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Abstract. Activity recognition performance is significantly dependent on the 
accuracy of the underlying activity model. Therefore, it is essential to examine 
and develop an activity model that can capture and represent the complex 
nature of human activities precisely. To address this issue, we introduce a new 
activity modeling technique, which utilizes simple yet often ignored activity 
semantics.  Activity semantics are highly evidential knowledge that can identify 
an activity more accurately in ambiguous situations. We classify semantics into 
three types and apply them to generic activity framework, which is a refined 
hierarchical composition structure of the traditional activity theory. We 
compare the introduced activity model with the traditional model and the 
hierarchical models in terms of attainable recognition certainty. The comparison 
study shows superior performance of our semantic model using activities of 
daily living scenario.  

Keywords: Activity Recognition, Activity Modeling, Activity Semantic 
Knowledge, Generic Activity Framework, Accuracy and Certainty  

1   Introduction 

Human activity recognition (AR) is an essential technology of pervasive computing 
science because it can be applied to many practical applications including health care, 
eldercare or smart spaces [1][2]. In spite of the obvious importance of this technology, 
current AR technology has limited accuracy and further development is required for 
real world applications. It is because many human activities are so complex that their 
accurate recognition is a big challenge. To illustrate, when people perform an activity, 
it is performed in a variety of ways. Also it is often concurrent and interleaved with 
other activities.  

To solve this problem, many activity models and activity recognition algorithms 
including probability-based or machine-learning based approaches have been 
developed to improve the recognition performance [11][12][13][14][15]. However, 
these approaches are not sufficient for practical applications because they do not 
adequately address complex, ambiguous or diverse human activities. Therefore, a new 
approach, which can capture and represent such unique characteristics of human 
activities more precisely, is necessary. Comprehensive understanding of human 



activities and careful activity modeling is especially important because other 
techniques including AR algorithm and AR system are based on the activity model 
and their accuracy is influenced from the activity model.  

In this paper, we propose activity semantic knowledge and a knowledge-assisted 
activity modeling technique that utilizes the semantic knowledge for accurate 
modeling of human activities. 

1.1   Motivation 

Our motivation is developing a new activity modeling approach that can model real 
world human activities accurately. To achieve this goal, several challenges need to be 
addressed. In particular, the new approach should address the following 
characteristics of human activities. 

Concurrent activities. People may be involved in actions corresponding to several 
activities at the same time. For example, people watch TV while talking to friends. 
These behaviors are not sequential, and therefore, an activity model needs to represent 
these characteristics of activities [3]. 

Interleaved activities. In a real world scenario, some activities may be interrupted 
by other activities before completion whereas some are not. For instance, if a friend 
calls while cooking, the resident may pause cooking and talk to the friend for a while. 
After talking, he/she continues to cook [3]. 

Ambiguity. Even though sensor detects user activities well, the exact 
interpretation may be difficult. For example, we cannot guarantee that a person really 
takes a medicine even though a sensor detects opening the medicine bottle because 
the sensor could be reporting on other related activities such as checking whether 
bottle is empty or cleaning bottle but not taking the medicine.  

Variety. Humans can perform activities in a variety of ways. For example, there 
are multiple ways to eating such as having a meal or having a snack. Typical scenario 
based activity recognition is not enough to handle this variety.  

Multiple subjects. More than one person could occupy the same space and 
perform activities together sometimes. An activity model needs to be capable of 
associating the detected activities with the resident who actually executed them [3]. 

1.2   Proposed Approach 

As a solution to the aforementioned problems, we propose a new approach that 
utilizes activity semantic knowledge for modelling human activities. Activity 
semantics are the knowledge about the characteristics of activities and it can provide a 
variety of important information to express activities. For example, no other activity 
can be performed along with sleeping activity and the person will be in better 
condition after sleeping, the person will be lying down on the bed, and the next 
possible location of the person will be near the bedroom. This information constitutes 
the semantic knowledge of an activity. We named this kind of knowledge as activity 
semantic knowledge and utilized it for modelling activities. The major advantage of 



this modelling approach is that it can reduce uncertainty in an activity model and 
other AR technologies based on the activity model.  

