
Optimizing Push/Pull Envelopes for Energy-Efficient
Cloud-Sensor Systems

Yi Xu
CISE Department

University of Florida
Gainesville, FL32611, USA

yixu@cise.ufl.edu

Sumi Helal
CISE Department

University of Florida
Gainesville, FL32611, USA

helal@cise.ufl.edu

My T. Thai
CISE Department

University of Florida
Gainesville, FL32611, USA
mythai@cise.ufl.edu

Mark Schmalz
CISE Department

University of Florida
Gainesville, FL32611, USA

mssz@cise.ufl.edu

ABSTRACT
Unlike traditional distributed systems, where the resources/needs
of computation and communication dominate the performance
equation, sensor-based systems (SBS) raise new metrics and
requirements for sensors as well as for computing and
communication. This includes sensing latency and energy
consumption. In this paper, we present a performance model for
SBS based on a three-tier architecture that uses edge devices to
connect massive-scale networks of sensors to the cloud. In this
architecture, which we call Cloud, Edge, and Beneath (CEB),
initial processing of sensor data occurs in- and near-network, in
order to achieve system sentience and energy efficiency. To
optimize CEB performance, we propose the concept of optimal
push/pull envelope (PPE). PPE dynamically and minimally adjusts
the base push and pull rates for each sensor, according to the
relative characteristics of sensor requests (demand side from the
Cloud) and sensor data change (supply side from Beneath). We
demonstrate the CEB architecture and its push/pull envelope
optimization algorithm in an experimental evaluation that
measures energy savings and sentience efficiency over a wide
range of practical constraints. In addition, from the experiments
we demonstrate that by combining PPE optimization algorithm
with lazy sampling algorithm, we can achieve further energy
saving.

Categories and Subject Descriptors
C.2 COMPUTER-COMMUNICATION NETWORKS. C.2.1
Network Architecture and Design. C.2.4 Distributed Systems. C.4
PERFORMANCE OF SYSTEMS.

General Terms
Algorithms, Experimentation, Measurement, Performance.

Keywords
Pervasive computing, cloud computing, energy efficiency,
sentience efficiency, push pull envelope, optimization,
performance

1. INTRODUCTION
Mobile and pervasive computing have recently garnered
significant attention because of their potential to enable novel and
attractive solutions in areas such as environmental monitoring [7],
transportation enterprises [16], and health care [8]. The

development of mobile and pervasive computing has benefitted
from many different views of the communication and computing
universe such as layered design, client-server, distributed
networks, cloud-based computing, and so forth. In particular,
cloud computing provides on-demand provision of computational
services, allowing end users to access applications and data from a
cloud on demand, anywhere in the world. Applications are hosted
in terms of the Software as a Service (SaaS) model, whereby
cloud server(s) automatically scale to meet client demand.
However, cloud-based computing paradigms also exhibit
theoretical and implementational limitations and disadvantages.
For example, cloud-based computing is limited by a lack of depth
and expressiveness. This tends to promote problems when
attempting to abstract sensor and application layers, in a
physically rigorous manner that must be convenient for system
designers. By way of illustration, we first consider a traditional
model that combines pervasive computing with the cloud
computing paradigm, then contrast this with the CEB paradigm.

1.1 The Two-Layered Model: Scalability
Challenges in Cloud-Based Sensing
In typical practice, cloud computing providers deliver common
business applications online that can be accessed from a Web
service such as a browser, while the actual programs and data are
stored on servers. Clouds often appear to users as single points of
access for their computing needs, and cloud-based products are
usually expected to meet customers’ quality of service (QoS)
requirements, typically including service level agreements (SLAs).
As a result, the emergence of cloud-based computing has provided
ample opportunity for rejuvenation of a maturing information
technology (IT) industry, in terms of a layered paradigm (user >
application > cloud > supporting devices) with unique QoS and
accounting models and practices.
In customary models of cloud-based computing, applications
reside in the cloud, and devices that service the cloud’s provision
of applications reside in some device layer. Additionally, the
emergence of pervasive sensing seeks to exploit sensors from
cloud-based applications. Since the focus of this paper is on
sensor computing in active pervasive spaces, we assume that the
device layer includes sensors. Unfortunately, this two-layered
model, shown notionally in Figure 1.1, has the following
drawbacks that make it impractical for pervasive sensor
computing:
• The massiveness (scope and detail) of sensor hardware in

pervasive spaces makes coherent sensor management and
maintenance extremely difficult. As a result, system
complexity does not scale linearly with an increasing number
of sensors and associated hardware devices.

• Application programmers must know many implementational
details of sensor and communication hardware, in order to
successfully program the two-layer model (cloud and sensors)

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

to realize pervasive sensing. This implies the presence of
system integration knowledge, personnel, and effort, which
can be expensive, time-consuming, and error-prone.

For purposes of discussion, let us suppose that this two-layer
model is applied to cloud computing, where applications are in the
cloud and sensors are beneath the cloud. Here, it is possible that
an application directly connected to the device layer could make
excessive demands on the devices, thereby overloading the
devices. For example, sensors deployed in a busy highway to
monitor traffic conditions can soon run out of power due to the
fact that they could be overpowered when being accessed by large
number of applications at the same time. This could cause excess
energy consumption, with possible harm to the sensors or other
objects in the device layer. Similarly, it is possible to slow down
or “crash” the cloud, by having too many sensors for the cloud to
process efficiently.
Further, to achieve efficiency and accuracy, we have found that
the user should not be involved in dynamic interactions between
the cloud and device layers. Thus, we have found an important
additional flaw in the two-layer model:
• Importantly for wireless applications, the two-layer model

raises significant concerns about energy consumption. In
particular, applications in the cloud (by definition of cloud
computing) need not know of each other’s existence or
functionality. Thus, when different applications request data
from one sensor or group of sensors, these requests can be
processed separately. This property supports redundancy of
requests directed to a given sensor or subnet, which leads to
redundant data acquisition that causes unnecessary energy
consumption. Recall that cloud applications need not know of,
or communicate among, each other. Thus, there exists no
structural basis for optimizing the cloud’s use of sensor
hardware in terms of energy consumption, or other parameters
such as field-of-view; optimization of spatial, temporal, or
spectral coverage; latency hiding; and performance constraints
on collaborative distributed sensing.

