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ABSTRACT 
Unlike traditional distributed systems, where the resources/needs 
of computation and communication dominate the performance 
equation, sensor-based systems (SBS) raise new metrics and 
requirements for sensors as well as for computing and 
communication. This includes sensing latency and energy 
consumption. In this paper, we present a performance model for 
SBS based on a three-tier architecture that uses edge devices to 
connect massive-scale networks of sensors to the cloud. In this 
architecture, which we call Cloud, Edge, and Beneath (CEB), 
initial processing of sensor data occurs in- and near-network, in 
order to achieve system sentience and energy efficiency. To 
optimize CEB performance, we propose the concept of optimal 
push/pull envelope (PPE). PPE dynamically and minimally adjusts 
the base push and pull rates for each sensor, according to the 
relative characteristics of sensor requests (demand side from the 
Cloud) and sensor data change (supply side from Beneath). We 
demonstrate the CEB architecture and its push/pull envelope 
optimization algorithm in an experimental evaluation that 
measures energy savings and sentience efficiency over a wide 
range of practical constraints. In addition, from the experiments 
we demonstrate that by combining PPE optimization algorithm 
with lazy sampling algorithm, we can achieve further energy 
saving. 

Categories and Subject Descriptors 
C.2 COMPUTER-COMMUNICATION NETWORKS. C.2.1 
Network Architecture and Design. C.2.4 Distributed Systems. C.4 
PERFORMANCE OF SYSTEMS. 

General Terms 
Algorithms, Experimentation, Measurement, Performance. 

Keywords 
Pervasive computing, cloud computing, energy efficiency, 
sentience efficiency, push pull envelope, optimization, 
performance 

1. INTRODUCTION 
Mobile and pervasive computing have recently garnered 
significant attention because of their potential to enable novel and 
attractive solutions in areas such as environmental monitoring [7], 
transportation enterprises [16], and health care [8]. The 

development of mobile and pervasive computing has benefitted 
from many different views of the communication and computing 
universe such as layered design, client-server, distributed 
networks, cloud-based computing, and so forth.  In particular, 
cloud computing provides on-demand provision of computational 
services, allowing end users to access applications and data from a 
cloud on demand, anywhere in the world. Applications are hosted 
in terms of the Software as a Service (SaaS) model, whereby 
cloud server(s) automatically scale to meet client demand. 
However, cloud-based computing paradigms also exhibit 
theoretical and implementational limitations and disadvantages. 
For example, cloud-based computing is limited by a lack of depth 
and expressiveness. This tends to promote problems when 
attempting to abstract sensor and application layers, in a 
physically rigorous manner that must be convenient for system 
designers. By way of illustration, we first consider a traditional 
model that combines pervasive computing with the cloud 
computing paradigm, then contrast this with the CEB paradigm. 

1.1 The Two-Layered Model:  Scalability 
Challenges in Cloud-Based Sensing 
In typical practice, cloud computing providers deliver common 
business applications online that can be accessed from a Web 
service such as a browser, while the actual programs and data are 
stored on servers.  Clouds often appear to users as single points of 
access for their computing needs, and cloud-based products are 
usually expected to meet customers’ quality of service (QoS) 
requirements, typically including service level agreements (SLAs). 
As a result, the emergence of cloud-based computing has provided 
ample opportunity for rejuvenation of a maturing information 
technology (IT) industry, in terms of a layered paradigm (user > 
application > cloud > supporting devices) with unique QoS and 
accounting models and practices. 
In customary models of cloud-based computing, applications 
reside in the cloud, and devices that service the cloud’s provision 
of applications reside in some device layer.  Additionally, the 
emergence of pervasive sensing seeks to exploit sensors from 
cloud-based applications.  Since the focus of this paper is on 
sensor computing in active pervasive spaces, we assume that the 
device layer includes sensors.  Unfortunately, this two-layered 
model, shown notionally in Figure 1.1, has the following 
drawbacks that make it impractical for pervasive sensor 
computing:  
• The massiveness (scope and detail) of sensor hardware in 

pervasive spaces makes coherent sensor management and 
maintenance extremely difficult.  As a result, system 
complexity does not scale linearly with an increasing number 
of sensors and associated hardware devices.  

• Application programmers must know many implementational 
details of sensor and communication hardware, in order to 
successfully program the two-layer model (cloud and sensors)  
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to realize pervasive sensing.  This implies the presence of 
system integration knowledge, personnel, and effort, which 
can be expensive, time-consuming, and error-prone. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For purposes of discussion, let us suppose that this two-layer 
model is applied to cloud computing, where applications are in the 
cloud and sensors are beneath the cloud.  Here, it is possible that 
an application directly connected to the device layer could make 
excessive demands on the devices, thereby overloading the 
devices. For example, sensors deployed in a busy highway to 
monitor traffic conditions can soon run out of power due to the 
fact that they could be overpowered when being accessed by large 
number of applications at the same time. This could cause excess 
energy consumption, with possible harm to the sensors or other 
objects in the device layer.  Similarly, it is possible to slow down 
or “crash” the cloud, by having too many sensors for the cloud to 
process efficiently.   
Further, to achieve efficiency and accuracy, we have found that 
the user should not be involved in dynamic interactions between 
the cloud and device layers.  Thus, we have found an important 
additional flaw in the two-layer model: 
• Importantly for wireless applications, the two-layer model 