First, without prior semantic knowledge, activity models treat all activity 
components equally because it is difficult to know the differences. But a close look at 
human activities reveals that activity components have different roles. Some 
components are essential for an activity whereas some are trivial. Therefore, semantic 
activity knowledge is helpful for modelling activities more precisely. 

Second, activity model can capture activity relationship more accurately. Without 
prior semantic knowledge, activity models may impose detection conditions that are 
too strict or too loose. For example, Hidden Markov Model (HMM) model is too 
strict, as it requires enumerating all possible orders of activities. Conditional Random 
Field (CRF) model is too loose in that it does not account for the order among 
activities [3][7][8]. However, if we have semantic knowledge of activities, we can 
account for the order in which actions are performed only if it is meaningful.  

The rest of this paper is organized as follows. In section 2, we discuss the 
traditional activity models such as activity theory based model and probabilistic 
graphical models and their limitations. The proposed approach is explained in section 
3. A comparison and analysis are represented in section 4. Finally, section 5 
concludes the paper.  

2   Background 

In this section, we describe traditional activity models. There are two popular 
approaches for modeling activities. One is activity theory based modeling; the other is 
probabilistic modeling such as Hidden Markov Model (HMM) or Conditional 
Random Field (CRF) model. 

2.1   Activity Theory - Origin of Activity Modeling  

Historically speaking, L. S. Vygotsk who was a psychologist during 1920s and 1930s 
founded the activity theory. Later, the activity theory was further developed by A. N. 
Leontjev and A. R. Lurija and coined the term “activity” [5][6]. Activity theory was 
first applied to human-computer interaction (HCI) in the early 1980s [5]. These days, 
it is applied implicitly or explicitly in a lot of activity recognition research.  

The activity theory contains four components (subject, tool, objective, and 
outcome) [5][6]. A subject is a participant of an activity. An objective is a plan or 
common idea that can be shared for manipulation and transformation by the 
participants of the activity. Tool is an artifact a subject uses to fulfill an objective. 
Outcome is another artifact or activity that are result of the activity. Transforming the 
objective into an outcome motivates the performing of an activity. For example, 
having one’s own house is an objective and the purchased house is the outcome. 
Transforming an object into an outcome requires various tools.  
As shown in Table 1, activity theory has a three-layered hierarchical structure and 
activity is composed of actions and an action is composed of operations [5].  



Table 1. Hierarchical layers of an activity and an example of activity, action, and operation. 

Levels Related Purpose Example of purpose 
Activity Motive Completing a software project 
Action Goal Programming a module 
Operation Conditions Using an operating system 

 
Activities are composed of cooperative actions or chains of actions. These actions are 
all related to the motive of an activity. Each action has a goal and consists of 
operations to reach the goal. Operation is a unit component and it depends on the 
faced condition where the operation performs. The detailed description of each level 
can be found in [4][5]. 

 Even though activity theory is well known and is often used in activity recognition 
research, it has some limitations. First, the border between hierarchical layers is 
blurred. As described in [5], an activity can lose its motive and become an action, and 
an action can become an operation when the goal changes [5]. This unclear border 
makes automated activity recognition difficult because the change of motive of 
activity and goal of action are not easy to detect. Hence, it is necessary to find clearer 
ways to determine each layer. 

Second, activity theory does not distinguish between tool and object. But, they are 
needed to be distinguished because the same item may be used as tool or object in 
several activities. In this case, the item has different meaning for each activity. For 
example, when a pan is used as a tool for cooking, it implies it contains food. On the 
other hand, if it is an object for washing dish activity, it means that it is an empty dish. 

Last, some activities are too complicated to be represented by a single activity 
name. For instance, eating has several similar activities such as having a meal or 
having breakfast, lunch or dinner. Because the top layer is activity in activity theory, 
the layer includes everything. This makes AR system design cumbersome and 
difficult to conceptualize. This difference in granularity is not conducive to sharing or 
modularizing AR systems.  