To opmization we propose a three- layered model (diagrammed in
Figure 1.2) that has a novel layer called the edge, which resides
between the cloud and sensor layers. We discuss the properties of
this new model, as follows.

1.2 The Three-Layered Model: Cloud, Edge,
and Beneath (CEB)
In the three-layered (CEB) model of sensor computing, sensors
are partitioned into groups, each of which is managed by a single
edge. In practice, an edge could be a mobile device, a computer,
or a collection of sensor devices or computers. Such edge devices
could be controlled by an application designed to monitor
multiple conditions or activities within a particular environment.
For example, the edge could be controlled by a homeowner via a
security application, and be used for managing sensors deployed
in his home (e.g., temperature, humidity, smoke, fire, or intrusion
sensors). Similarly, sensing devices could be employed in
monitoring patient health at home, in order to supply assistive
services. Thus, sensors can be conveniently grouped
implementationally by type (e.g., scalar, staring-array, spectral),
functionality (e.g., temperature, surveillance camera), or location
(e.g., within a building or an office complex, or outdoors).

In contrast with the traditional two-layered model illustrated in
Figure 1.1, our three-layered CEB model realizes the following
advantages and benefits:
• Sensor management and maintenance are performed by one or

more edge(s), to which the sensors are connected. Thus,
locality of control is preserved, since an edge only controls
sensors located within its domain. As a result of such
partitioning, scalability is significantly improved – as opposed
to the two-layer model where sensors can be globally
controlled by multiple competing or interacting applications
(as discussed in Section 1.1).

• Edges can abstract unnecessary information about
implementational or internal details of sensors, routers, and
other sensing-related hardware located in the Beneath layer.
This directly facilitates tractable models and programming of
sensor configuration and control procedures, which we have
previously shown to be efficient and robust in practice [17].

• Edges support staging and optimization, while allowing for
many types of optimization procedures to be implemented.
Edges also implement localization and decoupling, to achieve
good software engineering practice through a loosely-coupled,
layered architecture. In practice, edges can implement staging
and power optimization by more efficiently retrieving sensor
data on behalf of applications, for example, by caching. Via

Figure 1.1. Customary two-layer model of cloud-based

sensor computing

Cloud
(Applications)

Sensors

Figure 1.2. Three-layer model of sensor computing
with cloud, edge, and beneath

Cloud
(Applications)

Edge

Beneath
(Sensors)

data caching mechanisms, it is possible to reuse historical
sensor data, thereby reducing energy consumption associated
with repeated sensor data acquisition and sampling by
multiple applications. In addition to energy reduction,
caching could conceivably allow a reduction in the total
number of sensors, as coverage could be partially managed by
the caching capabilities of one or more edges.

Therefore, the introduction of the edge layer makes the three-layer
architecture more tractable, better engineered, and more efficient.
However, the minimization of energy consumption still remains a
concern. In response to this situation, this paper describes the
concept of an optimal push-pull (Section 2). We briefly explain a
supporting event-driven programming model (Section 3), then
present our optimization approaches (Section 4): In particular, our
OPT-1 optimization algorithm is based on the relative
characteristics of demand side (from the Cloud layer), while OPT-
2 exploits the relative characteristics of data on the supply side
(from Beneath). We also demonstrate experimentally determined
performance gains of OPT-1, OPT-2, and their combination, in
terms of practical applications.

2. Problem: Energy Efficiency of Cloud, Edge
and Beneath
Recall that the two-layer model (Section 1.1) generates repeated
data acquisition requests from one or more applications in the
cloud to sensors in the device layer. This behavior can cause
significant power consumption due to repeated sensor sampling.
In the three layer model, we seek to minimize energy
consumption by sentient control of sensors in the beneath (device)
layer via optimization algorithms in the edge layer.
Correspondingly, we have developed optimization algorithms that
efficiently manage energy consumption between the cloud and
edge layers.
In particular, our research shows that the updating of sensor
readings can be realized via communication between cloud, edge,
and beneath layers using information push and pull mechanisms.
Push allows the data sink (e.g., the edge layer) to subscribe to a
particular data source (e.g., a sensing device in the sensor layer),
to received continuous readings at a constant rate. In contrast,
information pull supports on-demand data query, such that the
data sink can request, then acquire, sensor readings as one or more
individual values. Advantages and disadvantages of these
approaches are discussed, as follows.

2.1 The Push/Pull Envelope
When sensor data are needed at a constant rate, push requires less
downlink traffic (cloud to edge, edge to sensor), since the
application issues one subscription request only, then acquires the
stream of values from the sensor. In contrast, pull incurs a round-
trip penalty for each data query (e.g., involving steps such as
request, transmit, receive, and acknowledge). However, push
mode tends to be less economical when handling sporadic data
requests, as an application-subscribed sensor in push mode
samples and transmits a stream of data, whether or not all data
values are processed by the application. In push mode, this
physical transmission of the sensor value stream occurs
continuously – even when the data are not needed by the
application – leading to a substantial expenditure of energy. Since
some sensor values are not processed, some of this energy is
wasted. Thus, to achieve a design tradeoff between energy costs
associated with push and pull modes, we need to know something
about the application. For example, as shown in Figure 2.1 we
have found that, when transitioning from MICA2 [18] to RCB [6],
network communication decreases from 25 percent to 4.5 percent

of total energy cost. Correspondingly sensor energy consumption
due to sampling increases from 74 percent to 94 percent.

