

Abstract—We point to limitations inherent in the well accepted

and assumed activity theory that underpins most of the current
body of research in human activity recognition. We briefly
present a generic activity model as a superior alternative and
show how it could be used advantageously (over the traditional
model) in neural-network based recognizers. We also show how
the hierarchical aspects of our generic model allow for semantics
to be used to decouple the observation sub-system (sensor set)
from the rest of the activity model. We demonstrate the value of
this decoupling by experimentally comparing the level of effort
needed in making sensor changes and the ramifications of such
changes on model updates. We compare the level of effort under
the original and our alternative model.

Index Terms—Activity Recognition, Activity Modeling,
Semantic based Activity Recognition, Activity Recognition
Performance.

I. INTRODUCTION
CTIVITY recognition (AR) research is critical to the
enablement of human centric computing and its broad

range of ubiquitous applications. Understanding human
desires and intentions is a key prerequisite to determining the
needed services a pervasive space should offer the user in a
variety of contexts. Several activity recognition approaches
involving complex activity modeling and recognition
methodologies have been developed in the past decade [1][2]
[5][8][11]. These approaches represent significant and
promising contributions to ubiquitous computing and its
applications. However, existing AR technology is not robust
enough for implementation in the real world. For a robust and
a scalable AR technology, we need to address two major
issues.

A. Activity Model Limitation
Activity model is an abstract and often simplified

conceptual representation of human activities in the real world
[17]. Activity modeling is a systematic approach for
organizing and representing the contextual aspects of tool use

This work was supported by the National Institutes on Health by a Grant

number 5R21DA024294.
Eunju Kim is with the Mobile and Pervasive Computing Laboratory,

Computer & Information Science & Engineering Department, University of
Florida, Gainesville, FL 32611, e-mail: ejkim@ cise.ufl.edu).

Sumi Helal, directs the Mobile and Pervasive Computing Laboratory,
Computer & Information Science & Engineering Department, University of
Florida, Gainesville, FL 32611, e-mail: helal@ cise.ufl.edu).

that is both well grounded in an accepted theoretical
framework and embedded within a proven design method [5].
Activity modeling is done based on a set of assumptions
related to the detailed definition of activities (Activity
Framework). Activity framework is important because it can
affect many other activity techniques including activity model
and AR algorithm.

Activity theory has been frequently used as a framework for
AR research [9][12][13]. Even though activity theory is well
known and is often used in activity recognition research, it is
not sufficient for real world activity recognition because of
several limitations such as ambiguity and inaccuracy [5][6].

Moreover, activity theory was created and developed during
the 1920s and 1930s by psychologists to understand human
activities – that is, understanding by humans who have both
high cognitive and understanding abilities. Modern activity
recognition techniques are however being employed to
understand human activities automatically by intelligent
computing systems. Since cognition by a computing system is
very different from cognition by a human, it is necessary to
revise the activity theory, or at least develop a new activity
framework to extend this theory, to better support
computer-based recognition systems. The new activity
framework should capture human activities in the real world
with greater precision adequate to automated activity
recognition (AR) system. Then, activity models based on the
new framework will be more robust as they inherit the
advantages of the new activity framework.

B. Research Effort Scalability
Many AR systems use sensor data gleaned from a smart

space as input observations to the recognition system. The AR
system in this case is directly coupled to the sensor
environment (the number of sensors and their types) [1].
However, the sensor set originally selected for the activity
may not be adequate or appropriate. It may need to be changed
or extended. Sometimes, new technologies (e.g., a new
powerful MEMS sensor or a new nano-sensor) present better
sensor choices, which could trigger the need for change,
hoping for better recognition performance [1]. Sensor change
should be facilitated and made easy – it should not affect the
AR algorithm or model significantly, or require researchers to
adjust their models. Currently, and as a direct consequence of
the limitations of the assumed activity framework, this is
hardly the case. A scalable AR approach that can
accommodate changes and experimentation is therefore
urgently needed.

Practical and Robust Activity
Modeling and Recognition

Eunju Kim and Sumi Helal, Member, IEEE

A

Scalability of existing AR systems is limited due to two
reasons. Firstly, without careful design consideration (e.g.
hierarchical structure), many probability-based activity
recognition algorithms such as the Hidden Markov Model
(HMM) or Conditional Random Field (CRF) model are not
scalable because their emissions and observations are closely
tied to the sensor set [4]. To illustrate, the emission of hidden
Markov model and conditional random field model are
significantly dependent on an observation sequence obtained
from the sensor data. In this case, recognition performance
will be influenced considerably by any sensor change.

