
 

  
Abstract—We point to limitations inherent in the well accepted 

and assumed activity theory that underpins most of the current 
body of research in human activity recognition. We briefly 
present a generic activity model as a superior alternative and 
show how it could be used advantageously (over the traditional 
model) in neural-network based recognizers. We also show how 
the hierarchical aspects of our generic model allow for semantics 
to be used to decouple the observation sub-system (sensor set) 
from the rest of the activity model. We demonstrate the value of 
this decoupling by experimentally comparing the level of effort 
needed in making sensor changes and the ramifications of such 
changes on model updates. We compare the level of effort under 
the original and our alternative model.  
 

Index Terms—Activity Recognition, Activity Modeling, 
Semantic based Activity Recognition, Activity Recognition 
Performance. 
 

I. INTRODUCTION 
CTIVITY recognition (AR) research is critical to the 
enablement of human centric computing and its broad 

range of ubiquitous applications. Understanding human 
desires and intentions is a key prerequisite to determining the 
needed services a pervasive space should offer the user in a 
variety of contexts. Several activity recognition approaches 
involving complex activity modeling and recognition 
methodologies have been developed in the past decade [1][2] 
[5][8][11]. These approaches represent significant and 
promising contributions to ubiquitous computing and its 
applications.  However, existing AR technology is not robust 
enough for implementation in the real world. For a robust and 
a scalable AR technology, we need to address two major 
issues. 

A. Activity Model Limitation 
Activity model is an abstract and often simplified 

conceptual representation of human activities in the real world 
[17]. Activity modeling is a systematic approach for 
organizing and representing the contextual aspects of tool use 
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that is both well grounded in an accepted theoretical 
framework and embedded within a proven design method [5]. 
Activity modeling is done based on a set of assumptions 
related to the detailed definition of activities (Activity 
Framework). Activity framework is important because it can 
affect many other activity techniques including activity model 
and AR algorithm.  

Activity theory has been frequently used as a framework for 
AR research [9][12][13]. Even though activity theory is well 
known and is often used in activity recognition research, it is 
not sufficient for real world activity recognition because of 
several limitations such as ambiguity and inaccuracy [5][6].  

Moreover, activity theory was created and developed during 
the 1920s and 1930s by psychologists to understand human 
activities – that is, understanding by humans who have both 
high cognitive and understanding abilities. Modern activity 
recognition techniques are however being employed to 
understand human activities automatically by intelligent 
computing systems. Since cognition by a computing system is 
very different from cognition by a human, it is necessary to 
revise the activity theory, or at least develop a new activity 
framework to extend this theory, to better support 
computer-based recognition systems. The new activity 
framework should capture human activities in the real world 
with greater precision adequate to automated activity 
recognition (AR) system. Then, activity models based on the 
new framework will be more robust as they inherit the 
advantages of the new activity framework.  

B. Research Effort Scalability  
Many AR systems use sensor data gleaned from a smart 

space as input observations to the recognition system.  The AR 
system in this case is directly coupled to the sensor 
environment (the number of sensors and their types) [1]. 
However, the sensor set originally selected for the activity 
may not be adequate or appropriate. It may need to be changed 
or extended. Sometimes, new technologies (e.g., a new 
powerful MEMS sensor or a new nano-sensor) present better 
sensor choices, which could trigger the need for change, 
hoping for better recognition performance [1]. Sensor change 
should be facilitated and made easy – it should not affect the 
AR algorithm or model significantly, or require researchers to 
adjust their models. Currently, and as a direct consequence of 
the limitations of the assumed activity framework, this is 
hardly the case. A scalable AR approach that can 
accommodate changes and experimentation is therefore 
urgently needed.  
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Scalability of existing AR systems is limited due to two 
reasons. Firstly, without careful design consideration (e.g. 
hierarchical structure), many probability-based activity 
recognition algorithms such as the Hidden Markov Model 
(HMM) or Conditional Random Field (CRF) model are not 
scalable because their emissions and observations are closely 
tied to the sensor set [4]. To illustrate, the emission of hidden 
Markov model and conditional random field model are 
significantly dependent on an observation sequence obtained 
from the sensor data. In this case, recognition performance 
will be influenced considerably by any sensor change.  

Secondly, AR algorithms require re-training when sensors 
are changed. Specifically, sensor data needs to be labeled in 
order to glean meaningful information from collected raw 
data. Since this labeling is tedious, many machine learning 
based approaches are developed to automate it. However, 
those approaches themselves require training. Whenever there 
is a sensor change, new training with a new learning data set is 
needed. This re-training requires significant time and effort by 
the researcher, which hampers and limits the scope of possible 
exploration and experimentation. Therefore, new 
methodologies addressing this issue of scalability are needed.  

