE with look-ahead 0 (i.e.
random walk) performs at least as worse as ACQUIRE with
the optimal look-ahead (ACQUIRE™*). ACQUIRE™ outper-
forms ERS for higher values of the amortization factor (in this
particular case, where N = 100 and M = 20, ACQUIRE*
outperforms ERS if ¢ > 0.08, d* < 1). When ¢ = 1,
ACQUIRE gives more than 60% energy savings over ERS.
It can be shown that this saving improves even more when N
and M are larger.

As figure B shows, FBQ, on an average, incurs the worst
energy consumption which is several orders of magnitude
higher than the other schemes. This is mainly because of a very
large number of nodes (X = 10°) used in our calculations.

V1. DIscussiION AND CONCLUSIONS

In this paper, we have proposed ACQUIRE - a novel
mechanism for data extraction in energy-constrained sensor
networks. The key features of ACQUIRE are the injection of
active queries into the network with triggered local updates.
We believe that ACQUIRE is likely to perform in an energy-
efficient manner compared to other approaches on complex,
one-shot, non-aggregate queries for replicated data.

LY P LR R Y

— ERS

- ACQUIRE*
== ACQUIRE withd = 0
== FBQ

[*]
T
|

-

el b s e L Lo Lo b iia b
0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1
Amortization Factor (¢)

In (Average Energy Consumed to Answer the Query)
-

Fig. 4
COMPARISON OF ACQUIRE™*, ERS AND ACQUIREWITHd = 0.
HERE, N = 100 AND M = 20. THE Y-AXISISIn(Eqavg)

We have developed a fairly sophisticated mathematical
model that allows us to analytically evaluate and characterize
the performance (in terms of energy costs) of ACQUIRE, as
well as alternative techniques such as flooding-based queries
(FBQ) and expanding ring search (ERS). As far as we are
aware, there are very few similar results in the literature
that provide similar mathematical characterizations of the
performance of query techniques for sensor networks.

Partly for ease of analysis, we have described and modelled
a very basic version of the ACQUIRE mechanism in this paper.
While our analysis assumed a regular grid topology, these
results can be easily extended for other topologies, so long as
a reasonable model for f(d) can be developed. Our major next
step will be to convert ACQUIRE into a functional protocol
that can be validated on an experimental sensor network test-
bed. There are a number of ways in which our analysis can be
improved, and a number of additional design issues need to
be considered in our future work, some of which we outline
here.

o The efficiency of ACQUIRE can be improved if the
neighborhoods of the successive active nodes in the
query trajectory have minimal overlap. Making use of
additional topological/geographical information to guide
the trajectory would help reduce the overlap.

o Guided trajectories may also be helpful in dealing
with non-uniform data distributions, ensuring that active
queries spend most time in regions of the network where
the relevant data are likely to be.

o We found that the optimal choice of the look-ahead
parameter d* is very much a function of the amortization
factor ¢, and (somewhat surprisingly) independent of M,
N, and the total number of nodes X. This lends itself to

154

the possibility of using distributed algorithms in which
localized estimates of ¢ are used to determine the value
of d at each step without global knowledge of system
parameters.

« In this study we have only considered transmission costs
in measuring the energy expenditure for the different
querying mechanisms. In the future, we would like to
enrich the analysis with energy metrics that incorporate
reception costs, and undertake a study of the fundamen-
tal energy-latency tradeoffs involved in querying sensor
networks.

In comparing ACQUIRE with other alternative strategies we
found that ACQUIRE with optimal parameter settings outper-
forms all the other schemes for complex, one-shot queries,
even when the other schemes too are enhanced with cached
updates. In particular, optimal ACQUIRE performs many
orders of magnitude better than flooding-based schemes (such
as Directed Diffusion) for such queries in large networks. We
also observed that optimal ACQUIRE can reduce the energy
consumption by more than 60% as compared to expanding
ring search. The energy savings can be higher when N In M
is greater.