In response to this problem, we have developed the concept of a
push-pull envelope (PPE), which is defined as follows.
Definition 1: An optimal push-pull envelope is a
multidimensional sequence that determines (a) which sensors are
active, and (b) which sensors should be in pull or push mode
(along with push filters). The push-pull envelope minimizes work
and total energy consumption in the sensor layer, as well as in the
cloud, thus maximizing sentience efficiency.

In practice, the PPE can be thought of as a hybrid approach for
achieving near-optimal energy consumption, as illustrated
notionally in Figure 2.2. Architecturally, a PPE can exist between
the cloud and edge layers, as well as between the edge and sensor
layers. In a slightly lower-level view, a PPE can be thought of as
an optimal configuration of push/pull modes for each sensor over

MICA2:
Mote platform
with Sensirion
Humidity sensor,
ChipCon CC1000
Radio.

RCB:
Atlas sensor
platform with
Interlink Pressure
Sensor, Atmel
ZLink Radio.

Figure 2.1. Differences in energy consumption between
MICA2 and RCB (lower power, same sampling

technology) for wireless sensing applications.

Figure 2.2. Push-pull envelope between cloud and edge,

and between edge and sensors

the lifetime of service execution in the cloud. In this perspective,
the PPE effectively describes an optimal execution of applications
whose combined energy consumption (due to push and pull
operations) is minimized. This does not imply a static view – the
PPE can vary spatiotemporally. Therefore, in this paper, we seek
to dynamically compute the optimal PPE between adjacent layers
of the three-layer model that optimizes system energy efficiency.

Before presenting our algorithm for finding the optimal PPE, we
overview an event-driven programming model that supports the
programming paradigm employed in our system development of
applications in the cloud.

3. Event-Driven Programming Model
An event-driven programming model is a programming
paradigm whose control and data flows are determined by events.
In pervasive sensor computing, an event is always associated with
sensor outputs. In practice, applications developed on event-
driven programming paradigms usually consist of two phases: (1)
event detection, and (2) event handling.
In particular, in our model, the basic element of an application is a
rule, which conforms to the Event, Condition, and Action
(ECA) structure. By specifying events, conditions and actions,
program-mers formulate rules that represent constraints on
permissible application behavior over a range of situations. To
ensure the adherence to these rules, the application constantly
checks sensor data and evaluates the prespecified rules. When a
rule evaluates to true in response to one or more events,
corresponding actions (e.g. actuating a device or invoking a
service) are executed, to respond to the event. Details about the
design and implementation of ECA are found in our early work
[15].
We have extended the event formulation structure to support
composite events [15]. For example, an event associated with a
single sensor only is called a basic event, while an event defined
in terms of one or more basic events is called a composite event.
Composite events usually require data from multiple sensors. For
example, assume that a basic event e1 is associated with a
thermometer and another basic event e2 is associated with a
humidity sensor. Then a composite event could be defined based
on e1 and e2, with the purpose of monitoring a physical event such
as current weather condition.
In the next section, we present our optimization approaches to
realize energy efficiency of systems that are build based on this
event-driven programming model.

4. Cloud-Sensor Energy Optimization
Our research has shown that an optimal PPE can be achieved via
two optimizations (called OPT-1 and OPT-2) that collaboratively
determine the data delivery strategy among the three layers of our
CEB sensor computing model. For each sensor, OPT-1 attempts
to compute an optimal configuration of the push/pull envelope
between the cloud and edge layers. Via monitoring data requests
from the cloud, the edge learns the history of relative
characteristics of an application’s demands for each sensor. The
edge then utilizes this reference knowledge to derive the optimal
push/pull strategy for subsequent data deliveries that are expected
to minimize energy cost. Additionally, this PPE is dynamically
optimized at runtime to adapt to changing sensor sampling
requests from the cloud. For each sensor, the second algorithm
(OPT-2) optimizes the configuration of the push/pull envelope
between the edge and beneath layers. For example, given long-
term learning of the data output by a particular sensor, assume that
the sensor data changes at a relatively constant rate that is less

than the required data push rate calculated by OPT-1. Here, the
sensor can choose a reduced data push rate, which further reduces
energy consumption.

4.1 Cloud–Edge PPE Optimization
This section describes a dynamic algorithm that, for a single
sensor, finds an optimal constant base push rate f*, given the
relative characteristics of sensor sampling requests from the
cloud. As we have observed, requests from the cloud usually
change with time. However once the arrival rate of a request
surpasses a prespecified level for a given time interval, we can use
base push with a constant rate to satisfy a portion of the data
requests. This statement holds because push is less costly than
pull if (a) the pushed data is known to be adopted by its sink (i.e.,
applications in the cloud), and (b) we can employ supplemental
pulls to meet the unsatisfied requests. Taking advantage of this
optimization opportunity, the edge adjusts the rate of base pushes
to effect an overall (base + supplemental) rate change in order to
find the optimal f* that minimizes total energy cost. It is important
to note that the edge continuously senses and analyzes sensor
sampling requests from the cloud, to capture the relative
characteristics of past requests that will support computation of f*.

As the computation of f* is based on a history of sensor values,
our optimization approach must be able to dynamically adapt to
changes in requests issued by the cloud during a specific time
interval. Therefore, the edge chooses an evaluation window within
which sensor sampling requests are analyzed. Our algorithm
implements a simple but self-adaptive approach that selects the
length We of this evaluation window. The following terms pertain
to our discussion, in terms of a single sensor s:
R (ti) Total number of data acquisition and sampling requests for

sensor s received by the edge from the cloud, over time ti

D Sliding window at each end of which R (ti) is recorded.
The length of D is d, which implies that d = ti – ti-1.