 
The rest of the paper is organized as follows. Section II 

explains the proposed new activity framework along with an 
algorithm for a scalable AR system. Evaluation, comparison 
and experimental results are presented in Section III. 

II. PROPOSED APPROACH FOR ROBUST ACTIVITY MODELING 
AND RECOGNITION SYSTEM 

Our proposed AR system is composed of a domain specific 
activity model, an AR algorithm and an activity 
knowledgebase. All three subsystems are based on a “generic 
activity framework” shown in Fig. 1. 

 

 
Fig. 1.  Architecture of Activity Recognition System 

 

A.  Generic Activity Framework for Activity Modeling  
The generic activity framework provides a hierarchical 

structure, in which each layer of the structure consists of 
activity components. In total, there are nine primitive 
components in our proposed generic activity framework as 
shown in Fig 2. It is not necessary for every activity to contain 

all nine components as long as the activity is recognized 
clearly. For example, the walking activity does not require any 
object. Descriptions of the nine primitive components are 
summarized below, and described in details in [3]: 

Subject. A subject is an actor of the activity. Subject has an 
important role as an activity classifier especially when there 
are multiple people.  

Time. This is the time when an activity is performed. It 
consists of start time and end time. We can also calculate the 
duration of an activity using time.  

Location. Location is the place where an activity is 
performed. If an activity is performed in several places, 
location will have multiple values.  

Motive. Motive is the reason or objective why a subject 
performs a specific activity. 

Tool. Tool is an artifact that a subject uses to perform an 
activity. Tool provides essential information to classify 
activities. For example, a spoon or a fork is a tool for eating or 
cooking. Therefore, an AR system can expect those activities 
when it detects that a user uses a spoon or fork. 

Motion. Motion. We define motion as the movement 
performed by a subject for handling tools. Motion explains 
what a subject does with a tool. For example, cutting and 
chopping are both performed using the same tool i.e. knife. 
The different motions associated with cutting and chopping 
can be used to differentiate between them. 

Object (Target of actions). An object can also be any 
artifact like tool. But, object is the target of an activity while 
as a subject uses a tool. Distinction between tool and object is 
important for accurate activity recognition because some 
artifacts are both tool and object depending on an activity. 

Order. Order is the sequence in which actions of an activity 
are performed. Usually order does not matter for many 
activities. But order is important for some activities. For 
example, to eat food, we should serve food first and cut, pick 
or scoop food. 

Context. Context provides information about the “vicinity” 
in which an activity is performed. Installed sensors directly 
find some contexts such as temperature or humidity. Other 
primitive components such as time or location contribute 
towards finding contexts. On the other hand, some contexts 
like motive of an activity need some artificial intelligence 
techniques such as reasoning or inference to elicit them.  

Fig. 2 shows a composition diagram of the generic activity 
framework. Rectangles are layers and ellipses are primitive 
components. According to the composition of components, the 
activity framework has a hierarchical structure. And the 
components of each layer are clearly defined. Brief description 
for each layer is given below (more details in [3]): 

Sensors. Sensors are installed in the pervasive space (e.g. a 
smart home) to collect event information of the space. Based 
on the source of sensor data, sensor is classified into four 
types: motion, tool, object, and context sensor.  

Operation. Operation is a composition of tool and motion. 
The user operates tools with specific motion. For example, if 
computer is a tool, some hand or finger motion will be 
performed for typing a keyboard. 



 

Action. Action is determined by combination of operation 
and object. For example, if a user types a command to open a 
file, typing on the keyboard is an operation and the file is an 
object and this combination is open file action.  

 
Fig. 2. Composition diagram of a generic activity framework. It is composed 
of several hierarchies and each hierarchical layer contains classifier 
components. 
 

Activity. Activity is a collection of actions. Activity may 
involve multiple actions. For some activities, the order of 
actions is important. For example, to modify a file, we need to 
open the file first. 

Meta activity. A meta activity is a collection of activities. 
When an activity is complicated, it is composed of several 
simple activities. For instance, a meta activity hygiene is 
composed of washing hands, brushing teeth or taking a bath. 

Classified meta activity. When meta activity is combined 
with context including time or location, the meta activity can 
be more specialized. For example, a meta activity having a 
meal is classified into several meta activities such as having 
breakfast, lunch, or dinner according to time of the activity 
performed.  