2.2   Probabilistic Activity Models 

In probabilistic approach, human activities are continuously performed and each 
activity is a sequential composition of activity components such as motions, 
operations or actions according to a temporal sequence. According to this idea, 
several probabilistic models including Hidden Markov Model and the Conditional 
Random Field Model have been used to build an activity model because they are 
suitable for handling temporal data.  

Hidden Markov Model (HMM). HMM is a probabilistic function of Markov 
chains based on the first order Markov assumption of transition [7]. The basic idea of 
Markov chain of order m is that the future state depends on the past m numbers of 
states. Therefore, for HMM based on the first order Markov assumption, the future 
state depends only on the current state, not on past states [7]. Also HMM is a model 
that is used for generating hidden states from observable data. HMM determines the 
hidden state sequence (y1, y2, ..., yt) that corresponds to the observed sequence (x1, x2, 



..., xt) [3]. In activity recognition, hidden state is human activities and HMM 
recognizes activities from both sensor observation and previous activity according to 
the first order Markov chain. However, HMM is also a generative, directed graph 
model [3]. Generative model means that observation data is randomly generated. In 
other words, it should enumerate all possible random cases in the model. Directed 
graph is used capture order between states. Therefore, a generative and directed graph 
model in activity recognition implies it should find all possible sequences of 
observations.  

However, many activities may have non-deterministic natures in practice, where 
some steps of the activities may be performed in any order. In practice, although 
many activities are concurrent or interleaved with other activities, HMM has 
difficulty in representing multiple interacting activities (concurrent or interleaved) [3]. 
Also HMM is incapable of capturing long-range or transitive dependencies of the 
observations due to its very strict independence assumptions on the observations. 
Therefore, enumerating all possible observation cases and orders is difficult for a 
practical system. Furthermore, missing an observation or an order will cause the 
HMM to produce errors in the model. 

Conditional Random Field (CRF). CRF is a more flexible alternative to the 
HMM, which relaxes the strict assumption of HMM [8]. In other words, CRF solves 
the problems of HMM by neglecting the order constraint. Like HMM, CRF is also 
used to determine a hidden state transition from randomly generated observation 
sequences. However, CRF is a discriminative model, which does not generate 
possible cases from the joint distribution of x and y. Therefore, CRF does not include 
arbitrarily complicated features of the observed variables into the model. Also, CRF is 
an undirected acyclic graph, flexibly capturing any relation between an observation 
variable and a hidden state [8]. Because CRF does not consider order, it considers 
only relationships such as state feature function (relationship between observations 
over a period of time and activities) and transition feature function (relationship 
between past activities and future activities). Even though CRF removes order 
constraint from an activity model, CRF could outperform HMM [15].  

3   Semantic Activity Model 

In order to recognize activities accurately, modeling activities precisely is essential 
because recognition performance will be limited unless activities are analyzed and 
represented accurately. To illustrate, the knowledge of components of activities, 
relationships between an activity and components, characteristics of activities, etc. are 
important for identifying activities. Therefore, this activity knowledge should not be 
overlooked when modeling activities.  

However, as we mentioned in the previous section, both activity theory and 
probabilistic activity model have limitations and do not represent human activity 
precisely because they do not consider important activity semantic knowledge. For 
example, activity theory does not distinguish activity components clearly enough. 
HMM and CRF apply an order assumption that is too strict or too loose respectively. 
However, these modeling assumptions should be more adaptive in reality because 



there are some activities like an instruction, which consider order critical whereas 
some activities do not.  

To solve this issue, the proposed activity semantics based model (Semantic activity 
model) incorporates substantial semantic activity information in the model. To exploit 
semantics, we first adopt a generic activity framework that extends the activity theory 
in section 2.1 because it provides a refined framework of activity model. We use daily 
living activities as demonstrative examples. 

