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Abstract. In this paper we propose a two-phase methodology for designing 
datasets that can be used to test and evaluate activity recognition algorithms. 
The trade offs between time, cost and recognition performance is one challenge. 
The effectiveness of a dataset, which contrasts the incremental performance 
gain with the increase in time, efforts, and number and cost of sensors is 
another challenging area that is often overlooked. Our proposed methodology is 
iterative and adaptive and addresses issues of sensor use modality and its effect 
on overall performance. We present our methodology and provide an 
assessment for its effectiveness using both a simulation model and a real world 
deployment. 
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1   Introduction 

Activity recognition technology is critical to many human-centric ubiquitous 
applications. Activity models, activity recognition algorithms, and activity recognition 
sensor platforms are active areas of research [1][4][5][6][8][10]. Experiments are 
necessary for validating novel ideas and collecting comprehensive datasets. 
Furthermore, a variety of experimental setups are required due to the diversity in 
human activities. For instance, depending on the number of residents or activity order 
such as sequential or concurrent activity, different sensor setup will be necessary. 
However, building an experimental environment that closely mimics real-world 
applications requires significant effort and cost. Therefore, it is difficult to build 
necessary experimental environments. As a solution, many research groups have 
shared their activity datasets [4][5][6][7][10]. However, since sensor technology is 
rapidly evolving, researchers often need to upgrade or replace existing activity dataset. 
This demands new methods to create activity data. Research on activity dataset has 
mainly focused on classifying the collected data into different types [4][5][6][7]. But, 
so far there has been little work done on effective generation of activity dataset at low 
cost, effort and time. In this paper, we will propose a methodology for creating 
effective activity datasets with lesser cost, time and errors as compared to existing 
methods. 



1.1   Motivation 

Our motivation is developing processes and tools to create a highly effective activity 
datasets. We observe that activity datasets, even in the same domain, may 
considerably differ due to the number of sensors, sensor types, and the way the 
sensors are used (sensor use modality). This diversity of datasets in the same domain 
raises several issues. In other words, when we verify new activity recognition 
algorithm or activity model, the experimental results may be different depending on 
the activity dataset. 

First of all, using more sensors may trade-off cost for achieving higher activity 
recognition performance. For example, if we use many sensors, it may be better to 
detect an activity. However, it is also more expensive. Therefore, it is necessary to 
find an effective number of sensors.  

Secondly, finding the proper type of sensors is crucial to generate an effective 
dataset. For instance, although a sound sensor can be used to recognize eating activity, 
other type of sensors such as RFID or camera sensors may produce more accurate 
data when people watch television while eating food.  

Lastly, the effectiveness of a dataset can be achieved by a modality analysis of 
sensors such as install location (wearable, environment), size, and other constraints. In 
other words, sensor should be carefully fitted (and sometimes, conditioned) to best 
suite the intended purpose. For example, if we plan to install pressure sensors on a 
bed to detect a sleeping activity, we should carefully analyze and find the most 
appropriate location on bed and we should adjust the operational range of the sensor 
to better detect the weight of a person (e.g., use appropriate resistor to shift range of 
sensitivity).  

As shown above, it is important to determine the effective number of sensors, type, 
and usage modality to accurately detect the target activity and to collect high quality 
corresponding datasets. Therefore, it is essential to develop a new methodology which 
allows discovering the most serious erroneous flows during the design phase, leaving 
only little errors and adjustments to be dealt with before actual deployment.  
  

1.2   Proposed Approach 

As a solution to the aforementioned problem, we propose a two phase activity dataset 
design approach. Our approach is composed of three steps: activity design, simulation, 
real-world instrumentation. Instead of building a real sensor setup immediately after 
activity design, we have a simulation step in the middle of the process. This approach 
has several advantages. First of all, it can help in discovering and selecting a most 
effective sensor set for a specific purpose. In many cases, the sensor setup relies on 
the knowledge and intuition of the researcher. If too few or too many sensors are used, 
the quality and effectiveness of the dataset could be questioned. By performing 
simulation, this risk will be reduced. Secondly, our approach can save time and cost 
since all investigations are performed in a tightly controlled environment. Finally, the 
activity dataset produced by our approach can be utilized as a standard dataset to 



verify the activity model under investigation along with its activity recognition 
algorithms.  