The hierarchical structure has several advantages. Firstly, it 
makes the activity recognition system more tolerant to sensor 
environment change [1]. For instance, even if more sensors are 
inserted in the AR system, the upper layers in the hierarchy 
will not be seriously influenced. Secondly, activity recognition 
using hierarchical structure is analogous to the way people 
recognize, so it is easier to design more natural and intuitive 
AR algorithm [3].  

B. Neural Network Based Activity Recognition Algorithm  
We are currently exploring and designing several AR 

algorithms based on our generic activity framework. In this 
paper we report on one of these AR algorithms that utilizes a 
Multi Layer Neural Network (MLNNK). We chose MLNNK 
because it possesses a hierarchical structure that maps very 
well with the generic activity framework and its algorithm 
structure. Fig. 3 illustrates clearly how layers of our generic 
activity framework are directly mapped to the layers of the 

MLNNK network. Also, MLNNK is a localized neural 
network, which means it has less training burden than a 
unified neural network. A unified (single) neural network that 
captures all activities is not feasible because of the high 
computational cost and time involved. For example, when two 
unrelated activities such as cooking and laundry are 
performed, their inputs are also unrelated. However, in a 
unified neural network, these inputs are computed together. 
Therefore, cooking activity should compute laundry sensor 
data and vice versa. Moreover, especially if there are hundreds 
of target activities of an AR system, even one sensor change 
can overwhelm the system because the system should find the 
relationship between the new sensor and all target activities. 
This explains why neural networks are not commonly used in 
activity recognition.  

To adopt neural networks while eliminating the unnecessary 
waste of computational resources, we design our AR system in 
a way that allows unrelated activities and meta activities to 
have their separate neural networks so that these networks 
focus on more relevant relationships. We shall refer to these 
networks as localized neural networks. Fig. 3(a) shows an 
example of a two layer neural network. In this example, there 
are three localized neural networks (or sub-neural network) in 
activity layer and two localized neural networks in meta 
activity layer. Activity layer is the output of the first hidden 
layer and the input for the second hidden layer. A neural 
network computes an output according to an activation 
function as shown in Fig. 3(b).  

 

 
(a) 

 

(b) 
Fig. 3. Localized Activity Recognition Neural Network. It is composed of 
several sub-neural networks, which are localized according to the relationship 
between inputs and outputs [10].   
 
 One major advantage of MLNNK is that it considers only 
effective relationships for activity recognition so that it can 
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reduce error.  Both HMM and CRF are time sequential 
graphical models, which are popularly used for activity 
recognition. HMM requires finding all possible orders 
between input actions. Due to the complex nature of human 
activities, finding all possible orders is cumbersome for a 
practical system. Furthermore, missing orders will cause the 
HMM to produce errors. CRF solves this problem by 
neglecting the order constraint.  CRF does not consider order 
and it considers only state and transition relationships. The 
former is the relationship between input observation (actions 
or activity in Fig. 3) and output (activity or meta activity in 
Fig. 3). The latter is the relationship between output activities 
in the same layer (relationship between previous activities at 
time slice t and next activities at time slice t+1). CRF could 
outperform HMM even though it removes orders from an 
activity model [8]. Similarly, we can remove transition 
relationships of CRF because it is not only difficult but also 
meaningless to enumerate every possible relationship unless 
target recognition scope is small and its relationships are clear. 
For example, in highly abstract recognition domains such as 
daily living activities, after getting up in the morning, we can 
do a lot of things such as eating, cooking, taking a bath, 
running, etc. Enumerating all possible relationships is difficult 
and if there is a missing relationship, it will increase the error 
rate. MLNNK ignores the transition relationship between 
activities and considers only state relationships. Therefore, 
MLNNK is expected to outperform CRF by removing the 
unnecessary constraints.  

C. Supporting Scalability of MLNNK using Knowledgebase  
When sensor environment of an AR system changes 

because of insertion or deletion of sensors, an AR system 
needs to change a neural network with the new sensor. Also it 
needs to retrain the neural network with new training data. 
These tasks represent a huge burden for many machine 
learning based algorithms because training and re-training 
require a lot of human effort. Our AR system supports sensor 
changes by avoiding human intervention and re-training, using 
as an alternative approach, a knowledgebase. In the following, 
we describe activity knowledgebase first, and then show how 
the knowledgebase can be utilized by the MLNNK algorithm 
during sensor changes and neural network training.  