raises significant concerns about energy consumption.  In 
particular, applications in the cloud (by definition of cloud 
computing) need not know of each other’s existence or 
functionality.  Thus, when different applications request data 
from one sensor or group of sensors, these requests can be 
processed separately.  This property supports redundancy of 
requests directed to a given sensor or subnet, which leads to 
redundant data acquisition that causes unnecessary energy 
consumption.  Recall that cloud applications need not know of, 
or communicate among, each other.  Thus, there exists no 
structural basis for optimizing the cloud’s use of sensor 
hardware in terms of energy consumption, or other parameters 
such as field-of-view; optimization of spatial, temporal, or 
spectral coverage; latency hiding; and performance constraints 
on collaborative distributed sensing. 

To opmization we propose a three- layered model (diagrammed in 
Figure 1.2) that has a novel layer called the edge, which resides 
between the cloud and sensor layers.  We discuss the properties of 
this new model, as follows. 

1.2 The Three-Layered Model: Cloud, Edge, 
and Beneath (CEB) 
In the three-layered (CEB) model of sensor computing, sensors 
are partitioned into groups, each of which is managed by a single 
edge. In practice, an edge could be a mobile device, a computer, 
or a collection of sensor devices or computers. Such edge devices 
could be controlled by an application designed to monitor 
multiple conditions or activities within a particular environment. 
For example, the edge could be controlled by a homeowner via a 
security application, and be used for managing sensors deployed 
in his home (e.g., temperature, humidity, smoke, fire, or intrusion 
sensors).  Similarly, sensing devices could be employed in 
monitoring patient health at home, in order to supply assistive 
services. Thus, sensors can be conveniently grouped 
implementationally by type (e.g., scalar, staring-array, spectral), 
functionality (e.g., temperature, surveillance camera), or location 
(e.g., within a building or an office complex, or outdoors). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In contrast with the traditional two-layered model illustrated in 
Figure 1.1, our three-layered CEB model realizes the following 
advantages and benefits:   
• Sensor management and maintenance are performed by one or 

more edge(s), to which the sensors are connected.  Thus, 
locality of control is preserved, since an edge only controls 
sensors located within its domain. As a result of such 
partitioning, scalability is significantly improved – as opposed 
to the two-layer model where sensors can be globally 
controlled by multiple competing or interacting applications 
(as discussed in Section 1.1).  

• Edges can abstract unnecessary information about 
implementational or internal details of sensors, routers, and 
other sensing-related hardware located in the Beneath layer.  
This directly facilitates tractable models and programming of 
sensor configuration and control procedures, which we have 
previously shown to be efficient and robust in practice [17]. 

• Edges support staging and optimization, while allowing for 
many types of optimization procedures to be implemented. 
Edges also implement localization and decoupling, to achieve 
good software engineering practice through a loosely-coupled, 
layered architecture.  In practice, edges can implement staging 
and power optimization by more efficiently retrieving sensor 
data on behalf of applications, for example, by caching. Via 
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data caching mechanisms, it is possible to reuse historical 
sensor data, thereby reducing energy consumption associated 
with repeated sensor data acquisition and sampling by 
multiple applications.  In addition to energy reduction, 
caching could conceivably allow a reduction in the total 
number of sensors, as coverage could be partially managed by 
the caching capabilities of one or more edges. 

Therefore, the introduction of the edge layer makes the three-layer 
architecture more tractable, better engineered, and more efficient. 
However, the minimization of energy consumption still remains a 
concern. In response to this situation, this paper describes the 
concept of an optimal push-pull (Section 2). We briefly explain a 
supporting event-driven programming model (Section 3), then 
present our optimization approaches (Section 4): In particular, our 
OPT-1 optimization algorithm is based on the relative 
characteristics of demand side (from the Cloud layer), while OPT-
2 exploits the relative characteristics of data on the supply side 
(from Beneath). We also demonstrate experimentally determined 
performance gains of OPT-1, OPT-2, and their combination, in 
terms of practical applications. 

2. Problem: Energy Efficiency of Cloud, Edge 
and Beneath  
Recall that the two-layer model (Section 1.1) generates repeated 
data acquisition requests from one or more applications in the 
cloud to sensors in the device layer.  This behavior can cause 
significant power consumption due to repeated sensor sampling. 
In the three layer model, we seek to minimize energy 
consumption by sentient control of sensors in the beneath (device) 
layer via optimization algorithms in the edge layer. 
Correspondingly, we have developed optimization algorithms that 
efficiently manage energy consumption between the cloud and 
edge layers. 
In particular, our research shows that the updating of sensor 
readings can be realized via communication between cloud, edge, 
and beneath layers using information push and pull mechanisms. 
Push allows the data sink (e.g., the edge layer) to subscribe to a 
particular data source (e.g., a sensing device in the sensor layer), 
to received continuous readings at a constant rate. In contrast, 
information pull supports on-demand data query, such that the 
data sink can request, then acquire, sensor readings as one or more 
individual values. Advantages and disadvantages of these 
approaches are discussed, as follows. 