R’ (ti) Average arrival rate of data acquisition and sampling
requests from sensor s received by the edge from the
cloud, within the sliding window D [ti – d, ti], as follows:

d
tRtR

tR ii
i

)()(
=)(' 1-- (1)

We Evaluation window within which multiple sensor requests
from the cloud are monitored and analyzed by the edge, to
provide information for computing the next f *.

L Length of evaluation window defined as the number of
sliding windows within We , i.e., L = |We| / d.

In summary, by analyzing the history of sampling requests from
the cloud for a single senor s within the evaluation window We,
the edge finds the optimal base push rate f* that is expected to
maximize energy savings for subsequent data queries. Therefore,
the following three problems need to be solved: (1) determine the
objective function and an algorithm to solve it; (2) determine
when to re-evaluate f*, and (3) specify the evaluation window We.
To solve Problem 1, we construct the objective function by using
the energy saving rate of our mixed push-pull scheme (base push
rate at f*), to replace the pure pull scheme that is one of the
customary approaches in current sensor data acquisition practice.
The energy cost of a sensor node is modeled by considering both
transmission and sampling [6] as major contributing factors for
overall energy consumption. Accordingly, we define two energy
cost coefficients: α, the energy consumption factor for one-time
transmission (either sending or receiving a packet); and β, the

energy cost for one sensor sampling operation. Therefore, the
cost of a pull operation is 2α + β (receiving query + sending data
+ sampling), and a push operation costs α + β (neglecting the one-
time subscription). Within evaluation window We, the energy cost
of our mixed push-pull strategy (base push rate at f *) is

dftRβαdfβα

dftRβαdfβαC

ctcct

ctTt
PPE

ii

ii

×))('(×)+2(+)×(×)+(=

×))('()+2(+)×()+(=

121

1

*

)(

*

**

!!

!!

-

- (2)

where T represents all of the end points of sliding window D
within We; c1 denotes the times ti at which R’(ti) > f* (i.e.
supplemental pull needed at sliding window [ti-1, ti]); and c2
indicates the times ti at which R’(ti) ≤ f *. Observe that T = c1 ∪c2.
Additionally, the energy cost by using pure pull scheme to satisfy
all of the data requests is given by

)×)('()+2(=)×)('()+2(=
)(21

dtRβαdtRβαC
cct

i
Tt

ippull

ii

 (3)

Therefore, the objective function (energy saving rate) is defined as:

!

! --

-

Tt
i

ct
i

ppull

PPEppull
esave

i

i

tRβα

tR'fβαLfα

C

CC
WfR

)(')+2(

))(()+2(××

=

=),(max

2

**

*

 (4)

where Rsave is determined by f * and the evaluation window We.
The objective function is thus given by

L

tR

βα

L

tRf

βαfα

L
L

tR

βα

L
L

tRf

βαLfα
WfR

T
i

c
i

T
i

c
i

esave

t

t

t

t

i

i

i

i

)(2

-
)(2-

)(2

-
)(2-

)('

×+

))('*(

×+×
=

×

)('

×+

×

))('*(

×+××
=)*,(max

2

2

*

*

(5)

We define the average of R’(t) within evaluation window We
as

L

tR

P
Tt

i

r
i

)('

= (6)

which denotes the average arrival rate of sampling requests for s
received by the edge from the cloud within evaluation window We.
We also define the average rate at which superfluous push
operations happen within evaluation window We, as follows:

L

tRf

fSPR
ct

i

i

-
2

))('(

=)(

*

* (7)

It is clear that the value of SPR(f *) changes with variations in f *.

Therefore, we can reformulate the objective function as

rr

r
esave

P
fSPR

P
f

βα
α

Pβα
fSPRβαfα

WfR

)(
×

+2
=

)+2(
)()+2(×

=),(max

**

**
*

-

-
 (8)

In addition, the optimization algorithm must be able to adapt to
the change of requests from the cloud (Problem 2). In our
approach, after f * is determined for subsequent data queries, the
edge will continue to monitor factors that may affect PPE
performance. For example, two factors in our performance
evaluation algorithm are Pr and SPR(f *) (Equations 6 and 7). For
either factor, once the difference between its current value and the
value used to evaluate current f * exceeds a designated threshold φ,
a new round of f * evaluation will be started. Simultaneously, the
current PPE will be terminated as it might be inaccurate for
processing current sampling requests.

We solve Problem 3 by initially assuming that the evaluation
window We starts at the time when the current f * is calculated, and
ends at the time when f * is re-evaluated. This simple approach is
effective, since the length of We will adapt to the changing value
of R’(ti). For example, if R’(ti) changes rapidly, then the
performance of the current PPE will likely decrease rapidly.
Therefore, the length of We for the next evaluation of f * will be
relatively shorter than it is when R’(ti) changes slowly. So the
length of the evaluation window reflects how rapidly the
evaluation of f *adapts to changing sensor requests from the cloud.
The shorter the evaluation window, the faster the evaluation of f*

adapts to the change of requests. For this reason, We should be
shorter when R’(ti) changes rapidly. Conversely, We should be
longer if R’(ti) changes slowly. Our experimental research results
show that this approach supports the accurate tracking of changes
in sensor request patterns that are typical of sensor demands by
cloud applications analyzed thus far.

Given the preceding development, we summarize the proposed
optimization algorithm (OPT-1), as follows.

The supporting algorithm FindFstar, which optimizes f*, is specified
as follows.