Activity Knowledgebase (KB). An activity knowledgebase 
defines and stores activity entities such as action, activity or 
meta activity and precise relationships between the various 
activity layers. This knowledge is used to maintain a multi- 
layer neural network. It is also used to generate training data 
for the neural network. The followings are parts of the activity 
KB schema. 
Sensor(sensor_id, sensor_type, type_name, value_type,  
            min_value, max_value, installed_place) 
Tool(name, feature_function) 
Motion(name, type, feature_function) 
Object(name, feature_function) 
Action(action_name, motion_name, tool_name) 
Activity(activity_name, action_name, object_name) 
MetaActivity(meta_activity_name, activity_name, context). 
 

Support of sensor insertion and Deletion. When a system 
detects a newly added sensor, the AR system sends queries to 
the knowledgebase to obtain the actions, activities, and meta 
activities corresponding the new sensor, to build a new 
sub-neural network. Then, the new and existing neural 
networks are merged together. Therefore, sensor insertion 
affects only an isolated part of the neural network. If the new 
sensor cannot be found in the knowledgebase, the user is 
prompted to edit the knowledgebase and add the required 
information about the sensor, including the relationships 
between the sensor and motion, tool, object and action. When 
a sensor is deleted, it doesn’t have any effect on the neural 
network. The action related to the sensor is simply inactivated. 
Only when the activity model is changed, the neural network 
is affected.  

 
TABLE I 

ERROR BACK PROPAGATION ALGORITHM  [10] 

I (Input data ), H1 (1st hidden layer), A (Activity),  
H2 ( 2nd hidden layer), M (Meta_activity) 
s, t, v, w: weight vectors of each layer, (see Fig. 3)          
d1, d2: desired activity, meta_activity of the input 
p; the number of training data pattern pairs 
E1, E2: Output error, initially zero 
m1, m2: the number of hidden units in each hidden layer 
 
(1) Assign initial weight (s, t, v, w) with random value.     
(2) Set learning rate α ( >0) and maximum error (Emax). 
(3) For each training pattern pair (x, d1, d2),  
      Do step 4-8 until  k = p. (x: training pattern). 
(4) Compute output H1, A, H2, M (see Fig. 3. (b)).     
(5) Compute output errors E1, E2. 
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+ E2      
(6) Calculate the error signal 
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δActivity = d1 − A( )A 1− A( )

δMetaActivity = d2 −M( )M 1−M( )

δHidden1 = H1 1−H1( ) δActivity
i=1
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(7) Update weights s, t, v, w. 
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sk+1 = sk + Δsk = sk +αδMetaActivityH2
k

t k+1 = t k + Δt k = t k +αδHidden2
Ak

vk+1 = vk + Δvk = vk +αδActivityH1
k

wk+1 = wk + Δwk = wk +αδHidden1
Ik    

(8) Increase a counter and go to Step 4. 
     

€ 

k = k +1 
(9) Test stop condition.  
    If (E1 < Emax and E2< Emax) stop else, E1=0, E2 = 0 

 
MLNNK Training. When a new sensor is installed, the 

neural network needs to be retrained with new training data. 
Generating a new training data requires a lot of human effort 
as we mentioned earlier. By utilizing the knowledgebase, our 
AR system is able to generate training data automatically, 



 

using information about the types of sensors used in the target 
smart space. In other words, we store the sensor’s information 
such as the range of the values of the sensor data, feature 
function, and possible install locations. Using this knowledge, 
we can generate possible combinations of data set that sensor 
set produce. For example, if we install a new snoring sensor 
for recognizing a sleep apnea activity, a possible location of 
the sensor is at the bedside in the bedroom. Also, we can find 
the features of the snoring sensor including value range from 
vendor datasheet (e.g. If the sensor value is 0 for no snoring 
and 1 for yes snoring). We store this information into a 
knowledgebase. Later when an AR system finds the snoring 
sensor installed in bedroom, it queries the knowledgebase, and 
retrieves all related information such as sensor information 
and model information like related actions and activities. 
Then, we can generate training data automatically with this 
information. Table I shows the training algorithm, which is 
based on the error back propagation algorithm.  

 

III. EXPERIMENTS AND RESULTS 
In this section, we validate our approach through 

experimentation. Our evaluation goal is to answer the 
following two questions.  

(1) How accurate is our activity recognition algorithm and 
approach and how does its accuracy performance compare to 
other algorithms/approaches? 

(2) How scalable is our approach to sensor changes? And 
how does its scalability in terms of human effort compares 
with other approaches?         