2.1 The Push/Pull Envelope 
When sensor data are needed at a constant rate, push requires less 
downlink traffic (cloud to edge, edge to sensor), since the 
application issues one subscription request only, then acquires the 
stream of values from the sensor. In contrast, pull incurs a round-
trip penalty for each data query (e.g., involving steps such as 
request, transmit, receive, and acknowledge). However, push 
mode tends to be less economical when handling sporadic data 
requests, as an application-subscribed sensor in push mode 
samples and transmits a stream of data, whether or not all data 
values are processed by the application. In push mode, this 
physical transmission of the sensor value stream occurs 
continuously – even when the data are not needed by the 
application – leading to a substantial expenditure of energy. Since 
some sensor values are not processed, some of this energy is 
wasted. Thus, to achieve a design tradeoff between energy costs 
associated with push and pull modes, we need to know something 
about the application.  For example, as shown in Figure 2.1 we 
have found that, when transitioning from MICA2 [18] to RCB [6], 
network communication decreases from 25 percent to 4.5 percent 

of total energy cost. Correspondingly sensor energy consumption 
due to sampling increases from 74 percent to 94 percent. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In response to this problem, we have developed the concept of a 
push-pull envelope (PPE), which is defined as follows. 
Definition 1: An optimal push-pull envelope is a 
multidimensional sequence that determines (a) which sensors are 
active, and (b) which sensors should be in pull or push mode 
(along with push filters). The push-pull envelope minimizes work 
and total energy consumption in the sensor layer, as well as in the 
cloud, thus maximizing sentience efficiency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In practice, the PPE can be thought of as a hybrid approach for 
achieving near-optimal energy consumption, as illustrated 
notionally in Figure 2.2. Architecturally, a PPE can exist between 
the cloud and edge layers, as well as between the edge and sensor 
layers.  In a slightly lower-level view, a PPE can be thought of as 
an optimal configuration of push/pull modes for each sensor over 

 

MICA2:   
Mote platform 
with Sensirion 
Humidity sensor, 
ChipCon CC1000 
Radio. 

RCB:  
Atlas sensor 
platform with 
Interlink Pressure 
Sensor, Atmel 
ZLink Radio. 

Figure 2.1.  Differences in energy consumption between 
MICA2 and RCB  (lower power, same sampling 

technology) for wireless sensing applications. 

 
Figure 2.2. Push-pull envelope between cloud and edge, 

and between edge and sensors 



the lifetime of service execution in the cloud.  In this perspective, 
the PPE effectively describes an optimal execution of applications 
whose combined energy consumption (due to push and pull 
operations) is minimized.  This does not imply a static view – the 
PPE can vary spatiotemporally. Therefore, in this paper, we seek 
to dynamically compute the optimal PPE between adjacent layers 
of the three-layer model that optimizes system energy efficiency.  

Before presenting our algorithm for finding the optimal PPE, we 
overview an event-driven programming model that supports the 
programming paradigm employed in our system development of 
applications in the cloud. 

3. Event-Driven Programming Model 
An event-driven programming model is a programming 
paradigm whose control and data flows are determined by events. 
In pervasive sensor computing, an event is always associated with 
sensor outputs. In practice, applications developed on event-
driven programming paradigms usually consist of two phases: (1) 
event detection, and (2) event handling.  
In particular, in our model, the basic element of an application is a 
rule, which conforms to the Event, Condition, and Action 
(ECA) structure. By specifying events, conditions and actions, 
program-mers formulate rules that represent constraints on 
permissible application behavior over a range of situations. To 
ensure the adherence to these rules, the application constantly 
checks sensor data and evaluates the prespecified rules. When a 
rule evaluates to true in response to one or more events, 
corresponding actions (e.g. actuating a device or invoking a 
service) are executed, to respond to the event. Details about the 
design and implementation of ECA are found in our early work 
[15].  
We have extended the event formulation structure to support 
composite events [15]. For example, an event associated with a 
single sensor only is called a basic event, while an event defined 
in terms of one or more basic events is called a composite event. 
Composite events usually require data from multiple sensors. For 
example, assume that a basic event e1 is associated with a 
thermometer and another basic event e2 is associated with a 
humidity sensor. Then a composite event could be defined based 
on e1 and e2, with the purpose of monitoring a physical event such 
as current weather condition. 
In the next section, we present our optimization approaches to 
realize energy efficiency of systems that are build based on this 
event-driven programming model. 