Secondly, AR algorithms require re-training when sensors
are changed. Specifically, sensor data needs to be labeled in
order to glean meaningful information from collected raw
data. Since this labeling is tedious, many machine learning
based approaches are developed to automate it. However,
those approaches themselves require training. Whenever there
is a sensor change, new training with a new learning data set is
needed. This re-training requires significant time and effort by
the researcher, which hampers and limits the scope of possible
exploration and experimentation. Therefore, new
methodologies addressing this issue of scalability are needed.

The rest of the paper is organized as follows. Section II

explains the proposed new activity framework along with an
algorithm for a scalable AR system. Evaluation, comparison
and experimental results are presented in Section III.

II. PROPOSED APPROACH FOR ROBUST ACTIVITY MODELING
AND RECOGNITION SYSTEM

Our proposed AR system is composed of a domain specific
activity model, an AR algorithm and an activity
knowledgebase. All three subsystems are based on a “generic
activity framework” shown in Fig. 1.

Fig. 1. Architecture of Activity Recognition System

A. Generic Activity Framework for Activity Modeling
The generic activity framework provides a hierarchical

structure, in which each layer of the structure consists of
activity components. In total, there are nine primitive
components in our proposed generic activity framework as
shown in Fig 2. It is not necessary for every activity to contain

all nine components as long as the activity is recognized
clearly. For example, the walking activity does not require any
object. Descriptions of the nine primitive components are
summarized below, and described in details in [3]:

Subject. A subject is an actor of the activity. Subject has an
important role as an activity classifier especially when there
are multiple people.

Time. This is the time when an activity is performed. It
consists of start time and end time. We can also calculate the
duration of an activity using time.

Location. Location is the place where an activity is
performed. If an activity is performed in several places,
location will have multiple values.

Motive. Motive is the reason or objective why a subject
performs a specific activity.

Tool. Tool is an artifact that a subject uses to perform an
activity. Tool provides essential information to classify
activities. For example, a spoon or a fork is a tool for eating or
cooking. Therefore, an AR system can expect those activities
when it detects that a user uses a spoon or fork.

Motion. Motion. We define motion as the movement
performed by a subject for handling tools. Motion explains
what a subject does with a tool. For example, cutting and
chopping are both performed using the same tool i.e. knife.
The different motions associated with cutting and chopping
can be used to differentiate between them.

Object (Target of actions). An object can also be any
artifact like tool. But, object is the target of an activity while
as a subject uses a tool. Distinction between tool and object is
important for accurate activity recognition because some
artifacts are both tool and object depending on an activity.

Order. Order is the sequence in which actions of an activity
are performed. Usually order does not matter for many
activities. But order is important for some activities. For
example, to eat food, we should serve food first and cut, pick
or scoop food.

Context. Context provides information about the “vicinity”
in which an activity is performed. Installed sensors directly
find some contexts such as temperature or humidity. Other
primitive components such as time or location contribute
towards finding contexts. On the other hand, some contexts
like motive of an activity need some artificial intelligence
techniques such as reasoning or inference to elicit them.

Fig. 2 shows a composition diagram of the generic activity
framework. Rectangles are layers and ellipses are primitive
components. According to the composition of components, the
activity framework has a hierarchical structure. And the
components of each layer are clearly defined. Brief description
for each layer is given below (more details in [3]):

Sensors. Sensors are installed in the pervasive space (e.g. a
smart home) to collect event information of the space. Based
on the source of sensor data, sensor is classified into four
types: motion, tool, object, and context sensor.

Operation. Operation is a composition of tool and motion.
The user operates tools with specific motion. For example, if
computer is a tool, some hand or finger motion will be
performed for typing a keyboard.

Action. Action is determined by combination of operation
and object. For example, if a user types a command to open a
file, typing on the keyboard is an operation and the file is an
object and this combination is open file action.

Fig. 2. Composition diagram of a generic activity framework. It is composed
of several hierarchies and each hierarchical layer contains classifier
components.