3.1   Generic Activity Framework  

Generic activity framework has a hierarchical structure in which each layer of the 
structure consists of activity components. In total, there are eight primitive 
components in the framework as shown in Fig. 1. It is not necessary for every activity 
to contain all eight components as long as the activity is recognized clearly. For 
example, the walking activity does not require any object. Descriptions of the eight 
primitive components are summarized below and described in details in [4]: 

Subject. A subject is an actor of the activity. Subject has an important role as an 
activity classifier especially when there are multiple people.  

Time. This is the time when an activity is performed. It consists of start time and 
end time. We can also calculate the duration of an activity using time.  

Location. Location is the place where an activity is performed. If an activity is 
performed in several places, location will have multiple values.  

Motive. Motive is the reason or objective why a subject performs a specific 
activity. 

Tool. Tool is an artifact that a subject uses to perform an activity. Tool provides 
essential information to classify activities. For example, a spoon or a fork is a tool for 
eating or cooking.  

Motion. Motion is defined as the movement performed by a subject for handling 
tools. Motion explains what a subject does with a tool. For example, cutting and 
chopping are both performed using the same tool i.e. knife. The different motions 
associated with cutting and chopping can be used to differentiate between them. 

Object. An object can also be any artifact like tool. But, object is the target of an 
activity whereas a subject uses a tool. Distinction between tool and object is important 
for accurate activity recognition because some artifacts are tool for an activity and 
object of another activity. 

Context. Context provides information about the “vicinity” in which an activity is 
performed. Installed sensors directly find some contexts such as temperature or 
humidity. Other primitive components such as time or location contribute to finding 
more other contexts such as time to sleep, place to cooking, etc. On the other hand, 
some contexts like motive of an activity need some artificial intelligence techniques 
such as reasoning or inference to elicit them.  

Fig. 1 shows a composition diagram of the generic activity framework. Rectangles 
are layers and ellipses are primitive components. According to the composition of 
components, the activity framework has a hierarchical structure. And the components 
of each layer are clearly defined. Brief description for each layer is given below (more 
details in [4]): 



Sensors. Sensors are installed in the pervasive space (e.g. a smart home) to collect 
event information of the space. Based on the installed places of sensors, sensors are 
classified into four types: motion, tool, object, and context sensor.  

Operation. Operation is a composition of tool and motion. The user operates tools 
with specific motion. For example, if computer is a tool, some hand or arm motion 
will be performed for typing a keyboard or using a mouse. 

Action. Action is determined by combination of operation and object. For instance, 
if a user clicks a mouse to open a file, using a mouse is an operation and the file is an 
object and this combination is open file action.  

Activity. Activity is a collection of actions. Activity may involve multiple actions 
and an action belongs to a subject. If a subject is different, we classify the activity 
separately. If multiple people collaborate for a same activity, the activity belongs to 
the multiple people.  

Meta activity. A meta activity is a collection of activities. It is useful to use when 
an activity is complicated, in which case it can be composed of several simple 
activities. For instance, a meta activity hygiene is composed of washing hands, 
brushing teeth or taking a bath.  

 

 
Fig. 1. Composition diagram of a generic activity framework. It is composed of several 
hierarchies and each hierarchical layer contains classifier components. 

 
The hierarchical structure has several advantages. Firstly, it provides clear distinguish 
between layers so that user will not confuse operation, action and activity any more. 
Secondly, it makes the activity recognition system more tolerant to sensor 
environment change [4]. For instance, even if more sensors are inserted in the AR 
system, the upper layers in the hierarchy will not be seriously influenced from the 
change of sensor environment. Lastly, activity recognition using hierarchical structure 
is analogous to the way people recognize, so it is easier to design more natural and 
intuitive AR algorithm [4]. 

Tool! Motion!

Object!
Action!

Operation!

Sensors!

Object, Tool or  Motion Sensors! Other Sensors!

Activity!

Context!
MetaActivity!

Time!

Location!

Others!

Motive!

Subject!