The rest of this paper is organized as follows. In section 2, we will describe several 
related works. The proposed approach is explained in section 3. The experiments and 
results are discussed in section 4. Finally, section 5 concludes the paper.     

2   Related Work 

There have been many approaches to make dataset for activity recognition. In this 
section, we will talk about experimentally obtained activity recognition dataset in real 
world and simulation based activity dataset.  

2.1   Real-World Activity Recognition Datasets  

Activity recognition datasets have been collected for archiving by several research 
groups. MIT provides three datasets called PlaceLab Intensive Activity Dataset1 
(PLIA1), PlaceLab Intensive Activity Dataset2 (PLIA2), and PlaceLab Couple 
Dataset (PL Couple) [4][5][6]. In PLIA1, the researchers built a real experimental 
environment in a 1000 sq. ft. apartment and installed approximately 214 sensors such 
as temperature, humidity light, pressure, current, water flow, gas flow, object, 
accelerometer, camera, and microphone sensors [4]. They performed a set of common 
household activities during 4-hour period and collected sensor data of 89 activities [4]. 
In PLIA2, they introduced a portable wireless sensor platform named MITes [5]. It is 
useful to collect human activity data in real environment such as home [5]. The 
MITes platform includes five types of wearable sensors such as accelerometers, heart 
rate, ultra violet radiation exposure, an RFID reader in a wristband form factor, and 
location beacons [5]. It also includes six environmental sensor types such as light, 
temperature, switch, object, proximity, and current [5]. This sample PlaceLab dataset2 
was recorded for four hours with a volunteer who was familiar with the PlaceLab, but 
not a creator of the core technical infrastructure. He performed a set of common 
household activities during the four-hour period using a set of instructions [5]. This 
dataset is provided with a visualization tool [5]. The third dataset, PLCouple1, 
consisted of 100 hours of annotated data from a couple who lived in the PlaceLab [6]. 
This experiment is performed for 15 days with 900 sensor inputs including wired 
sensors, motion-detection sensors, and RFID tag. The purpose of this experiment is to 
compare different sensor modalities on data in real environment [6]. 

Artificial Intelligence Laboratory, Washington State University provides several 
activity datasets for single resident, two residents, and multiple-residents. The datasets 
are further specialized into normal activity, abnormal activity, separate activities, 
interwoven activities, and smart home/smart workplace datasets, respectively [7][8]. 
Human subjects lived in the laboratory-built smart apartment and the smart workplace 
as part of the CASAS project [7]. The smart apartment had three bedrooms, one 
bathroom, a kitchen, and a living/dining room. Temperature sensor and custom-built 
analog sensors were installed to monitor motion, water, burner, telephone, and item 



use. These sensors were used to detect daily living activities [8]. The smart workplace 
is a lab which is organized into four cubicles and a server area, a postdoc office, a 
meeting room, a lounge, and a kitchen. Every cubicle had a desk and chairs, and a 
computer. Motion sensor, power line controllers, and magnetic open/close sensors are 
installed in the space. This is used to recognize social interaction activities among 
people in the lab such as apart, coming, going, or joint together [7] [8]. These dataset 
also provided a visualization tool so users can utilize it for annotation of the sensor 
dataset [7] [8].      

University of Amsterdam provides a real world activities of daily living dataset 
[10] (we will refer to it in this paper as the Amsterdam dataset)  This data set records 
ADL performed by a 26-year-old man living in a three-bedroom apartment for 28 
days [10]. The researchers installed 14 state-change sensors in the house. Data has 
been recorded for only 24 days out of which only 23 days have annotations. Sensors 
are installed in several places in the apartment including doors, cup-boards, 
refrigerator, and toilet flush. Activities (such as ‘Leaving’, ‘Toileting’, ‘Showering’, 
‘Sleeping’, ‘Drink’, ‘Breakfast’, and ‘Dinner’) are annotated by the subject himself 
using a Bluetooth headset. Since PLIA1 and Amsterdam dataset provide text format 
annotation files, they are best suited for activity recognition research [10]. On the 
other hands, PLIA2 and Washington State University datasets provide visualization 
tools, they are more suitable to detect activity patterns or activity episode discovery 
studies [4][5][6][7] [8]. 