To conclude, we believe that there is no one-size-fits-
all answer to the question: “How do we efficiently query
sensor networks?” We propose ACQUIRE as a highly scalable
technique that deserves to be incorporated into a portfolio of
query mechanisms for use in real-world sensor networks.

REFERENCES

[1] J. Warrior, “Smart Sensor Networks of the Future,” Sensors
Magazine, March 1997.

[2] G.J. Pottie, W.J. Kaiser, “Wireless Integrated Network Sensors,”
Communications of the ACM, vol. 43, no. 5, pp. 551-8, May
2000.

[3] A. Cerpa et al., “Habitat monitoring: Application driver for
wireless communications technology,” 2001 ACM S GCOMM
Workshop on Data Communications in Latin America and the
Caribbean, Costa Rica, April 2001.

[4] C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed Diffu-
sion: A Scalable and Robust Communication Paradigm for Sen-
sor Networks,” ACM/IEEE International Conference on Mobile
Computing and Networ ks (Mobi Com 2000),August 2000, Boston,
Massachusetts

[5] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann,
“Impact of Network Density on Data Aggregation in Wireless
Sensor Networks” , In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS 02), Vi-
enna, Austria. July, 2002.

[6] B. Krishnamachari, D. Estrin, and S. B. Wicker, “"The Impact
of Data Aggregation in Wireless Sensor Networks,” International
Workshop on Distributed Event-Based Systems, (DEBS ’'02),
Vienna, Austria, July 2002.

[7] D. Estrin, R. Govindan, J. Heidemann and S. Kumar, “Next
Century Challenges: Scalable Coordination in Sensor Networks,”
ACM/IEEE International Conference on Maobile Computing and
Networks (MobiCom '99), Seattle, Washington, August 1999.

[8] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin, S.
Shenker, The Sensor Network as a Database, Technical Report
02-771, Computer Science Department, University of Southern
California, September 2002.

[9] P. Bonnet, J. E. Gehrke, and P. Seshadri, “Querying the Physical
World, ” IEEE Personal Communications, Vol. 7, No. 5, October
2000.

[10] S. Garg, P. Pamu, N. Nahata, A. Helmy, “Contact Based
Architecture for Resource Discovery (CARD) in Large Scale
MANets”, USC-TR, July 2002. (Submitted for Review).

[11] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan,
S. Shenker, “GHT — A Geographic Hash-Table for Data-Centric
Storage,” First ACM International Workshop on Wreless Sensor
Networks and their Applications, 2002.

[12] M. Chu, H. Haussecker, F. Zhao, “Scalable information-driven
sensor querying and routing for ad hoc heterogeneous sensor
networks.” Int’l J. High Performance Computing Applications, to
appear, 2002. Also, Xerox Palo Alto Research Center Technical
Report P2001-10113, May 2001.

[13] Zygmunt J. Haas, Marc R. Pearlman, and Prince Samar, “The
Zone Routing Protocol (ZRP) for Ad Hoc Networks,” IETF
MANET Internet Draft, July 2002.

[14] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network
Query Processing in Sensor Networks,” SGMOD, 2002.

[15] Badri Nath and Dragos Niculescu, “Routing on a curve,”
HotNets-I, Princeton, NJ, October, 2002.

[16] David Braginsky and Deborah Estrin, “Rumor Routing Algo-
rithm For Sensor Networks,” First Workshop on Sensor Networks
and Applications (WSNA), September 2002.

[17] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In ICS’02, New
York, USA, June 2002.

155

	I Introduction
	II Related Work
	III Basic Description of ACQUIRE
	IV Analysis of ACQUIRE
	IV-A Basic Model and Notation
	IV-B Steps to Query Completion
	IV-C Local Update Cost
	IV-D Total Energy Cost
	IV-E Optimal Look-ahead

	V Comparison
	V-A Flooding-based Querying (FBQ)
	V-B Expanding Ring Search (ERS)
	V-C Comparison of ACQUIRE, FBQ and ERS

	VI Discussion and Conclusions
	References