4. Cloud-Sensor Energy Optimization 
Our research has shown that an optimal PPE can be achieved via 
two optimizations (called OPT-1 and OPT-2) that collaboratively 
determine the data delivery strategy among the three layers of our 
CEB sensor computing model. For each sensor, OPT-1 attempts 
to compute an optimal configuration of the push/pull envelope 
between the cloud and edge layers. Via monitoring data requests 
from the cloud, the edge learns the history of relative 
characteristics of an application’s demands for each sensor. The 
edge then utilizes this reference knowledge to derive the optimal 
push/pull strategy for subsequent data deliveries that are expected 
to minimize energy cost. Additionally, this PPE is dynamically 
optimized at runtime to adapt to changing sensor sampling 
requests from the cloud. For each sensor, the second algorithm 
(OPT-2) optimizes the configuration of the push/pull envelope 
between the edge and beneath layers. For example, given long-
term learning of the data output by a particular sensor, assume that 
the sensor data changes at a relatively constant rate that is less 

than the required data push rate calculated by OPT-1.  Here, the 
sensor can choose a reduced data push rate, which further reduces 
energy consumption. 

4.1 Cloud–Edge PPE Optimization 
This section describes a dynamic algorithm that, for a single 
sensor, finds an optimal constant base push rate f*, given the 
relative characteristics of sensor sampling requests from the 
cloud. As we have observed, requests from the cloud usually 
change with time. However once the arrival rate of a request 
surpasses a prespecified level for a given time interval, we can use 
base push with a constant rate to satisfy a portion of the data 
requests.  This statement holds because push is less costly than 
pull if (a) the pushed data is known to be adopted by its sink (i.e., 
applications in the cloud), and (b) we can employ supplemental 
pulls to meet the unsatisfied requests. Taking advantage of this 
optimization opportunity, the edge adjusts the rate of base pushes 
to effect an overall (base + supplemental) rate change in order to 
find the optimal f* that minimizes total energy cost. It is important 
to note that the edge continuously senses and analyzes sensor 
sampling requests from the cloud, to capture the relative 
characteristics of past requests that will support computation of f*.  

As the computation of f* is based on a history of sensor values, 
our optimization approach must be able to dynamically adapt to 
changes in requests issued by the cloud during a specific time 
interval. Therefore, the edge chooses an evaluation window within 
which sensor sampling requests are analyzed. Our algorithm 
implements a simple but self-adaptive approach that selects the 
length We of this evaluation window.  The following terms pertain 
to our discussion, in terms of a single sensor s: 
R (ti) Total number of data acquisition and sampling requests for 

sensor s received by the edge from the cloud, over time ti  

D   Sliding window at each end of which R (ti) is recorded. 
The length of D is d, which implies that d = ti  – ti-1. 

R’ (ti) Average arrival rate of data acquisition and sampling 
requests from sensor s received by the edge from the 
cloud, within the sliding window D [ti – d, ti], as follows: 

d
tRtR

tR ii
i

)()(
=)(' 1--                                   (1) 

We   Evaluation window within which multiple sensor requests 
from the cloud are monitored and analyzed by the edge, to 
provide information for computing the next f *.  

L   Length of evaluation window defined as the number of 
sliding windows within We , i.e., L = |We| / d.  

In summary, by analyzing the history of sampling requests from 
the cloud for a single senor s within the evaluation window We, 
the edge finds the optimal base push rate f* that is expected to 
maximize energy savings for subsequent data queries. Therefore, 
the following three problems need to be solved: (1) determine the 
objective function and an algorithm to solve it; (2) determine 
when to re-evaluate f*, and (3) specify the evaluation window We. 
To solve Problem 1, we construct the objective function by using 
the energy saving rate of our mixed push-pull scheme (base push 
rate at f*), to replace the pure pull scheme that is one of the 
customary approaches in current sensor data acquisition practice. 
The energy cost of a sensor node is modeled by considering both 
transmission and sampling [6] as major contributing factors for 
overall energy consumption.  Accordingly, we define two energy 
cost coefficients: α, the energy consumption factor for one-time 
transmission (either sending or receiving a packet); and β, the 



energy cost for one sensor sampling operation.  Therefore, the 
cost of a pull operation is 2α + β (receiving query + sending data 
+ sampling), and a push operation costs α + β (neglecting the one-
time subscription). Within evaluation window We, the energy cost 
of our mixed push-pull strategy (base push rate at f *) is 
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where T represents all of the end points of sliding window D 
within We; c1 denotes the times ti at which R’(ti) > f* (i.e. 
supplemental pull needed at sliding window [ti-1, ti]); and c2 
indicates the times ti at which R’(ti) ≤  f *. Observe that T = c1 ∪c2.  
Additionally, the energy cost by using pure pull scheme to satisfy 
all of the data requests is given by 
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Therefore, the objective function (energy saving rate) is defined as: 
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where Rsave is determined by f * and the evaluation window We. 
The objective function is thus given by  
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We define the average of R’(t) within evaluation window We 
as 
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which denotes the average arrival rate of sampling requests for s 
received by the edge from the cloud within evaluation window We. 
We also define the average rate at which superfluous push 
operations happen within evaluation window We, as follows: 
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It is clear that the value of SPR(f *) changes with variations in f *.  