OPT-1: Optimizing PPE between Cloud and Edge

Input: threshold φ; initial length of evaluation window L
* tc: current system time
Algorithm:
1. Set evaluation window We = [tc - L ⋅ d, tc];
2. while true do
3. Calculate optimal f * = FindFstar (R(tc), We);

4. Record SPR’=SPR(f *); Pr’= Pr;

5. Set base push rate = f * and start mixed push pull mode;
6. Set t1 = tc;

7. PerformCheck(f *, SPR’, Pr’) //quit when f * needs re-

8. Set t2 = tc; We = [t1, t2]; evaluation

9. end while

The following proof sketch demonstrates the rationality and
correctness of the function FindFstar. In order to apply a binary
search algorithm to our process of searching for an optimal value
of f *, the objective function max Rsave(f *,We) must satisfy the
following conditions:
i. The optimal f * ∈ [min R’(ti), max R’(ti)] for ti ∈ We.

ii. There is only one optimal f* for max Rsave (f*,We),
s.t., min R’(ti) ≤ f ≤ max R’(ti)*.

iii. For min R’(ti) ≤ f < f *, Rsave (f , We) increases as f increases;
for f * < f ≤ min R’ (ti), Rsave (f , We) decreases as f increases.

Condition (i) is trivial. The proof of conditions (ii) and (iii) are as
follows.

First, by calculating the derivative of (8) we get

)
)(

+2
.(

1
=

)(
*

*

*

*

fd

fSPRd

βα

α

Pfd

fRd save - (9)

If we can prove (9) is a monotone decreasing function of f *, then
(ii) and (iii) will be guaranteed in that Rsave(f *) can changes only
in the following three ways as f * increases from min R’(ti) to max
R’(ti): a) always positive, b) always negative, c) first positive and
then negative.

First of all, assume that functions f = Rsave(t) maps ti ∈ We to
fi ∈ [min R’(ti), max R’(ti)] for all i = 1..n. Sort fi in non-
decreasing order, i.e.

)('max=...=)('min 10 ini tRffftR (10)

Partition the interval [min R’(ti), max R’(ti)] into disjoint union of
half-open intervals [fi, fi+1) where i = 0..n-1. For f ’∈[fi, fi+1)

)×(
1

=)'(
1

=)'(
0=

i

i

t
t Sfi

L
ff

L
fSPR '--

 (11)

!Where,
i

t ti fS
0=

=

Hence,

L
i

fd
fSPRd

=
'

)'((12)

For f ’∈(fi , fi+1). Note that the derivative is not defined when
f ’=fi , i = 1..n. However, the side limits (lim − and lim +) of
SPR(f ’) agrees at those special points, f ’= fi , i = 1..n-1. In other
words, SPR(f ’) is continuous within [min R’(ti), max R’(ti)] and it
is differentiable within [min R’(ti), max R’(ti)] except at a finite
set of points.

)'()'(<

).,(),(1+1+

bababa

iibiia

fSRPfSRPiiff

ffffff
bbaa

Therefore,.then,If

andthatAssume

So we can see that the derivative of SPR(f*) is a monotone
increasing function of f * and hence the derivative of Rsave(f *) is a
monotone decreasing function of f * according to (9). Finally, we
prove that condition (ii) and (iii) are satisfied.

4.2 Edge-Sensor Sampling Optimization
After the edge calculates the optimal base push rate f * for a
particular sensor s by running OPT-1, it will send f * to s to set its
data sampling rate. Fortunately, after receiving f*, the sensor also
has the chance to determine if it can choose an even lower
sampling rate at which data is pushed to the cloud via the edge.
The key concept is, if the data from s changes at a rate much
lower than the required sampling rate f *, then a lower push rate
might sufficiently reflect the change of sensor data. We call this
mode lazy sensor sampling. For our specific scenario where
applications follow an event-driven paradigm, the base push rate
of a particular sensor s should reflect the rate of change of the
values of basic events associated with s. The goal of our lazy
sampling algorithm (OPT-2) is to find the rate f ** at which s
samples and pushes its data to the edge, using the lowest sampling
rate to meet the cloud’s demands for sensor data.

For a single sensor s, the following terms pertain:

V(ti) Number of changes (until time ti) in the values of basic
events that are associated with s.

Dl Sliding window at each end of which V(ti) is recorded. The
length of Dl is dl = ti – ti-1.

V’(ti) Average change rate of the value of basic events that are
associated with s within the sliding window Dl [ti – dl, ti].
Thus, V’(ti) is given by

Method FindFstar: Find the Optimal f * Using Binary Search

Input: R(ti), We
Output: the base push rate f *.

1. Calculate R’(ti), for each ti within We.
2. Find min R’(ti) and max R’(ti), for ti within We .
3. if Rsave (min R’(ti), We) > Rsave (min R’(ti)+∆f, We) then
4. return min R’(ti) as the optimal f*;
5. end if
6. if Rsave (max R’(ti), We) > Rsave (max R’(ti)- ∆f, We) then
7. return max R’(ti) as the optimal f*;
8. end if
9. fL = min R’(ti), fR = max R’(ti) ;
10. f ’ = (fL + fR)/2
11. while Rsave (f ’ - ∆f , We)> Rsave (f ’, We) or
12. Rsave (f ’ + ∆f , We)>Rsave (f ’, We) do
13. if Rsave (f ’ - ∆f , We) > Rsave (f ’ , We) then
14. fR = f ’
15. else fL = f ’

16. end if
17. f ’ = (fL + fR)/2
18. end while
19. return f ’ as the optimal f*

Method PerformCheck: Monitoring Performance of f *

Input: f *, SPR’, Pr’
* Wc: time window within which runtime SPR(f *) and Pr are
calculated. It has fixed length, i.e., |Wc|.
* γ1: threshold used for monitoring SPR beyond which f * re-
evaluation will be triggered.
* γ2 : threshold used for monitoring Pr beyond which f * re-
evaluation will be triggered.