To perform this evaluation study, we used a real world data 
set, which is provided by University of Amsterdam (we will 
refer to it in this paper as the Amsterdam dataset) [8]. This 
data set records activities of daily living performed by a 
26-year-old man living in a three-bedroom apartment for 28 
days. Sensors are installed in several places in the apartment 
including doors, cup-boards, refrigerator, and toilet flush. 
Activities (such as ‘Leaving’, ‘Toileting’, ‘Showering’, 
‘Sleeping’, ‘Drink’, ‘Breakfast’, and ‘Dinner’) are annotated 
by the subject himself using a Bluetooth headset [16] and used 
to compare the performance of activity recognition system. 

A.  Experiment Setup 
As a first step, we built an activity knowledgebase suitable 

for the Amsterdam dataset. The knowledgebase classified 
activities and meta activities as shown in Table II.  

TABLE II 
META ACTIVITIES AND ACTIVITIES 

Meta Activity Activity 
Cleaning   WashingDishes 

GoingOut LeavingHouse 

Hygiene Drinking, GoingToBed, 
TakingShower, Toileting 

Laundry WashingClothes 

PreparingBreakfast Cooking at Morning 

PreparingLunch Cooking at Lunch 

PreparingDinner Cooking at Dinner 

We then implemented an activity recognition system 
using the MLNNK algorithm. The AR system collects 
sensor data periodically according to a time slice (1 minute) 
and sends the data to the neural network, which recognizes 
activities from the data. The recognized activities are 
compared with the activities annotated by a subject to 
measure accuracy of activity recognition algorithm. 

B.  Experiment 1: Accuracy Performance 
To measure the performance of our AR approach/system, we 

measured precision, recall, and accuracy in terms of true 
positive, true negative, false positive, and false negative [7]. 
These statistical measures are defined below: 

 

€ 

Precision =
tp

tp+ fp
                             (1) 

            
             

€ 

Recall =
tp

tp+ fn
                               (2) 

 

€ 

Accuracy =
tp + tn

tp+ tn + fp+ fn
                     (3) 

 
True positive (tp):  the number of correctly recognized   
                             activities. 
True negative (tn):  the number of gaps between activities,  
                               which had no activities. 
False positive (fp):  the number of activities that are not  
                               actually performed but recognized. 
False negative (fn): the number of activities that are not  
                                recognized even though they were  

actually performed.  
 
Table III shows the recognition performance of our 

approach. False positive is found to occur more frequently 
than false negative. We can see that meta activity recognition 
performance is not much different from activity recognition 
performance. This is not surprising because activity is input 
for recognizing meta activity, and meta activity recognition 
performance is highly depending on activity recognition 
accuracy. 

 
TABLE III 

ACTIVITY RECOGNITION PERFORMANCE 

 Meta Activity Activity 

False positive 8.6 % 9.0 % 

False Negative 2.1 % 2.1 % 

Precision 87.7 % 87.4 % 

Recall 96.7 % 96.6 % 

Accuracy 89.9 % 88.7 % 

Actual Accuracy 92.5 % 92.0 % 

 
We compared the performance of our approach with HMM 

and CRF model based approaches as shown in Table IV. We 
utilized two statistical measures defined in [8]: time slice 
accuracy and class accuracy. 
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In Equation (4) and (5), [a=b] is a binary indicator yielding 1 

when true, 0 otherwise. N is the total number of time slices, C 
is the number of different activity types (classes) and Nc is the 
total number of time slices for class c [8]. Timeslice accuracy 
counts true positives within a time slice. It offers a more 
meaningful measure of recognition performance than global 
accuracy especially when some activity classes are more 
frequent than others [8]. Class accuracy averages time slice 
accuracy over all activity types, which is bound to report 
lower numbers than time slice but is more representative of 
actual model performance. HMM and CRF performance has 
been compared in Table IV using the Timeslice and Class 
accuracy over the Amsterdam dataset. 

Table IV shows the performance comparison among the 
three approaches. Our approach, MLNNK, shows higher 
accuracy than HMM and CRF for both Timeslice and Class. 
The Class accuracy is over 23% higher than CRF and about 
14.6% higher than HMM. Another observation is that 
MLNNK shows similar performance for Timeslice and Class 
whereas Timeslice performance is higher than Class for HMM 
and CRF. There are a couple of reasons for this performance 
difference. First, the performance between Timeslice and 
Class in CRF and HMM are different because their training 
data are collected in a biased situation. In reality, some 
activities will be performed frequently whereas other activities 
will be rare. Then, the rare activity classes take more time to 
be trained because they need to wait until their training data is 
collected [8]. However, Timeslice does not have this 
difference. Therefore, the overall performance of Timeslice is 
higher than that of Class.  