Therefore, we can reformulate the objective function as 
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In addition, the optimization algorithm must be able to adapt to 
the change of requests from the cloud (Problem 2). In our 
approach, after f * is determined for subsequent data queries, the 
edge will continue to monitor factors that may affect PPE 
performance. For example, two factors in our performance 
evaluation algorithm are Pr and SPR(f *) (Equations 6 and 7). For 
either factor, once the difference between its current value and the 
value used to evaluate current f * exceeds a designated threshold φ, 
a new round of f * evaluation will be started.  Simultaneously, the 
current PPE will be terminated as it might be inaccurate for 
processing current sampling requests. 

We solve Problem 3 by initially assuming that the evaluation 
window We starts at the time when the current f * is calculated, and 
ends at the time when f * is re-evaluated.  This simple approach is 
effective, since the length of We will adapt to the changing value 
of R’(ti). For example, if R’(ti) changes rapidly, then the 
performance of the current PPE will likely decrease rapidly. 
Therefore, the length of We for the next evaluation of f * will be 
relatively shorter than it is when R’(ti) changes slowly. So the 
length of the evaluation window reflects how rapidly the 
evaluation of f *adapts to changing sensor requests from the cloud. 
The shorter the evaluation window, the faster the evaluation of f* 

adapts to the change of requests. For this reason, We should be 
shorter when R’(ti) changes rapidly. Conversely, We should be 
longer if R’(ti) changes slowly.  Our experimental research results 
show that this approach supports the accurate tracking of changes 
in sensor request patterns that are typical of sensor demands by 
cloud applications analyzed thus far. 

Given the preceding development, we summarize the proposed 
optimization algorithm (OPT-1), as follows. 
 

 
 
 
 
 
 
 
 
 
 
 
 
The supporting algorithm FindFstar, which optimizes f*, is specified 
as follows. 

 

 

 

 

 

 

OPT-1:  Optimizing PPE between Cloud and Edge 

Input: threshold φ; initial length of evaluation window L 
*  tc:  current system time 
Algorithm:  
1.   Set evaluation window We = [tc - L ⋅ d,  tc]; 
2.   while  true  do 
3.        Calculate optimal  f * = FindFstar (R(tc), We); 

4.        Record  SPR’=SPR( f *); Pr’= Pr; 

5.         Set base push rate = f * and start mixed push pull mode;  
6.         Set t1 = tc;  

7.         PerformCheck( f *, SPR’,  Pr’ )  //quit when f * needs re- 

8.         Set t2 = tc;  We = [t1,  t2];                 evaluation 

9.   end while 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following proof sketch demonstrates the rationality and 
correctness of the function FindFstar. In order to apply a binary 
search algorithm to our process of searching for an optimal value 
of f *, the objective function max Rsave(f *,We) must satisfy the 
following conditions: 
i. The optimal f * ∈ [min R’(ti), max R’(ti)] for ti ∈ We. 

ii. There is only one optimal f* for max Rsave (f*,We),                  
s.t.,  min R’(ti) ≤  f  ≤ max R’(ti)*. 

iii. For min R’(ti) ≤  f  <  f *,   Rsave (f , We) increases as f  increases; 
for  f * <  f  ≤ min R’ (ti),  Rsave (f , We) decreases as  f  increases. 

Condition (i) is trivial. The proof of conditions (ii) and (iii) are as 
follows. 

First, by calculating the derivative of  (8) we get 
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If we can prove (9) is a monotone decreasing function of f *, then 
(ii) and (iii) will be guaranteed in that Rsave(f *) can changes only 
in the following three ways as f * increases from min R’(ti) to max 
R’(ti): a) always positive, b) always negative, c) first positive and 
then negative.  

First of all, assume that functions f = Rsave(t) maps ti ∈ We to         
fi ∈  [min R’(ti), max R’(ti)] for all i = 1..n. Sort fi in non-
decreasing order, i.e. 
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For f ’∈( fi ,  fi+1 ). Note that the derivative is not defined when  
f ’=fi , i = 1..n. However, the side limits (lim − and lim +) of 
SPR(f ’) agrees at those special points, f ’= fi , i = 1..n-1. In other 
words, SPR(f ’) is continuous within [min R’(ti), max R’(ti)] and it 
is differentiable within  [min R’(ti), max R’(ti)] except at a finite 
set of points. 
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So we can see that the derivative of SPR(f*) is a monotone 
increasing function of f * and hence the derivative of Rsave(f *) is a 
monotone decreasing function of f * according to (9). Finally, we 
prove that condition (ii) and (iii) are satisfied. 