1. ReEva=false; //Initialization
2. while !ReEva do
3. Calculate SPR(f *) and Pr within current Wc
4. if |SPR(f *) - SPR’ | / SPR’ > γ1 or
5. | Pr - Pr’ | / Pr’ > γ2 then
6. ReEva=true;
7. end if
8. Wait | Wc | time for the next time window Wc
9. end

l

ii
i d

tVtV
tV

)()(
=)(' 1-- (13)

Similarly, we obtain the acceleration in the basic event change
rate associated with the s, which we denote as V”(ti), as follows:

l

ii
i d

tVtV
tV

)(')('
=)(" 1-- (14)

Let us now describe constraints on lazy sampling. An activation
condition of lazy sampling guarantees that the sensor data changes
at a relatively constant rate, such that our lazy sampling algorithm
will not lose track. This condition can be expressed intuitively in
terms of a threshold derived from V”(ti), as follows:

τtV
c

kci
i <|)("|

=

!
-

 (15)

where tc is the current time, τ is the threshold, and k is obtained
experimentally.

If the above condition is satisfied, then our OPT-2 algorithm will
compute an optimal or near-optimal rate f ** at which s will
sample and push its data to the edge. This near-optimal sampling
rate is determined by summing the predicted V’*(t) at the next
time slice, toleranced by a safe margin, to compensate for any
abrupt change of sensor data. The estimation of V’*(t) at the next
time slice should be based on the sensor data history, with
provision for temporal tolerancing, as mentioned previously. We
have found that the following method for determining V’*(t) is
practicable:

!!!
-

-
-

--

-

--
c

kci
iic

i
k

i

c

kci
i

ccc

tVεtVγγtVε

tVγγtVγγtVγtV

=0==

2
2

1
*

|)("|+)('×)1(×=|)("|+...+

)('×)1(×+)('×)1(×+)('×=)(' (16)

where γ influences how rapidly V’*(t) adapts to changes of V’(ti),

and ∑
−=

c

kci
itV |)("|ε denotes the temporal tolerance (margin of

safety).

We thus summarize our lazy sampling algorithm, as follows.

Importantly, to enable our optimization, caching as a supporting
technology must be implemented in our three layer model.

4.3 Supporting Technology: Caching
Some events are tolerant to time fidelity in that their respective
applications do not require frequent evaluation at all times. For
example, when monitoring room temperature, an air conditioning
system does not need to get temperature reading at a very high
frequency, since the changing rate of room temperature is usually
slow. In addition, an air conditioning system may need to monitor
room temperature only occasionally during the spring and fall.
Considering these scenarios, data of a particular sensor can be
considered fresh within a certain "lifetime" after it is sampled.
Taking advantage of this fact, we can employ data caching
mechanisms so that historical sensor data could be reused to
satisfy different requests for a common sensor data, thereby
reducing energy consumption. In our model, caching are
employed in all three layers (cloud, edge, and sensors) to realize
energy saving.
Caching data in the cloud [19] allows different applications in the
cloud (possibly located at different cloud servers) to reuse sensor
data without requesting sensor data from the lower layers. Once a
request is issued by an application, the cache is checked for
"freshness". If it is, data will be used directly. Therefore, only
those requests that cannot be satisfied by cached sensor data will
be forwarded to the edges that will fetch data on behalf of
applications. Similarly, caching is implemented at the edge and
even sensors to further reduce energy consumption by enabling
historical data reuse whenever possible.

5. Experimental Evaluation
5.1 Experimental Setup
We evaluate the performance of CEB under OPT-1, OPT-2 and
their combination, by comparing their performance with that of
CEB under a pure pull mechanism. We use an emulation approach
where the requests from the cloud and data from the beneath are
simulated by generators and in which edges and sensor nodes are
simulated by software emulators. As input to our optimization
algorithms, the arrival of sensor sampling requests and the
generation of sensor data are simulated in the following way.
Sensor sampling request generator emulates the arrivals of
requests from applications in the cloud asking for data from
sensors. We simulate total number of K applications and total
number of S sensors. In our experiment, we choose {K=50, S=50;
K=100, S=50; K=500, S=100}. Sensors are randomly assigned to
each application following a normal distribution (N (µ=2, σ2=4)).
Each application requires data from an arbitrary set of sensors out
of the sensors assigned to it for execution. The time between two
active phases of an application follows an exponential distribution

Method FindLazyRate: Find the sensor sampling rate f**

Input: f * , V (ti)
Output: the base push rate f **.

1. Calculate V’ *(t)
2. if V’ *(t) < f * then
3. return f **= V’ *(t) // lazy sampling mode starts
4. else return f **= f *;
5. end if

OPT-2: Lazy Sampling Algorithm

Input: f * calculated by edge through OPT-1, V (ti)
Algorithm:
1. lazyMode=false; //Initialization
2. while true do
3. if Condition (15) is satisfied and ! lazyMode then
4. set f **= FindLazyRate (f * , V (ti));
5. lazyMode=true;
6. end if
7. if Condition (15) is not satisfied and lazyMode then
8. set f **= f * ;
9. lazyMode=false;
10. end if
11. wait for k time.
12. end while

with average arrival rate λ=1. For the generation of sensor data,
we use the normal distribution. However, parameters of µ and σ2
are varied during the course of each experiment. High σ2 emulates
the phase when the data of a sensor is changing rapidly while
lower σ2 emulates the phase when sensor data is changing slowly.
We emulated the effect of three sets of sensor platforms [Table 1]
by normalizing their energy consumption coefficients. We
conduct experiments on each set of coefficients to quantify the
platform’s receptiveness to our optimizations. Transmission
energy cost includes two parts, cost of transmission between edge
and sensor and cost of transmission between cloud and edge. We
assume that for all three sensor platforms transmission cost
between edge and cloud is unchanged.