The main focus of collecting datasets has been to closely represent actual activities 
in real environments. For example, the PLIA dataset tried to overcome the limitations 
imposed by laboratory environment [4]. Washington State University dataset 
collected multiple residents and interwoven the dataset because they are closer to the 
real-world situation [8]. In the Amsterdam dataset, data was collected about a 
volunteer for 28 days. Therefore, these datasets are a step toward realizing real-world 
applications [10]. Our research takes activity recognition a step forward by generating 
effective datasets. Collecting activity datasets requires not only high cost but also time 
and effort. Datasets having the same domain may differ due to different sensor types 
and numbers. Some sensors may be redundant while in some cases the number of 
sensors may be insufficient.  

2.2   Simulation based Activity Datasets 

Generating meaningful sensory data is one of the major impediments in human 
activity recognition research. Researchers often need data to evaluate the viability of 
their models and algorithms. But useful sensory data from real world deployments of 
pervasive spaces is very scarce. This is due to the significant cost, and elaborate 
groundwork needed to create actual spaces. [11] 

Given the aforementioned challenges, simulation is a promising and sensible 
alternative in practical ways to experiment with human activities in pervasive spaces. 
Powerful and realistic simulation tools could be used to support the growing demand 
for test data. Simulation enables researchers to create focused synthetic replications of 
important events and activities under study. It can be easily changed and refined 
allowing the researchers to experiment, analyze and fine-tune their models and 



associated algorithms. Simulation also allows a wider community of researchers to 
engage and collaborate to solve a specific problem. Hence, a design based on 
preliminary simulation studies would most likely to be a more robust and inclusive 
design. Also, a simulation model that mimics an existing real world is most likely to 
answer more questions (generate much more data) than the actual space. This early 
stage simulation can help researchers evaluate their ideas and algorithms quickly and 
with reasonable accuracy. [12] 

There have been several approaches to introduce the simulation concepts and 
algorithms and to develop the simulating tools. SENSORIA [14], is a simulator 
focusing on traffic generation, energy consumption and inherent protocols of wireless 
sensor network (WSN). In [20], a detailed simulation model was presented which also 
focuses on accurate model for battery, processor power consumption and in network 
traffic. In [17], Discrete-Event system Specification (DEVS) was proposed to define 
asynchronous discrete-events to be simulated. Since these approaches suggest 
modeling simulation events occurring in WSN environment, routing and 
communication becomes non-trivial factors for them. However, the events and 
environments they are modeling could not be available to simulate human activities. 
They have lacks of specific and complex labeling which is necessary to describe 
human activities performed in pervasive environment. 

DiaSim [16] simulator executes pervasive computing applications by creating an 
emulation layer and developing simulation logic using a programming framework. It 
describes a pervasive computing environment in terms of stimulus procedures (any 
change in the environment that can be consumed by sensors) and simulated services 
(sensors and actuators) in a specification language called DiaSpec. However, DiaSim 
simulates applications such as fire situations, intrusions, etc. to identify potential 
conflicts. It does not care much for human activities performed in pervasive spaces. 

The human activities can be simulated through Persim [11], [18] developed at 
University of Florida. It allows researchers to fine-tune simulation models until 
his/her satisfaction. However, there is still a major roadblock that impedes the 
simulation through Persim which is: How do they know that a designed model is 
reasonable enough to simulate dataset closed to dataset generated in the real space? 
Because costs in establishing a virtual pervasive space and simulating it are very low, 
researchers can design what they want to establish. But these models and designs 
might not be realistic in terms of possibility that the designed spaces could be existed. 
In order to get much more reasonable yet still accurate simulation mode and its 
dataset, this paper proposes a heuristic way to design an effective space through fine-
tuning experiments. 