3.2   Semantic Activity Model 

Even though a generic activity framework in section 3.1 describes the composition 
hierarchy of activity components, it is a general framework, which does not contain 
detailed activity semantic knowledge such as role of an activity component, constraint 
or relationship with other components. The activity semantics should be represented 
in an activity model because they are important for classifying an activity. For 
example, eating is composed of three actions such as picking food, chewing food and 
swallowing food. In this case, if only picking food and chewing food are detected, then 
it is not clear whether we consider eating is really performed or not because we are 
not sure the person completes the activity through chews and swallows the food or 
not. Activity semantics reduce these kinds of ambiguity. There are three activity 
semantics: dominance semantics, mutuality semantics and order semantics.  

Dominance semantics is semantic information of vertical relationship between 
components in upper layer and lower layer in Fig. 1 (e.g. meta activity and activity, 
activity and action, or action and operation). In other words, components in upper 
layer (e.g. activity) are composed of the components in lower layer (e.g. action). In 
this hierarchical composition structure, the contribution of each action is different. 
Even though some actions are components of the same activity, some actions are 
dominantly essential component of the activity whereas some are not. According to 
the dominance, we classify them as key, unique, optional and conditioned 
components.  

Key component. Key component is a mandatory component for identifying an 
activity. If an activity has multiple key components, all of them are required to agree 
with the activity. Otherwise, the activity is not considered performed. To illustrate, 
swallowing is a key action for eating because if people don’t swallow food, it is not 
regarded eating is completely performed even though there are many other actions 
such as picking food, scooping food or chewing food. 

Unique component. Unique component is a highly evidential component although 
it is not a key component. For instance, chewing is a unique action for eating because 
most eating requires chewing. However, chewing is not a key component because 
chewing can be omitted if food is soup.  

Optional component. If a component is neither a key nor unique component, it is 
an optional component. It is possible to omit an optional component because it does 
not always affect activity classification. For example, cutting food is an action of 
eating but it may be omitted depending on the food. However, if optional component 
is detected, it increases the certainty of the recognition of an activity. 

Conditioned component. If components should satisfy a specific condition for an 
activity, it is a conditioned component. For instance, duration is an example of 
condition for sleeping because it is highly unlikely that sleeping is performed if the 
duration is too short (e.g., a few minutes). 

Mutuality semantics is semantic information of horizontal relationship between 
components at the same layer (e.g. meta activity and meta activity, activity and 
activity, action and action or etc). This semantic knowledge is used to determine 
whether multiple activities can be concurrently performed or not. 



Concurrent component. If two or more components are performed together, they 
are in concurrent relationship. For example, laundry or watching TV is concurrent 
because while the washer is running, the user can watch TV at the same time. 

Exclusive component. If an activity cannot be performed simultaneously with 
another activity, it is an exclusive activity. For example, sleeping is an exclusive 
activity because people cannot perform anything when they sleep. 

Ordinary component. Ordinary components are partially exclusive and 
concurrent. If an activity is performed with a part of the body (e.g. human limb), the 
activity is both concurrent and exclusive. For example, when people eat food, they 
cannot sing a song at the same time. In this case, they are exclusive. But if the people 
take a walk, they can sing a song concurrently.  Therefore, sing a song is both 
partially exclusive and concurrent.  

Order semantics. Some activities like an instruction should follow a procedural 
sequence. However, many activities have flexible order or do not have any order. 
Therefore, the role of order among activity components should be considered 
depending on the activity. 

 No order. There is no specific order required between activity components.  For 
example, actions for eating such as cutting, picking and scooping food does not have 
any order restriction.  

Strong order. Some activity requires that activity components (e.g. actions) 
should be performed in a specific order always. For instance, in case of sleeping and 
waking-up, waking-up comes immediately after sleeping because people perform 
another activity before waking up. 

Weak order. For many activities, their action components are performed 
according to a flexible order, which is not mandatory or strict. For example, usually 
eating is performed after cooking, but there are exceptions to this order depending on 
several situations. 