Activity. Activity is a collection of actions. Activity may
involve multiple actions. For some activities, the order of
actions is important. For example, to modify a file, we need to
open the file first.

Meta activity. A meta activity is a collection of activities.
When an activity is complicated, it is composed of several
simple activities. For instance, a meta activity hygiene is
composed of washing hands, brushing teeth or taking a bath.

Classified meta activity. When meta activity is combined
with context including time or location, the meta activity can
be more specialized. For example, a meta activity having a
meal is classified into several meta activities such as having
breakfast, lunch, or dinner according to time of the activity
performed.

The hierarchical structure has several advantages. Firstly, it
makes the activity recognition system more tolerant to sensor
environment change [1]. For instance, even if more sensors are
inserted in the AR system, the upper layers in the hierarchy
will not be seriously influenced. Secondly, activity recognition
using hierarchical structure is analogous to the way people
recognize, so it is easier to design more natural and intuitive
AR algorithm [3].

B. Neural Network Based Activity Recognition Algorithm
We are currently exploring and designing several AR

algorithms based on our generic activity framework. In this
paper we report on one of these AR algorithms that utilizes a
Multi Layer Neural Network (MLNNK). We chose MLNNK
because it possesses a hierarchical structure that maps very
well with the generic activity framework and its algorithm
structure. Fig. 3 illustrates clearly how layers of our generic
activity framework are directly mapped to the layers of the

MLNNK network. Also, MLNNK is a localized neural
network, which means it has less training burden than a
unified neural network. A unified (single) neural network that
captures all activities is not feasible because of the high
computational cost and time involved. For example, when two
unrelated activities such as cooking and laundry are
performed, their inputs are also unrelated. However, in a
unified neural network, these inputs are computed together.
Therefore, cooking activity should compute laundry sensor
data and vice versa. Moreover, especially if there are hundreds
of target activities of an AR system, even one sensor change
can overwhelm the system because the system should find the
relationship between the new sensor and all target activities.
This explains why neural networks are not commonly used in
activity recognition.

To adopt neural networks while eliminating the unnecessary
waste of computational resources, we design our AR system in
a way that allows unrelated activities and meta activities to
have their separate neural networks so that these networks
focus on more relevant relationships. We shall refer to these
networks as localized neural networks. Fig. 3(a) shows an
example of a two layer neural network. In this example, there
are three localized neural networks (or sub-neural network) in
activity layer and two localized neural networks in meta
activity layer. Activity layer is the output of the first hidden
layer and the input for the second hidden layer. A neural
network computes an output according to an activation
function as shown in Fig. 3(b).

(a)

(b)
Fig. 3. Localized Activity Recognition Neural Network. It is composed of
several sub-neural networks, which are localized according to the relationship
between inputs and outputs [10].

 One major advantage of MLNNK is that it considers only
effective relationships for activity recognition so that it can

€

NETH11
= Action1,Action2,Action3[]

w11

w12

w13

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, H11 = f NETH11() = 1+ exp−NETH11()

−1

NETH12
= Action1, Action2, Action3[]

w21

w22

w23

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, H12 = f NETH12() = 1+ exp−NETH12()

−1

NETActivity1 = H11,H12[]
v21
v22

⎡

⎣
⎢

⎤

⎦
⎥ , Activity1 = f NET

Activity1() = 1+ exp−NETActivity1()−1

reduce error. Both HMM and CRF are time sequential
graphical models, which are popularly used for activity
recognition. HMM requires finding all possible orders
between input actions. Due to the complex nature of human
activities, finding all possible orders is cumbersome for a
practical system. Furthermore, missing orders will cause the
HMM to produce errors. CRF solves this problem by
neglecting the order constraint. CRF does not consider order
and it considers only state and transition relationships. The
former is the relationship between input observation (actions
or activity in Fig. 3) and output (activity or meta activity in
Fig. 3). The latter is the relationship between output activities
in the same layer (relationship between previous activities at
time slice t and next activities at time slice t+1). CRF could
outperform HMM even though it removes orders from an
activity model [8]. Similarly, we can remove transition
relationships of CRF because it is not only difficult but also
meaningless to enumerate every possible relationship unless
target recognition scope is small and its relationships are clear.
For example, in highly abstract recognition domains such as
daily living activities, after getting up in the morning, we can
do a lot of things such as eating, cooking, taking a bath,
running, etc. Enumerating all possible relationships is difficult
and if there is a missing relationship, it will increase the error
rate. MLNNK ignores the transition relationship between
activities and considers only state relationships. Therefore,
MLNNK is expected to outperform CRF by removing the
unnecessary constraints.