5.2 Evaluation Metrics
The main performance metric, which is measured throughout all
experiments, is the energy saving rate of our mixed push-pull
scheme to replace the pure pull scheme i.e. Rsave. The actual
energy saving rate in all experiments is given by (19).

pullppull mβααC ×)+2+2(= 21
 (17)

21

211212

×)+(+

×)+2(+×+×2=

push

pullpushpullppe

nβα

nβαnαnαC (18)

ppull

ppe
save C

C
R -1= (19)

(17) indicates the total energy cost by using pure pull scheme in
which mpull means the total number of pulls (cloud pulls data from
sensors) in pure pull scheme. (18) represents the total energy cost
by using our mixed push pull scheme. npull1 and npush1 means the
total number of pulls and pushes respectively between edges and
the cloud in our mixed push pull scheme; while npull2 and npush2
means respectively the total number of pulls and pushes between
edges and sensors in our mixed push pull scheme.

5.3 Performance Comparison Results
We compare the performance of OPT-1, OPT-2 and OPT-1 and
OPT-2 combined, for sensor platforms S1 and S2. The result is
recorded every T time (5 sec) as shown in Figure 5.1. (K=500,
S=100).

From Figure 5.1. and 5.2., we can see that for sensor platform S1
whose transmission energy cost accounts for most of the energy
consumption, OPT-1 shows better performance than that for

Sensor
platform

ββββ:
sampling

αααα1
transmission

between edge and
sensor

αααα2
 transmission

between cloud and
edge

S1 0.21 0.36 0.43

S2 0.88 0.03 0.09

S3 0.26 0.33 0.41

Table 1. Normalized energy coefficients for transmission and
sampling on three different sensor platforms. S1: MICA2
sensor platform with Sensirion Humidity sensor, ChipCon
CC1000 Radio [18], S2: Atlas sensor platoform with Interlink
Pressure Sensor, Atmel ZLink Radio [6] and S3: MicroLEAP
with ECG sensor, class-2 Bluetooth 2.0 radio [20]. αααα2 is
derived from [21] (assume average 10 hops from edge to
cloud).

(a) Result for sensor platform S1

(b) Result for sensor platform S2

Figure 5.1. Energy saving rate for three optimization
techniques on sensor platform S1 and S2

(a) Results for sensor platform S1

(b) Results for sensor platform S2

Figure 5.2. Average energy saving rate for three algorithms
on sensor platform S1 and S2 (over 255 seconds)

sensor platform S2 where sensor sampling accounts for most of
the energy consumption. This can be explained by the motivation
of OPT-1, in which by replacing as many pulls with pushes the
number of transmission can be reduced, leading to energy saving.
On the contrary, OPT-2 shows better performance in S2 than in
S1. The reason is that OPT-2 reduces the number of push as well
as the number of data sampling when data of a given sensor does
not change rapidly during a particular period. In Figure 5.2, we
show that the combined application of OPT-1 and OPT-2 gives a
superior performance than by utilizing OPT-1 or OPT-2 alone.
In addition, we measure the effects of optimization on three sets
of sensor platforms and compare the results in Figure 5.3. From
this result, we see that S1 adopts more pushes than S2 while it
adopts less pull than S3. The reason is that in S2 supplemental
pull has fewer penalties than in S1 and hence pull will be
preferred as its on-demand feature.

6. Related Work
Integrating sensor networks with the emerging data center cloud
model of computing is becoming a popular paradigm of choice in
system development for various application domains including
health care [1], warehouse monitoring [4] and environmental
monitoring [3]. In order to realize this integration, in [4] and [5]
similar architectures are proposed to utilize virtualization as
supporting technology for integrating physical sensors as services
into the cloud. These architectures, however, lack an intermediate
layer between the cloud and various physical devices, which
raises serious scalability issues. In order to enable scalable
collaborative sensor-centric applications in the cloud, [2] and [1]
provided their own frameworks which respectively use Pub/Sub
broker and exchange service as intermediate layer between the
cloud and device layers, to preserve locality of control. However,
these approaches disregard energy consumption, which could
significantly affect system performance. In our work presented
herein, we introduce, justify, and take advantage of a three-layer
model (cloud, edge, and beneath) to enhance scalability as well as
increase energy efficiency via algorithms for optimizing the
push/pull envelope.

Additionally, in wireless sensor networks, special data acquisition
techniques have been developed for event detection supporting
real-time application execution. A typical scheme is polling [11],
in which a data sink sequentially polls its underlying sensors for
new data. In contrast, a bottom-up sensor-driven model [12] has
also been proposed, assuming that sensors are capable of pushing
data to applications when an event occurs. To improve the

efficiency of data delivery and enable data sharing, messaging
paradigms such as publish/subscribe [9] and push-pull [10] have
been widely adopted in sensor data acquisition. Optimization
techniques to balance push and pull have been extensively
discussed in [10][13][14], which focus on network topology and
routing algorithms. Furthermore, a new model discussed in [15]
utilizes the mixed push/pull strategy and takes advantage of the
optimization opportunity provided by the event structure and its
time-frequency relaxations. However, none of the above
approaches fit perfectly into a cloud-based sensor computing
paradigm. This is especially true when one considers the
massiveness of sensors and applications that tend to be invisible to
each other. In order to overcome this problem, we have developed
a push pull strategy based on the relative characteristics of sensor
requests (demand side from the cloud) and sensor data (supply
side from beneath). These two features can be easily captured in
our model, and support our claims of effectiveness and
significance in promoting our approach’s energy efficiency.

7. Conclusion
We adopt the Cloud, Edge and Beneath (CEB) architecture to
sensor data access by Cloud applications. CEB more naturally
represents actual sensor system deployments in which an edge
device (e.g., gateways) manages a locale of sensors. CEB allows
for many optimization opportunities. In this paper, we present two
optimizations. OPT-1 optimizes the proper mix of base push and
supplemental pull between the cloud and the edge. OPT-2
optimizes the sampling and delivery of sensor data between the
sensors and the edge, based on sensor domain value
characteristics. We present both algorithms along with an
experimental evaluation of their individual and combined impact.
The results shows that by combining both algorithms, CEB can
always achieve better performance than adopting any of the
algorithms individually.