Skip chain order. When an activity is interleaved, other activity components may 
be performed between two ordered activity components. To illustrate, eating is 
usually performed immediately after cooking, but sometimes we can do other 
activities between them.  

The Fig. 2 shows the modeling notations of each semantic. A component can have 
multiple semantics. For example, if a component is unique and exclusive, it is 
represented with both bold dotted line and filled circle. Also we can find that there are 
multiple elements like “x,y,z” in some circles whereas there is only “x” in other 
circles in Fig. 3. The circle that contains multiple elements is a compound component 
and the circle with an element is an elementary component.  

Elementary component. An elementary component such as optional component 
or ordinary component can have only one element.  

Compound component. A compound component contains either single or 
multiple elements. Even though each individual sub-component of a compound 
component is optional or ordinary component, there are some cases their combination 
have stronger semantics. For example, picking food or scooping food is an optional 
and an ordinary component because we can have food without picking if we can have 
the food by scooping and vice versa. However, we need to do one of them while 
eating food. Even though picking and scooping is less evidential compare to chewing 
and swallowing, missing both picking and scooping will reduce the probability of the 



activity. In this case, we create a compound component with multiple optional or 
ordinary components. 

 

Fig. 2. Notations of semantic components. Dominance semantics and mutuality semantics are 
represented as nodes whereas order semantics are represented as edges. 

 
Fig. 3 is an example of semantic activity modeling of daily living activities. In this 
example, sleeping is a unique activity and it also exclusive activity where as watching 
TV is a concurrent activity. Scooping and picking are compound key components of 
eating. There is a skip chain relationship between preparing meal and having a meal 
because it can be interleaved by other activities. 
 

 
Fig. 3. An example of semantic activity modeling of daily living activities. Semantic 
components are represented on a hierarchical composition structure, which is based on the 
generic activity framework.  
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4   Comparison and Analysis 

In this section, we compare the proposed Semantics and Generic Activity Framework 
based Model (S-GAM) with a Traditional Activity Model based on activity theory 
(TAM) and the Generic Activity Framework based Activity Model without semantics 
(GAM). We used a daily living activity scenario. To establish an activity scenario for 
the comparison, we used the eldercare scenarios of daily living described in [2] 
instantiated with a real activity dataset provided by University of Amsterdam [15]. 
The eldercare scenarios in [2] describe 33 different daily living activities of the 
elderly. The activity data set in [15] is records of activities of daily living performed 
by a man living in a three-bedroom apartment for 28 days. We named this dataset the 
Amsterdam dataset. We chose seven activities, which are common in both [2] and 
[15]. In terms of sensors, we assume the same sensor environment with the 
Amsterdam dataset are used to see how S-GAM performs in real situations. We add a 
Bed sensor according to the scenario in [2]. Table 2 lists the seven activities and their 
components.  
 
Table 2. Activity list collected from the Amsterdam dataset. It shows meta activities, activities, 
actions, operation tools, objects and related semantics for each activity. 
 

Action Meta 
Activity 

Activities 
(Location) Operation Tool Object 

 
Semantics 

Rest Sleeping 
(Bedroom) 

-Going to the 
bedroom 
-Lying down 

 
 
Bed 

Bedroom door 
 
 

Mutuality: 
Exclusive activity 

Taking a 
bath 
(Bathroom) 

-Taking a 
shower 
-Washing 
face 

 Bathroom 
door 
 
Restroom door 

Mutuality: 
Exclusive activity 
 

Hygiene 
 

Using the 
toilet 
(Restroom) 

-Opening a 
restroom door 
-Pressing a 
toilet flush 

 
 

-Restroom 
door 
-Toilet flush 

Dominance: 
-Key: Toilet flush 
-Unique: Restroom                        
door 

Preparing  
a meal 
-Breakfast 
-Lunch 
-Dinner 

Cooking 
(Kitchen) 
 
 

-Preparing 
food items 
 
-Heating food 

 
 