However, MLNNK shows similar performance for both 
Timeslice and Class. It is because MLNNK training is 
different from other approaches. MLNNK does not wait until 
training data is collected. In other words, since our AR system 
can produce initial training data using sensor and activity 
model information in knowledgebase, every class is trained 
almost equally. Also, because MLNNK is a localized network, 
the training data is not huge unlike a unified neural network. 
Therefore, MLNNK can start training every class from the 
beginning and shows similar performance. 

 
TABLE IV 

ACTIVITY RECOGNITION PERFORMANCE COMPARISON WITH OTHER MODELS 

 Time Slice Class 

Hidden Markov Model [6] 94.5% 79.4% 

Conditional Random Field Model [6] 95.6% 70.8% 

Multi-Layer Neural Network (MLNNK) 96.9% 94.0% 

 

Table V dissects the accuracy for each activity class. 
PreparingBreakfast has the worst accuracy while 
LeavingHouse, GoingToBed, and PreparingDinner have the 
best accuracy. This result is similar to previous experiments 
reported in [8]. 

 
TABLE V 

DETAILED CLASS ACCURACY RESULT  
Class Accuracy 

LeavingHouse 1.00 

Toileting 0.94 

TakingShower,  0.95 

GoingToBed, 1.00 

PreparingBreakfast 0.76 

PreparingDinner 1.00 

Drinking 0.91 

C.  Experiment 2: Research Effort Scalability 
To examine the scalability of our approach in comparison 

with others, we accounted for and compared the human effort 
required in updating the model in response to sensor changes. 
As mentioned earlier in the paper, this scalability is very 
important to researchers who wish to experiment with various 
combinations of sensors to discover the sensor set that boosts 
the AR performance. We considered only sensor insertion in 
this study. Sensor deletion and sensor attribute changes could 
be studied similarly. 

To measure human effort of our MLNNK approach, we 
counted the number of changes we had to make to the 
knowledgebase and MLNNK. We also estimated the human 
effort required in updating the CRF model for the same set of 
sensor changes we applied to our approach. Model changes in 
MLNNK means the number new relationships that must be 
added by the researcher to the knowledgebase (through a GUI 
interface), for each sensor insertion. We inserted 30 new 
sensors one by one, in a random order. We then counted the 
number of changes that needed to be made for both 
approaches. We used three sets of 30 sensors (each), repeated 
this experiment three times and calculated an average. For the 
MLNNK approach actual changes were made and counted. 
For the CRF approach, a graph was manually maintained and 
manipulated and every change to the graph was counted.  

Fig. 4 and Fig 5 show the result of this experiment. Inserting 
all 30 sensors costs 105 changes under MLNNK, and 250 
changes under CRF, an almost 58% advantage for MLNNK 
(Fig. 5). Also it was observed that under MLNNK, initial 
human effort was higher than CRF because of the initial 
updating cost of activity knowledgebase. However, human 
effort in CRF increased with the insertion of more sensors, and 
it overwhelmed the effort in MLNNK (Fig. 4). This is because 
MLNNK utilizes the knowledge such that some of the inserted 
sensors do not have any relationships with some of the 
activities. For example, insertion of a sensor installed in a cup 
is not related to sleeping activity. Since MLNNK has this 
knowledge (of no relationship), it could avoid unnecessary 
changes and hence reduce the number of changes per single 
sensor insertion. However, without knowledgebase, CRF had, 



 

by definition, to consider all possible relationships between 
the new sensor and existing activities. 

 
 

 
Fig. 4. Human effort and sensor changes 
 
 

 
Fig. 5. Accumulated human effort and sensor changes 
 

IV. CONCLUSION 
This paper introduces a practical and robust activity 

recognition approach based on a generic activity framework, 
scalable AR algorithm and AR knowledgebase. A scalable AR 
algorithm is introduced based on the activity framework. The 
algorithm utilizes an activity knowledgebase to achieve higher 
levels of scalability and to enhance recognition performance. 
Our experimental results show the advantage of our approach 
over well established ones: Non Hierarchical HMM and CRF. 
Results also prove that utilizing invariant knowledge about 
human activities and their observation subsystems does 
improve the activity recognition performance and reduces the 
user’s efforts required after sensor changes for model change 
and retraining, which boosts effort scalability. 
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