3   Two Phase Dataset Design Approach 

We developed a two phase approach for activity dataset design as shown in Fig. 1. 
Phase 1 is concerned with generating activity dataset using simulation after detailed 
activity design. The purpose of the detailed activity design is looking at the nature of 
human activities and matching the activities with the most suitable sensor technology, 



and finding the specific use modalities that boosts the effectiveness and the 
contributions of the sensor to the target activity.. The detailed activity design is 
followed by generation of activity dataset through simulation. Phase 1 goes through 
multiple iterations until the target dataset achieves high recognition performance. 
Once this is accomplished, we move to phase 2 in which we implement the actual 
sensor instrumentation and collect actual activity data in the real sensor environment. 
This real world activity dataset would be more effective and accurate compared to 
that of a single phase activity dataset.  

 
 
 
 
 
 
 
 
 
 
 

3.1   Activity Design 

Designing activities is a detailed step in the making of a dataset. It consists of four 
sub-steps: Generic Activity Model Design, Selection of Target Activities, Functional 
Instrumentation, and Modality Analysis. We describe each of these sub-steps in the 
following sub-sections.  

3.1.1   Generic Activity Model Design 

A well-defined activity model is very important because other steps are directly 
influenced (limited or empowered) by the activity model. In [1], we proposed a 
generic multi-layer activity model that is shown in Fig. 2. The generic model was 
intended to provide clear separation between the sensors layer (observation sub-
system) and the rest of the activity model (any model). The goal of this separation is 
to enable a more scalable approach to try and error research in which researchers are 
empowered to explore varieties of sensors until they arrive at he most “effective” 
sensor set. In this paper, we instantiate this generic model based on the activity design 
on hand. A brief description of each layer of the generic model is shown below. 

 
Sensor data. This is the data from installed sensors in the pervasive space (e.g. smart 
home). Based on the source of data, sensor data is classified into four types: motion, 
tool, object, and context sensor data. Motion sensor data is about peoples’ movements 
such as raising an arm, turning body, or folding legs. Tool sensor data come from 
sensors attached to the objects which are used by the people. For example, spoon or 

Fig. 1.  Two phases activity dataset collection process. 



fork is a tool for eating. Object sensor data is from sensors installed on passive objects 
such as grocery or frozen food packets. [1]. 
Action. Action is a unit behavior, which can be directly determined by combination 
of tool and motion sensors. For example, an eating activity is composed of several 
actions such as scooping, picking or cutting food [1]. 

 
Activity. Activity is a collection of combination of actions and objects. Activity may 
involve multiple actions that occur in a certain order. But because the order of actions 
varies a lot according to the user, we consider the relationship between activity, action 
and object in defining activities [1].  

 
Meta activity. A meta activity is a collection of related activities. It is a more abstract 
entity than an activity [1].  

 
Context. Context is information, which is used to determine a situation [1]. Contexts 
are classified into directly sensed, directly defined, and indirect context [1]. A directly 
sensed context is a record of user activity or sensor data. As the indirect context 
reflects the inclination of a user, it needs to be found by a system and activity history. 
A directly defined context is predefined because it is common knowledge. A directly 
defined context is presented to a case and the case is a pair of problem and solution or 
cause and effect [1]. 

 

 

Fig. 2. Generic Activity Model, (a) block diagram of activity model (b) class hierarchy for 
activity ontology. 

3.1.2   Selection of the Target Activity  

We need to decide the domain of activities. Activity domain is classified in many 
ways such as home, office, school, gym, or kindergarten. For example, if we want to 
collect daily living activities at a home of an elderly person, then there would be 



several activities such as sleeping, eating, cooking, and etc [3]. Among all activities, 
we need to choose a subset and define the meta activities, activities, and actions 
according to our generic activity model.  

3.1.3   Functional Instrumentation 

Once we decide the target activities, we need to find which information needs to be 
sensed. For example, for “eating” activity, there are many types of information such 
as eating sound, eating motion, and the amount of food consumed, food smell, or 
location of user. However, collecting all those information may not be necessary. 
Therefore; we should choose an effective combination of this information. After we 
determine the information to sense, we need to decide proper sensors according to its 
function. For instance, there are acoustic sensors for detecting sound and several types 
of motion sensors for sensing human motions. However, there will always be 
information that no available sensor can support. For instance, detecting nutrition 
information the elderly take is very helpful in tracking their health status. However, it 
may not be easy to find suitable sensors that can sense such nutrition information. 
Therefore, only effective and synergistic sets of information and sensors are chosen in 
this step. 

