Mobile Networking Research Workshop

By:
Mobile
Networking
Laboratory
(NOMADS group)

- Presentation Topics
 - Friend Finder Application Architecture
 - SOS Emergency and Alert messaging system
 - Trace Processing How and possible Usage
 - 4. Profile-Cast Application architecture
 - Google Earth Simulation of user Density Distribution on UF-Campus

Friend Finder Application Architecture

Sending On-Demand Stress Signal

–

An On-Campus Emergency Alert Service

Motivation

- School and College campuses are facing a perceived threat of violent crime and abuse attacks.
- The current emergency, alert and public safety systems take centralized approaches and lack the essentiality to provide localized rescue services.

Motivation

- Sending On-Demand Stress Signal (SOS)
 application as an on-campus emergency and
 alert service that relies on localized
 responses.
- This system sends distress signals to few trusted nodes using Bluetooth and WiFi.

Solution

- Decentralized approaches of multi-sensor devices (like iPhones), which are capable to connect in more than just one ways
 - exploited for personal safety.
- Localized services based application.
 - tap local and surrounding help based on mutual trust and friend relationships

Login Patterns

Scanning Time

Message Size Delivery

Format size vs Connection + Transfer Time

Results

- As the message size increases. It takes longer to transfer the complete message
- We have established an SOS Message format which is 184 bytes in size, we have observed very low transfer times over a range of o – 60 meters.

Connection Time

Connection Time(1st Hop)

Result Analysis

- Successful transfer of SOS Message up-to 60 meters can be achieved in less than 5 seconds.
- Beyond 60 meters, the time taken to establish a connection increases a lot due to increased interference

Expected Delivery Time

Expected Delivery (1st Hop)

Result Analysis

- Up-to 60 meters, we can achieve successful communication within 15 seconds of time.
- Proposed application is efficient for SOS message transfer up-to 60 meter range.

Connection Time

Connection Time(1st & 2nd Hops)

Result Analysis

- That basic metrics like scanning time etc., take the same time for both 1st and 2nd Hop.
- SOS Message up-to 60 meters can be achieved in less than 15 seconds

Expected Delivery Time

Expected Delivery (1st & 2nd Hops)

Result Analysis

- overall increase in the delivery time from 1st
 Hop to 2nd Hop Delivery is almost double
- Up-to 60 meters, we can achieve successful communication within 25 seconds of time and thus, our application is efficient for SOS message transfer up-to 60 meter range.

Bluetooth Vs. WiFi

File Transfer with Node Motion

System Architecture of SOS Application

Hardware Interface

- The hardware interface provides connectivity with available radio technologies on the device.
- Current Implementation Bluetooth

Protocol Stack

Profiler And Connectors

Trust Model

- Trust model is a rule-based classifier that recognizes Bluetooth encounter and assigns them into various classes of trust.
 - 1. Location and vicinity information of Bluetooth encounter
 - Tags that define the level of trust with an encountered device. These tags are similar to ranks and status quo of a person, i.e. doctors, security personnel
 - 3. Duration, frequency and clock time of the encounter
 - 4. Devices encountered from the contact address books; and
 - 5. Activity based encounters, which describes the circumstances when Bluetooth encountered happened.

First line of Message will inform the receiver about expected response. Level of Emergency - Based on Application scanning time/range, message size/format, etc. can be modified. Action - SOS/Relay/GeoCast Level - 1 ID can be useful for emergency response teams. Name - Mukul Sharma Occupation - MS Student, CISE @ UFL Contact Info can be revealed to Trusted Nodes or ID - 1234-5678 (UFID or Driver's ID) kept hidden from Acquaintance/Stranger Nodes. Contact Info -Location Info (GPS) - NIL/10'11',20'30" Location Info can be precise or relative as per Trust Requirements or Level of Emergency Location Info (Relative) - South Newell Drive/ClassRoom Bldg Profile Data/Eigen Vector Information Eigen Vector Information Matching is used to find the similarity between nodes.

Trace Processing

Typical Trace Structure

Start Time	Location/AP	Duration
306722	95	7404
314127	136	758
314885	2	1651
375121	57	8277
549427	57	5096
554523	95	3687
833145	147	4778
837923	57	1200
902333	109	1524
903857	126	4091
907948	57	3628
915513	69	1444

Possible Usages

- Generating Association Matrix
- Encounter Matrix
- Google Earth Location Density Maps
- Hourly, Weekly, Daily... Usage of Users

....

User Meetings in One Month - MIT

User Meetings in One Month - MIT

Profile-Cast Application Architecture