C. Supporting Scalability of MLNNK using Knowledgebase
When sensor environment of an AR system changes

because of insertion or deletion of sensors, an AR system
needs to change a neural network with the new sensor. Also it
needs to retrain the neural network with new training data.
These tasks represent a huge burden for many machine
learning based algorithms because training and re-training
require a lot of human effort. Our AR system supports sensor
changes by avoiding human intervention and re-training, using
as an alternative approach, a knowledgebase. In the following,
we describe activity knowledgebase first, and then show how
the knowledgebase can be utilized by the MLNNK algorithm
during sensor changes and neural network training.

Activity Knowledgebase (KB). An activity knowledgebase
defines and stores activity entities such as action, activity or
meta activity and precise relationships between the various
activity layers. This knowledge is used to maintain a multi-
layer neural network. It is also used to generate training data
for the neural network. The followings are parts of the activity
KB schema.
Sensor(sensor_id, sensor_type, type_name, value_type,
 min_value, max_value, installed_place)
Tool(name, feature_function)
Motion(name, type, feature_function)
Object(name, feature_function)
Action(action_name, motion_name, tool_name)
Activity(activity_name, action_name, object_name)
MetaActivity(meta_activity_name, activity_name, context).

Support of sensor insertion and Deletion. When a system
detects a newly added sensor, the AR system sends queries to
the knowledgebase to obtain the actions, activities, and meta
activities corresponding the new sensor, to build a new
sub-neural network. Then, the new and existing neural
networks are merged together. Therefore, sensor insertion
affects only an isolated part of the neural network. If the new
sensor cannot be found in the knowledgebase, the user is
prompted to edit the knowledgebase and add the required
information about the sensor, including the relationships
between the sensor and motion, tool, object and action. When
a sensor is deleted, it doesn’t have any effect on the neural
network. The action related to the sensor is simply inactivated.
Only when the activity model is changed, the neural network
is affected.

TABLE I

ERROR BACK PROPAGATION ALGORITHM [10]

I (Input data), H1 (1st hidden layer), A (Activity),
H2 (2nd hidden layer), M (Meta_activity)
s, t, v, w: weight vectors of each layer, (see Fig. 3)
d1, d2: desired activity, meta_activity of the input
p; the number of training data pattern pairs
E1, E2: Output error, initially zero
m1, m2: the number of hidden units in each hidden layer

(1) Assign initial weight (s, t, v, w) with random value.
(2) Set learning rate α (>0) and maximum error (Emax).
(3) For each training pattern pair (x, d1, d2),
 Do step 4-8 until k = p. (x: training pattern).
(4) Compute output H1, A, H2, M (see Fig. 3. (b)).
(5) Compute output errors E1, E2.

€

E1 =
1
2
d1 − A()2

+ E1, E2 =
1
2
d2 − A()2

+ E2
(6) Calculate the error signal

€

δActivity = d1 − A()A 1− A()

δMetaActivity = d2 −M()M 1−M()

δHidden1 = H1 1−H1() δActivity
i=1

m1

∑ v

δHidden2 = H2 1−H2() δMetaActivity
i=1

m2

∑ s

(7) Update weights s, t, v, w.

€

sk+1 = sk + Δsk = sk +αδMetaActivityH2
k

t k+1 = t k + Δt k = t k +αδHidden2
Ak

vk+1 = vk + Δvk = vk +αδActivityH1
k

wk+1 = wk + Δwk = wk +αδHidden1
Ik

(8) Increase a counter and go to Step 4.