4.2 Edge-Sensor Sampling Optimization 
After the edge calculates the optimal base push rate f * for a 
particular sensor s by running OPT-1, it will send f * to s to set its 
data sampling rate.  Fortunately, after receiving f*, the sensor also 
has the chance to determine if it can choose an even lower 
sampling rate at which data is pushed to the cloud via the edge. 
The key concept is, if the data from s changes at a rate much 
lower than the required sampling rate f *, then a lower push rate 
might sufficiently reflect the change of sensor data. We call this 
mode lazy sensor sampling. For our specific scenario where 
applications follow an event-driven paradigm, the base push rate 
of a particular sensor s should reflect the rate of change of the 
values of basic events associated with s. The goal of our lazy 
sampling algorithm (OPT-2) is to find the rate f ** at which s 
samples and pushes its data to the edge, using the lowest sampling 
rate to meet the cloud’s demands for sensor data.  

For a single sensor s, the following terms pertain:  

V(ti) Number of changes (until time ti) in the values of basic 
events that are associated with s. 

Dl   Sliding window at each end of which V(ti) is recorded. The 
length of Dl is dl = ti – ti-1. 

V’(ti) Average change rate of the value of basic events that are 
associated with s within the sliding window Dl [ti – dl, ti]. 
Thus, V’(ti) is given by 

Method  FindFstar: Find the Optimal f * Using Binary Search 

Input: R(ti), We  
Output:  the base push rate f *. 

1.   Calculate R’(ti), for  each ti  within We. 
2.   Find min R’(ti) and max R’(ti), for ti  within We  . 
3.    if  Rsave ( min R’(ti), We ) > Rsave ( min R’(ti)+∆f, We)  then 
4.             return min R’(ti) as the optimal f*;   
5.    end if 
6.    if  Rsave ( max R’(ti), We) > Rsave ( max R’(ti)- ∆f, We )  then 
7.             return max R’(ti) as the optimal f*;   
8.   end if 
9.    fL = min R’(ti),  fR = max R’(ti) ; 
10.    f ’ = ( fL + fR)/2 
11.    while  Rsave ( f ’ - ∆f , We)> Rsave ( f ’, We) or  
12.           Rsave ( f ’ + ∆f  , We)>Rsave ( f ’, We) do 
13.           if    Rsave ( f ’ - ∆f , We) > Rsave ( f ’ , We) then 
14.                    fR  = f ’ 
15.           else  fL  = f ’ 

16.           end if 
17.           f ’ = ( fL + fR)/2 
18.    end while 
19.    return  f ’ as the optimal f* 

Method PerformCheck: Monitoring Performance of   f * 

Input:  f *,  SPR’,  Pr’ 
* Wc: time window within which runtime  SPR( f *) and Pr are 
calculated. It has fixed length, i.e., |Wc|. 
* γ1:  threshold used for monitoring SPR beyond which  f * re-
evaluation will be triggered. 
* γ2 : threshold used for monitoring Pr beyond which  f * re-
evaluation will be triggered. 

1.    ReEva=false;  //Initialization 
2.    while  !ReEva  do 
3.          Calculate  SPR( f *) and Pr within current Wc 
4.          if    |SPR( f *) - SPR’ | / SPR’ > γ1   or 
5.                 | Pr -  Pr’ | /  Pr’ > γ2      then 
6.                 ReEva=true; 
7.          end if 
8.          Wait | Wc | time for the next time window Wc 
9.    end 
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Similarly, we obtain the acceleration in the basic event change 
rate associated with the s, which we denote as V”(ti), as follows: 
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Let us now describe constraints on lazy sampling.  An activation 
condition of lazy sampling guarantees that the sensor data changes 
at a relatively constant rate, such that our lazy sampling algorithm 
will not lose track. This condition can be expressed intuitively in 
terms of a threshold derived from V”(ti), as follows: 
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where tc is the current time, τ is the threshold, and k is obtained 
experimentally. 

If the above condition is satisfied, then our OPT-2 algorithm will 
compute an optimal or near-optimal rate f ** at which s will 
sample and push its data to the edge. This near-optimal sampling 
rate is determined by summing the predicted V’*(t) at the next 
time slice, toleranced by a safe margin, to compensate for any 
abrupt change of sensor data. The estimation of V’*(t) at the next 
time slice should be based on the sensor data history, with 
provision for temporal tolerancing, as mentioned previously. We 
have found that the following method for determining V’*(t) is 
practicable: 
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where γ influences how rapidly V’*(t) adapts to changes of V’(ti), 

and ∑
−=

c

kci
itV |)("|ε denotes the temporal tolerance (margin of 

safety). 

We thus summarize our lazy sampling algorithm, as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
Importantly, to enable our optimization, caching as a supporting 
technology must be implemented in our three layer model. 