 
-Microwave 
-Pan 

-Groceries 
-Refrigerator 
-Freezer 

Weak order:  
-Taking food items 
  -> Heating food 

Drinking Drinking Taking drink Cup Refrigerator 
 

Dominance: 
Key: Cup 

Cleaning Washing 
dishes 

 Dishwasher -Pans 
-Cup 
-Dishes 

Mutuality: 
Concurrent activity 

Going out Leaving 
the house 

Opening  
front door 
 

  Front door Dominance: 
-Key: Front door 
Mutuality: 
-Exclusive activity 



Our activity scenario consists of six meta activities, seven activities, eleven actions, 
five tools and eleven objects. It also shows the activity semantics of each activity. In 
Table 2, we can see that many artifacts are used as tools or object in activities. 
Especially when an artifact is used in several activities, TAM is difficult to recognize 
activities accurately because it regards artifacts as tools only. For example, in Table 2, 
an artifact pan is a tool for cooking and it is also an object for washing dishes. Since 
TAM does not distinguish tool and object, sensing pan is not sufficient to determine 
which activity is performed. In contrast, GAM and S-GAM consider the usage of 
artifacts as both tool and object. Especially, S-GAM can recognize activities more 
accurately because it classifies activities using activity semantics. For example, 
sensing tools such as pan or microwave and objects like groceries usually mean that 
cooking is performed in GAM model. However, food items should be prepared before 
turning the microwave on if it is a cooking. Otherwise, it is unlikely the microwave is 
for cooking. GAM does not check this order semantic that is necessary for accurate 
activity recognition. 
 
To compare the accuracy of the three activity models, we measured the uncertainty 
incurred by each model under the same activity scenario. Certainty factor is very 
effective evaluative analysis used in several areas such as diagnostics and medicine 
[9]. We briefly define Certainty Factor below. 
 
CF(H, E): CF is a certainty factor from hypothesis H influenced by evidence E [9]. 
The value of certainty factor ranges from -1(very uncertain) to +1(very certain) 
through zero (neutral). 

€ 

CF(H, E) = MB(H, E) -  MD(H, E)  (1) 

 
MB(H, E): MB is the measure of increased belief in hypothesis H influenced by 
evidence E [9]. p(H) and 1-p(H) are the probabilities of that hypothesis being true or 
false respectively. p(H|E) is a probability of hypothesis given E. If the evidence, E, is 
very strong, p(H|E) will equal to 1 and p(H|E) - p(H) will be also close to 1 - p(H) and 
MB will be close to 1 and certainty factor will increase. On the other hand, if the 
evidence is very weak, then p(H|E) - p(H) is almost zero, and the uncertainty remains 
about the same with MD (H, E). The function max is used to normalize the MB value 
positive (between 0 and 1). 

€ 

MB(H, E) =
                    1                         if p(H) =1
max p(H | E), p(H)( ) - p(H)

1− p(H)
    otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 
 

(2) 

 
MD(H, E): measure of increased disbelief on hypothesis H influenced by evidence E 
[9]. If the evidence, E, is very strong, p(H) – min(p(H|E), p(H)) will equal 0 and MD 
will be 0. On the other hand, if the evidence is very weak, then p(H) – p(H|E) is 
almost p(H), and the uncertainty will be close to 1. The purpose of function min is to 
make the MD value positive. 
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MD(H, E) =
                   1                           if p(H) = 0
p(H) - min p(H | E), p(H)( )

p(H)
     otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 
 

(3) 

To find MB(H, E) and MD(H, E), the probabilities of hypothesis p(H) and the 
conditional probability p(H|E) need to be determined. For calculating the 
probabilities, we enumerate 77 possible cases based on Table 2. For example, to find 
the probabilities for sleeping, we found 6 possible cases with 2 components (bedroom 
door and bed) and one semantic (if the activity is exclusively performed or not). Then 
the number of all possible cases is three (detecting bedroom door, bed and both 
bedroom door and bed) for each semantic case. In TAM, bedroom door and bed are 
equally treated as artifacts. In GAM, bedroom is an object and bed is a tool for lying 
down. S-GAM adds semantic information in the GAM model. We counted activities 
for each of the evidences. Table 3 shows an example of Sleeping. Sum of probability 
is calculated using the addition law of probability that is the probability of A or B is 
the sum of the probabilities of A and B, minus the probability of both A and B. The 
probabilities of other activities are calculated similarly. 