€

k = k +1
(9) Test stop condition.
 If (E1 < Emax and E2< Emax) stop else, E1=0, E2 = 0

MLNNK Training. When a new sensor is installed, the

neural network needs to be retrained with new training data.
Generating a new training data requires a lot of human effort
as we mentioned earlier. By utilizing the knowledgebase, our
AR system is able to generate training data automatically,

using information about the types of sensors used in the target
smart space. In other words, we store the sensor’s information
such as the range of the values of the sensor data, feature
function, and possible install locations. Using this knowledge,
we can generate possible combinations of data set that sensor
set produce. For example, if we install a new snoring sensor
for recognizing a sleep apnea activity, a possible location of
the sensor is at the bedside in the bedroom. Also, we can find
the features of the snoring sensor including value range from
vendor datasheet (e.g. If the sensor value is 0 for no snoring
and 1 for yes snoring). We store this information into a
knowledgebase. Later when an AR system finds the snoring
sensor installed in bedroom, it queries the knowledgebase, and
retrieves all related information such as sensor information
and model information like related actions and activities.
Then, we can generate training data automatically with this
information. Table I shows the training algorithm, which is
based on the error back propagation algorithm.

III. EXPERIMENTS AND RESULTS
In this section, we validate our approach through

experimentation. Our evaluation goal is to answer the
following two questions.

(1) How accurate is our activity recognition algorithm and
approach and how does its accuracy performance compare to
other algorithms/approaches?

(2) How scalable is our approach to sensor changes? And
how does its scalability in terms of human effort compares
with other approaches?

To perform this evaluation study, we used a real world data
set, which is provided by University of Amsterdam (we will
refer to it in this paper as the Amsterdam dataset) [8]. This
data set records activities of daily living performed by a
26-year-old man living in a three-bedroom apartment for 28
days. Sensors are installed in several places in the apartment
including doors, cup-boards, refrigerator, and toilet flush.
Activities (such as ‘Leaving’, ‘Toileting’, ‘Showering’,
‘Sleeping’, ‘Drink’, ‘Breakfast’, and ‘Dinner’) are annotated
by the subject himself using a Bluetooth headset [16] and used
to compare the performance of activity recognition system.

A. Experiment Setup
As a first step, we built an activity knowledgebase suitable

for the Amsterdam dataset. The knowledgebase classified
activities and meta activities as shown in Table II.

TABLE II
META ACTIVITIES AND ACTIVITIES

Meta Activity Activity
Cleaning WashingDishes

GoingOut LeavingHouse

Hygiene Drinking, GoingToBed,
TakingShower, Toileting

Laundry WashingClothes

PreparingBreakfast Cooking at Morning

PreparingLunch Cooking at Lunch

PreparingDinner Cooking at Dinner

We then implemented an activity recognition system
using the MLNNK algorithm. The AR system collects
sensor data periodically according to a time slice (1 minute)
and sends the data to the neural network, which recognizes
activities from the data. The recognized activities are
compared with the activities annotated by a subject to
measure accuracy of activity recognition algorithm.

B. Experiment 1: Accuracy Performance
To measure the performance of our AR approach/system, we

measured precision, recall, and accuracy in terms of true
positive, true negative, false positive, and false negative [7].
These statistical measures are defined below:

€

Precision =
tp

tp+ fp
 (1)

€

Recall =
tp

tp+ fn
 (2)

€

Accuracy =
tp + tn

tp+ tn + fp+ fn
 (3)

True positive (tp): the number of correctly recognized
 activities.
True negative (tn): the number of gaps between activities,
 which had no activities.
False positive (fp): the number of activities that are not
 actually performed but recognized.
False negative (fn): the number of activities that are not
 recognized even though they were

actually performed.

Table III shows the recognition performance of our

approach. False positive is found to occur more frequently
than false negative. We can see that meta activity recognition
performance is not much different from activity recognition
performance. This is not surprising because activity is input
for recognizing meta activity, and meta activity recognition
performance is highly depending on activity recognition
accuracy.

TABLE III

ACTIVITY RECOGNITION PERFORMANCE

 Meta Activity Activity

False positive 8.6 % 9.0 %

False Negative 2.1 % 2.1 %

Precision 87.7 % 87.4 %

Recall 96.7 % 96.6 %

Accuracy 89.9 % 88.7 %

Actual Accuracy 92.5 % 92.0 %

We compared the performance of our approach with HMM

and CRF model based approaches as shown in Table IV. We
utilized two statistical measures defined in [8]: time slice
accuracy and class accuracy.