4.3 Supporting Technology: Caching 
Some events are tolerant to time fidelity in that their respective 
applications do not require frequent evaluation at all times. For 
example, when monitoring room temperature, an air conditioning 
system does not need to get temperature reading at a very high 
frequency, since the changing rate of room temperature is usually 
slow. In addition, an air conditioning system may need to monitor 
room temperature only occasionally during the spring and fall. 
Considering these scenarios, data of a particular sensor can be 
considered fresh within a certain "lifetime" after it is sampled. 
Taking advantage of this fact, we can employ data caching 
mechanisms so that historical sensor data could be reused to 
satisfy different requests for a common sensor data, thereby 
reducing energy consumption. In our model, caching are 
employed in all three layers (cloud, edge, and sensors) to realize 
energy saving.  
Caching data in the cloud [19] allows different applications in the 
cloud (possibly located at different cloud servers) to reuse sensor 
data without requesting sensor data from the lower layers. Once a 
request is issued by an application, the cache is checked for 
"freshness". If it is, data will be used directly. Therefore, only 
those requests that cannot be satisfied by cached sensor data will 
be forwarded to the edges that will fetch data on behalf of 
applications. Similarly, caching is implemented at the edge and 
even sensors to further reduce energy consumption by enabling 
historical data reuse whenever possible. 

5. Experimental Evaluation 
5.1 Experimental Setup 
We evaluate the performance of CEB under OPT-1, OPT-2 and 
their combination, by comparing their performance with that of 
CEB under a pure pull mechanism. We use an emulation approach 
where the requests from the cloud and data from the beneath are 
simulated by generators and in which edges and sensor nodes are 
simulated by software emulators.  As input to our optimization 
algorithms, the arrival of sensor sampling requests and the 
generation of sensor data are simulated in the following way. 
Sensor sampling request generator emulates the arrivals of 
requests from applications in the cloud asking for data from 
sensors. We simulate total number of K applications and total 
number of S sensors. In our experiment, we choose {K=50, S=50; 
K=100, S=50; K=500, S=100}. Sensors are randomly assigned to 
each application following a normal distribution ( N (µ=2, σ2=4)). 
Each application requires data from an arbitrary set of sensors out 
of the sensors assigned to it for execution. The time between two 
active phases of an application follows an exponential distribution 

Method  FindLazyRate:  Find the sensor sampling rate f** 

Input:  f * ,  V (ti)  
Output:  the base push rate f **. 

1.      Calculate V’ *(t)  
2.      if       V’ *(t) < f *  then 
3.                return  f **=  V’ *(t) // lazy sampling mode starts 
4.      else   return  f **= f *;  
5.      end if 

OPT-2:  Lazy Sampling Algorithm 

Input:  f * calculated by edge through OPT-1,  V (ti) 
Algorithm:  
1. lazyMode=false;  //Initialization 
2. while  true  do 
3.      if    Condition (15) is satisfied  and  ! lazyMode  then 
4.              set  f **= FindLazyRate ( f * ,  V (ti)); 
5.              lazyMode=true; 
6.      end if 
7.       if    Condition (15) is not satisfied  and  lazyMode then 
8.              set  f **= f * ; 
9.               lazyMode=false; 
10.      end if 
11.       wait for k time. 
12. end  while 



with average arrival rate λ=1. For the generation of sensor data, 
we use the normal distribution. However, parameters of µ and σ2 
are varied during the course of each experiment. High σ2 emulates 
the phase when the data of a sensor is changing rapidly while 
lower σ2 emulates the phase when sensor data is changing slowly. 
We emulated the effect of three sets of sensor platforms [Table 1] 
by normalizing their energy consumption coefficients. We 
conduct experiments on each set of coefficients to quantify the 
platform’s receptiveness to our optimizations.  Transmission 
energy cost includes two parts, cost of transmission between edge 
and sensor and cost of transmission between cloud and edge. We 
assume that for all three sensor platforms transmission cost 
between edge and cloud is unchanged. 

 
 
 
 
 
 

5.2 Evaluation Metrics 
The main performance metric, which is measured throughout all 
experiments, is the energy saving rate of our mixed push-pull 
scheme to replace the pure pull scheme i.e. Rsave. The actual 
energy saving rate in all experiments is given by (19). 
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(17) indicates the total energy cost by using pure pull scheme in 
which mpull means the total number of pulls (cloud pulls data from 
sensors) in pure pull scheme. (18) represents the total energy cost 
by using our mixed push pull scheme. npull1 and npush1 means the 
total number of pulls and pushes respectively between edges and 
the cloud in our mixed push pull scheme; while npull2 and npush2 
means respectively the total number of pulls and pushes between 
edges and sensors in our mixed push pull scheme. 

5.3 Performance Comparison Results 
We compare the performance of OPT-1, OPT-2 and OPT-1 and 
OPT-2 combined, for sensor platforms S1 and S2. The result is 
recorded every T time (5 sec) as shown in Figure 5.1. (K=500, 
S=100). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Figure 5.1. and 5.2., we can see that for sensor platform S1 
whose transmission energy cost accounts for most of the energy 
consumption, OPT-1 shows better performance than that for 

Sensor 
platform 

ββββ: 
sampling 

αααα1  
transmission 

between edge and 
sensor 

αααα2 
 transmission 

between cloud and 
edge 

S1 0.21 0.36 0.43 

S2 0.88 0.03 0.09 

S3 0.26 0.33 0.41 

Table 1. Normalized energy coefficients for transmission and 
sampling on three different sensor platforms. S1: MICA2 
sensor platform with Sensirion Humidity sensor, ChipCon 
CC1000 Radio [18], S2: Atlas sensor platoform with Interlink 
Pressure Sensor, Atmel ZLink Radio [6] and S3: MicroLEAP 
with ECG sensor, class-2 Bluetooth 2.0 radio [20]. αααα2 is 
derived from [21] (assume average 10 hops from edge to 
cloud). 