Table 3. The probabilities of sleeping activity according to the models. 

 Evidence (E) p(H and E) p(E) p(H|E) Sum of p(H|E) 
TAM  Artifacts 2 6 0.33 0.33 

Tool 1 4 0.25 0.25 GAM 
Object 1 4 0.25 0.44 
Tool 1 4 0.25 0.25 
Object 1 4 0.25 0.44 

S-GAM 

Semantics 2 7 0.29 0.63 

Table 4 represents the conditional probability of hypothesis H given E for every 
activity. We can observe some semantics are highly evidential whereas some are not 
according to how much the semantic contribute for identifying activities. However, S-
GAF has higher probability overall because it is based on GAF.  

Table 4. The probabilities of hypothesis H given evidence E for each model, p(H|E). 

Activity TAM GAF 
(Tool) 

GAF 
(Object) 

GAF 
(Tool and 
Object) 

Semantics S-GAF 
(GAF and  
Semantics) 

Sleeping  0.33 0.25 0.25 0.44 0.29 0.60 
Taking a bath 0.38 0.00 0.38 0.38 0.43 0.64 
Using the toilet 0.29 0.00 0.40 0.40 1.00 1.00 
Cooking 0.35 0.40 0.40 0.64 0.72 0.90 
Drinking 0.06 0.25 0.04 0.28 0.33 0.52 
Washing dishes 0.16 0.88 0.19 0.90 0.21 0.92 
Leaving the house 0.5 0.00 0.50 0.50 0.14 0.57 

 
Using the estimated probabilities, we computed the certainty factor. Fig. 4 shows the 
certainty factor for each activity. 



 

Fig. 4. Uncertainty according to activities. It compares uncertainties of TAM, GAF and S-GAF 
for each activity.  

Fig. 4 shows that S-GAF has higher certainty for all activities and GAF model has 
higher or comparable certainty to that of TAM. This is an obvious result because 
S-GAF and GAF models provide more evidence than TAM and GAF models 
respectively. If no tool is used for an activity like using the toilet or leaving the house, 
GAF and TAM show comparable certainty. We also can see that cooking, drinking, 
and washing dishes in TAM have low certainty compared to other activities because 
their tools or objects have low evidential certainty. The low evidential certainty may 
be attributed to artifacts such as a pan or a cup being used in multiple activities. Also, 
we can observe that the certainty of S-GAF for using the toilet and cooking have 
significant difference with other models. It is because the semantic information for 
using the toilet and cooking are more activity centric compared to other activities. For 
example, mutuality semantic is applied for several activities such as sleeping, taking a 
bath or leaving the house. On the other hand, the order semantic for cooking is only 
for the cooking activity and it is not applied for another activity of the scenario in 
Table 2. Therefore, the semantic is highly evidential.  

5   Conclusion  

Accurate activity modeling is important for increasing activity recognition (AR) 
performance because AR model affects other AR techniques, which are based on the 
AR model. However, the characteristics of human activities such as complexity, 
ambiguity or diversity make accurate activity modeling very challenging. In order to 
address the challenges, we propose a new activity modeling technique, which is based 
on both generic activity framework and activity semantic knowledge. The generic 
activity framework is a refinement of the classical activity theory.  And the proposed 
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approach adds meaningful semantic knowledge to the generic activity framework for 
representing activities more precisely. A major advantage of the proposed approach is 
that it can represent real world activities accurately by using the eight components of 
our generic activity framework along with the activity semantics introduced in this 
paper. This advantage implies reducing a great deal of uncertainty that may inherently 
exist in the activity model. Therefore, our modeling technique does increase the 
performance of activity recognition.  
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