€

Timeslice =
inferred(n) = true(n)[]

n=1

N
∑

N
 (4)

€

Class =
1
C

inferredc (n) = truec (n)[]
n=1

Nc∑
Nc

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪ c=1

Nc∑ (5)

In Equation (4) and (5), [a=b] is a binary indicator yielding 1

when true, 0 otherwise. N is the total number of time slices, C
is the number of different activity types (classes) and Nc is the
total number of time slices for class c [8]. Timeslice accuracy
counts true positives within a time slice. It offers a more
meaningful measure of recognition performance than global
accuracy especially when some activity classes are more
frequent than others [8]. Class accuracy averages time slice
accuracy over all activity types, which is bound to report
lower numbers than time slice but is more representative of
actual model performance. HMM and CRF performance has
been compared in Table IV using the Timeslice and Class
accuracy over the Amsterdam dataset.

Table IV shows the performance comparison among the
three approaches. Our approach, MLNNK, shows higher
accuracy than HMM and CRF for both Timeslice and Class.
The Class accuracy is over 23% higher than CRF and about
14.6% higher than HMM. Another observation is that
MLNNK shows similar performance for Timeslice and Class
whereas Timeslice performance is higher than Class for HMM
and CRF. There are a couple of reasons for this performance
difference. First, the performance between Timeslice and
Class in CRF and HMM are different because their training
data are collected in a biased situation. In reality, some
activities will be performed frequently whereas other activities
will be rare. Then, the rare activity classes take more time to
be trained because they need to wait until their training data is
collected [8]. However, Timeslice does not have this
difference. Therefore, the overall performance of Timeslice is
higher than that of Class.

However, MLNNK shows similar performance for both
Timeslice and Class. It is because MLNNK training is
different from other approaches. MLNNK does not wait until
training data is collected. In other words, since our AR system
can produce initial training data using sensor and activity
model information in knowledgebase, every class is trained
almost equally. Also, because MLNNK is a localized network,
the training data is not huge unlike a unified neural network.
Therefore, MLNNK can start training every class from the
beginning and shows similar performance.

TABLE IV

ACTIVITY RECOGNITION PERFORMANCE COMPARISON WITH OTHER MODELS

 Time Slice Class

Hidden Markov Model [6] 94.5% 79.4%

Conditional Random Field Model [6] 95.6% 70.8%

Multi-Layer Neural Network (MLNNK) 96.9% 94.0%

Table V dissects the accuracy for each activity class.
PreparingBreakfast has the worst accuracy while
LeavingHouse, GoingToBed, and PreparingDinner have the
best accuracy. This result is similar to previous experiments
reported in [8].

TABLE V

DETAILED CLASS ACCURACY RESULT
Class Accuracy

LeavingHouse 1.00

Toileting 0.94

TakingShower, 0.95

GoingToBed, 1.00

PreparingBreakfast 0.76

PreparingDinner 1.00

Drinking 0.91

C. Experiment 2: Research Effort Scalability
To examine the scalability of our approach in comparison

with others, we accounted for and compared the human effort
required in updating the model in response to sensor changes.
As mentioned earlier in the paper, this scalability is very
important to researchers who wish to experiment with various
combinations of sensors to discover the sensor set that boosts
the AR performance. We considered only sensor insertion in
this study. Sensor deletion and sensor attribute changes could
be studied similarly.

To measure human effort of our MLNNK approach, we
counted the number of changes we had to make to the
knowledgebase and MLNNK. We also estimated the human
effort required in updating the CRF model for the same set of
sensor changes we applied to our approach. Model changes in
MLNNK means the number new relationships that must be
added by the researcher to the knowledgebase (through a GUI
interface), for each sensor insertion. We inserted 30 new
sensors one by one, in a random order. We then counted the
number of changes that needed to be made for both
approaches. We used three sets of 30 sensors (each), repeated
this experiment three times and calculated an average. For the
MLNNK approach actual changes were made and counted.
For the CRF approach, a graph was manually maintained and
manipulated and every change to the graph was counted.

Fig. 4 and Fig 5 show the result of this experiment. Inserting
all 30 sensors costs 105 changes under MLNNK, and 250
changes under CRF, an almost 58% advantage for MLNNK
(Fig. 5). Also it was observed that under MLNNK, initial
human effort was higher than CRF because of the initial
updating cost of activity knowledgebase. However, human
effort in CRF increased with the insertion of more sensors, and
it overwhelmed the effort in MLNNK (Fig. 4). This is because
MLNNK utilizes the knowledge such that some of the inserted
sensors do not have any relationships with some of the
activities. For example, insertion of a sensor installed in a cup
is not related to sleeping activity. Since MLNNK has this
knowledge (of no relationship), it could avoid unnecessary
changes and hence reduce the number of changes per single
sensor insertion. However, without knowledgebase, CRF had,

by definition, to consider all possible relationships between
the new sensor and existing activities.