8. REFERENCES
[1] C. Rolim, F. Koch, C. Westphall, J. Werner, A. Fracalossi,

G. Salvador, "A Cloud Computing Solution for Patient Data
Collection in Health Care Institutions," in Proc. of
ETELEMED. IEEE, 2010, pp. 95–99

[2] M. Hassan, E. Huh. "A Framework of Sensor-Cloud
Integration: Opportunities and Challenges". International
Conference on Ubiquitous Information Management and
Communication.

[3] X.H. Le, S. Lee, T. Phan, V. La, A. Khattak, M. Han, H.
Dang, M. Hassan, M. Kim, K. Koo, Y.K. Lee, E.N. Huh,
"Secured WSN-integrated cloud computing for u-Life care",
in: Seventh Annual IEEE Consumer Communication and
Networking Conference (CCNC), January 9–12, Las Vegas,
2010, pp. 1–2.

[4] K Lee and D. Hughes. "System architecture directions for
tangible cloud computing." In International Workshop on
Information Security and Applications (IWISA 2010), in
Qinhuangdao, China, October 22- 25, 2010.

[5] M. Yuriyama and T. Kushida, "Sensor-Cloud Infrastructure -
Physical Sensor Management with Virtualized Sensors on
Cloud Computing", The 13th International Conference on
Network-Based Information Systems (NBiS-2010), 2010

[6] R. Bose and A. Helal, "Sensor-aware Adaptive Push-Pull
Query Processing in Wireless Sensor Networks," Submitted
to the 6th International Conference on Intelligent

Figure 5.3. The push-pull envelope on different

sensor platforms (S1-S3)

Environments - IE'10, Kuala Lumpur, Malaysia, July 19-22,
2010.

[7] Y. Kawahara, M. Minami, H. Morikawa, T. Aoyama:
"Design and Implementation of a Sensor Network Node for
Ubiquitous Computing Environment", In Proc. Of VTC2003-
Fall 2003.

[8] A. Helal, D. Cook, M. Schmalz, "Smart Home-based Health
Platform for Behavioral Monitoring and Alteration of
Diabetes Patients," Journal of Diabetes Science and
Technology, Volume 3, Number 1, January 2009. Pp 141-
148.

[9] N. Rosa, C.Ferraz, J. Kelner, E. Souto, G. Guimarães, G.
Vasconcelos, M. Vieira. "Mires: a publish/subscribe
middleware for sensor networks". Personal and Ubiquitous
Computing , Volume 10 Issue 1, December 2005. Springer-
Verlag.

[10] X. Liu, Q. Huang, Y. Zhang. "Balancing Push and Pull for
Efficient Information Discovery in Large-Scale Sensor
Networks". IEEE Transactions on Mobile Computing,
Volume 6, Issue 3, March 2007 Page(s):241 – 251.

[11] Z. Zhang, M. Ma, Y. Yang. "Energy Efficient Multi-Hop
Polling in Clusters of Two-Layered Heterogeneous Sensor
Networks". IPDPS '05: Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS'05), April 2005.

[12] S. Reilly and M. Haahr. "Extending the Event-based
programming model to support Sensor-Driven Ubiquitous
Computing Applications". Proceedings of the 2009 IEEE
International Conference on Pervasive Computing and
Communications (Percom’09).

[13] Z. Tao, Z. Gong, Z. OuYang, J. Xu. "Two New Push-Pull
Balanced Data Dissemination Algorithms for Any-Type
Queries in Large-Scale Wireless Sensor Networks".
International Symposium on Parallel Architectures,
Algorithms, and Networks, 2008. 7-9 May 2008 pp: 111 –
117.

[14] S. A. Hashish, A. Karmouch. "Topology-based on-board data
dissemination approach for sensor network." Proceedings of
the 5th ACM international workshop on Mobility
management and wireless access. Chania, Crete Island,
Greece, 2007. pp. 33 – 41.

[15] C. Chen, Y. Xu, K. Li, and A. Helal, "Reactive Programming
Optimizations in Pervasive Computing," in proceedings of
10th Annual International Symposium on Applications and
the Internet, Seoul, Korea.

[16] M. Khanafer, M. Cuennoun, H. T. Mouftah, "WSN
Architectures for Intelligent Transportation Systems"
Proceedings of 3rd New Technologies, Mobility and Security
(NTMS), Cairo, Egypt

[17] J. King, R. Bose, H. Yang, S. Pickles and A. Helal, "Atlas –
A Service-Oriented Sensor Platform, " Proceedings of the
first IEEE International Workshop on Practical Issues in
Building Sensor Network Applications (SenseApp 2006).
Tampa, Florida, November 2006.

[18] S. Lai, J. Cao, Y. Zheng, "PSWare: a Publish/Subscribe
Middleware Supporting Composite Event in Wireless Sensor
Network". IEEE International Conference on Pervasive
Computing and Communications, 2009. pp.1-6.

[19] Y. Cardenas, J. M. Pierson, L. Brunie: "Uniform Distributed
Cache Service for Grid Computing." In: Proceedings of the
International Workshop on Database and Expert Systems
Applications, pp. 351–355 (2005)

[20] L.K. Au, W.H. Wu, M.A. Batalin, D.H. McIntire and W.J.
Kaiser, "MicroLEAP: Energy-aware Wireless Sensor
Platform for Biomedical Sensing Applications". IEEE
BIOCAS2007. November 2007. pp.158-162.

[21] V. Sivaraman, A. Vishwanath, Z. Zhao, C. Russell,
"Profiling Per-Packet and Per-Byte Energy Consumption in
the NetFPGA Gigabit Router," IEEE INFOCOM 2011
Workshop on Green Communications and Networking