 
(a) Result for sensor platform S1 

 
(b) Result for sensor platform S2 

Figure 5.1. Energy saving rate for three optimization 
techniques on sensor platform S1 and S2 

 
(a) Results for sensor platform S1 

 
(b) Results for sensor platform S2 

Figure 5.2. Average energy saving rate for three algorithms 
on sensor platform S1 and S2 (over 255 seconds) 



sensor platform S2 where sensor sampling accounts for most of 
the energy consumption. This can be explained by the motivation 
of OPT-1, in which by replacing as many pulls with pushes the 
number of transmission can be reduced, leading to energy saving. 
On the contrary, OPT-2 shows better performance in S2 than in 
S1. The reason is that OPT-2 reduces the number of push as well 
as the number of data sampling when data of a given sensor does 
not change rapidly during a particular period. In Figure 5.2, we 
show that the combined application of OPT-1 and OPT-2 gives a 
superior performance than by utilizing OPT-1 or OPT-2 alone. 
In addition, we measure the effects of optimization on three sets 
of sensor platforms and compare the results in Figure 5.3. From 
this result, we see that S1 adopts more pushes than S2 while it 
adopts less pull than S3. The reason is that in S2 supplemental 
pull has fewer penalties than in S1 and hence pull will be 
preferred as its on-demand feature. 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Related Work 
Integrating sensor networks with the emerging data center cloud 
model of computing is becoming a popular paradigm of choice in 
system development for various application domains including 
health care [1], warehouse monitoring [4] and environmental 
monitoring [3]. In order to realize this integration, in [4] and [5] 
similar architectures are proposed to utilize virtualization as 
supporting technology for integrating physical sensors as services 
into the cloud. These architectures, however, lack an intermediate 
layer between the cloud and various physical devices, which 
raises serious scalability issues. In order to enable scalable 
collaborative sensor-centric applications in the cloud, [2] and [1] 
provided their own frameworks which respectively use Pub/Sub 
broker and exchange service as intermediate layer between the 
cloud and device layers, to preserve locality of control. However, 
these approaches disregard energy consumption, which could 
significantly affect system performance. In our work presented 
herein, we introduce, justify, and take advantage of a three-layer 
model (cloud, edge, and beneath) to enhance scalability as well as 
increase energy efficiency via algorithms for optimizing the 
push/pull envelope. 

Additionally, in wireless sensor networks, special data acquisition 
techniques have been developed for event detection supporting 
real-time application execution. A typical scheme is polling [11], 
in which a data sink sequentially polls its underlying sensors for 
new data. In contrast, a bottom-up sensor-driven model [12] has 
also been proposed, assuming that sensors are capable of pushing 
data to applications when an event occurs. To improve the 

efficiency of data delivery and enable data sharing, messaging 
paradigms such as publish/subscribe [9] and push-pull [10] have 
been widely adopted in sensor data acquisition. Optimization 
techniques to balance push and pull have been extensively 
discussed in [10][13][14], which focus on network topology and 
routing algorithms. Furthermore, a new model discussed in [15] 
utilizes the mixed push/pull strategy and takes advantage of the 
optimization opportunity provided by the event structure and its 
time-frequency relaxations. However, none of the above 
approaches fit perfectly into a cloud-based sensor computing 
paradigm.  This is especially true when one considers the 
massiveness of sensors and applications that tend to be invisible to 
each other. In order to overcome this problem, we have developed 
a push pull strategy based on the relative characteristics of sensor 
requests (demand side from the cloud) and sensor data (supply 
side from beneath). These two features can be easily captured in 
our model, and support our claims of effectiveness and 
significance in promoting our approach’s energy efficiency. 

7. Conclusion 
We adopt the Cloud, Edge and Beneath (CEB) architecture to 
sensor data access by Cloud applications. CEB more naturally 
represents actual sensor system deployments in which an edge 
device (e.g., gateways) manages a locale of sensors. CEB allows 
for many optimization opportunities. In this paper, we present two 
optimizations. OPT-1 optimizes the proper mix of base push and 
supplemental pull between the cloud and the edge. OPT-2 
optimizes the sampling and delivery of sensor data between the 
sensors and the edge, based on sensor domain value 
characteristics. We present both algorithms along with an 
experimental evaluation of their individual and combined impact. 
The results shows that by combining both algorithms, CEB can 
always achieve better performance than adopting any of the 
algorithms individually. 
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