Fig. 4. Human effort and sensor changes

Fig. 5. Accumulated human effort and sensor changes

IV. CONCLUSION
This paper introduces a practical and robust activity

recognition approach based on a generic activity framework,
scalable AR algorithm and AR knowledgebase. A scalable AR
algorithm is introduced based on the activity framework. The
algorithm utilizes an activity knowledgebase to achieve higher
levels of scalability and to enhance recognition performance.
Our experimental results show the advantage of our approach
over well established ones: Non Hierarchical HMM and CRF.
Results also prove that utilizing invariant knowledge about
human activities and their observation subsystems does
improve the activity recognition performance and reduces the
user’s efforts required after sensor changes for model change
and retraining, which boosts effort scalability.

REFERENCES
[1] S. Helal, E. Kim, S. Hossain, “Scalable Approaches to

Activity Recognition Research,” in 8th International
Conference Pervasive Workshop (2010).

[2] S. Helal, D. Cook, M. Schmalz, “Smart Home-based
Health Platform for Behavioral Monitoring and Alteration

of Diabetes Patients,” in Journal of Diabetes Science and
Technology, vol. 3, n. 1, Jan (2009)

[3] E. Kim, S. Helal, “Revising Human Activity
Frameworks,” in 2nd International Conference on S-Cube
2010.

[4] E. Kim, S. Helal, D. Cook, “Human Activity Recognition
and Pattern Discovery,” in IEEE Pervasive Computing
vol. 9, n. 1, pp. 48-52 (2010)

[5] L. Constantine, “Human Activity Modeling: Toward A
Pragmatic Integration of Activity Theory and
Usage-Centered Design,” in Human-Centered Software
Engineering, p24-50 (2009).

[6] K. Kuutti, “Activity theory as a potential framework for
human-computer interaction research,” in B.A Nardi
(eds.), Context and consciousness: Activity theory and
human-computer interaction.Cambridge, MA: MIT Press
(1996).

[7] S. A. Alvarez, “An exact analytical relation among recall,
precision, and classification accuracy in information
retrieval,” in Technical Report BCCS-02-01, Computer
Science Department, Boston College, 2002.

[8] T. Kasteren, A. Noulas, G. Englebienne, B. Krose,
“Accurate Activity Recognition in a Home Setting,” in
Proceedings of the Tenth International Conference on
Ubiquitous Computing (Ubicomp 2008), Seoul, Korea,
pp 1-9, 2008.

[9] P. Lingras, Butz, C.J. “Precision and Recall in Rough
Support Vector Machines,” in 2007 IEEE Int. Conf. on
Granular Computing, pp. 654–658 (2007).

[10] M. Mitchell, “Machine Learning,” in WCB/McGraw-Hill,
p 88-108, 1997.

[11] W. Pentney, “Sensor-Based Understanding of Daily Life
via Large-Scale Use of Common Sense,” in Proceedings
of AAAI ‘06, Boston, MA, USA (Jul 2006).

[12] D. Surie, T. Pederson, F. Lagriffoul, L. E. Janlert, D.
Sjolie, “Activity Recognition using an Egocentric
Perspective of Everyday Objects,” in UIC (2007)
Proceedings of IFIP 2007 International Conference on
Ubiquitous Intelligence and Computing. LNCS, vol.
4611, pp. 246–257. Springer, Heidelberg (2007).

[13] P. Lefrere, ”Activity-based scenarios for and approaches
to ubiquitous e-Learning,’ in Personal and Ubiquitous
Computing, vol. 13, n. 3, pp. 219-227 (2009).

[14] H. M. Wallach. “Conditional random fields: An
introduction,” Technical Report MS-CIS-04-21,
University of Pennsylvania CIS 2004.

[15] Neuroph
library.http://netbeans.dzone.com/articles/neurophmdashs
mart-apps/

[16] T. Van Kasteren, Data set repository at Univ. of
Amsterdam. https://sites.google.com/site/tim0306/datasets

[17] http://www.webster-dictionary.org/definition/Model