3.1.4   Modality Analysis 

Once we decide upon the information to be detected and sensors to be used, we 
should find how to utilize sensors to acquire information most effectively. This is a 
question of modality of use of the sensor. Modalities include the number of sensors to 
use, the way a sensor is worn or the location it is placed at, the feasibility of sensors 
such as size or performance. All such relevant modalities are analyzed in this step. 
For example, if eating is a target activity and if we want to detect eating motion, 
motion sensor will be chosen. If there is a very small motion sensor, eating activity 
can be detected by the motion sensors installed in spoon or fork. Otherwise, residents 
may need to wear motion sensor on their arm or hand, which is obviously a great 
inconvenience and therefore must be avoided. Also, the spoon and fork will need to 
be washed. So the sensors should be durable to withstand a wash cycle. Otherwise, 
alternative ways to detect the same activities must be explored. Another example is an 
RFID reader. RFID readers are classified according to their frequency band and 
reading (sensing) range. If their reading range is too small, say a few centimeters, then 
it will be difficult to detect important information (tags) farther than the range. On the 
other hand, if the reading range is too large (e.g. 20 meters), then unrelated 
information may unnecessarily get sensed which may cause confusion or errors. 
Hence, paying attention to the specific type of reader and tags is of paramount 
importance. Modality analysis is indeed very important in addressing all above issues. 



3.1.5   Sample Design 

We designed target activities based on a scenario in which Mrs. Smith, an 87 years 
old woman, lives alone in a smart house [3].  A detailed analysis of her daily life 
reveals 11 meta activities and 31 activities which we casted into our generic activity 
model as shown in Table 1.  

Table 1.  Meta activities, Activities, and Actions of Mrs. Smith’s scenario 

Meta Activity Activity Action 
Rest Sleeping, Relaxing Lying down, Getup 
Having a meal Eating, Drinking Cutting, Picking, Scooping, Serving, 

Lifting a cup 
Getting out Leaving & Arriving home Open front door, Close front door, 

Standing on a door mat. 
 
In the Functional Instrumentation step, we decided on information and sensors 

consistent with Table 1. The information for sleeping or relaxing activity recognition 
is pressure and vibration level of bed or sofa. For eating and drinking activity, usage 
of eating and drinking tools such as spoon, fork, knife, plate, or cup is chosen. To 
recognize the leaving and arriving activity, door status or the pressure of door mats 
(on both sides) will be used. Table 2 shows an example of the specific outcome of this 
step for sleeping and eating activity. 

Table 2.  Example of Activity and Sensor Designs for sleeping and eating activities 

MetaActivity 
- Activity 
(Location) 

Actions Information & Modality 
(Possible place to 
 install sensors)   

Sensor (number of sensors) 

Rest 
- Sleeping 
(Bedroom) 

 Lying- 
 down 
 Getup 

 Pressure of mattress 
- Below a mattress 
 Vibration of mattress 
- Top of a mattress 

 Vibration sensor (1) 
-Phidgets 1104 Vibration Sensor [9] 
 Force sensor sensor (1) 
-Phidgets 3102 8" FlexiForce sensor 
0-100lb. Resistive Force sensor [9] 

Having a meal 
- Eating 
(Dining room) 

 Cutting 
 Picking 
 Scooping 

 Usage of eating tools 
- Dish or Bowl 
- Spoon  
- Fork 
- Knife 

 RFID Reader (1) 
-Phidgets 1023 RFID reader [9] 
 RFID Tag (2) 
- Phidgets 3007 RFID tags [9] 

  Serving  Weight of food  
- Below a dining mat 

 Pressure sensor 
-Phidgets 3105 Interlink 
 Electronics 1.5" Square FSR [9] 

 
In modality analysis, we analyzed the sensor technology available in the market 

and choose the most synergetic sensors that fit the target activities. Table 3 presents 
an example of sensor deployment for eating activity based on the modality analysis. 



Table 3.  Example of Modality Analysis for eating activity 

Activities Infrastructure Requirement  
Eating 
 

Modality Justification: 
 

 

 Integration Equipments 
 
- Phidget 1070 [9], Phidget 
SBC [9] or Portable device 
for networking (eg. Smart 
phone) 

 
 Integration Schema 

 
  

 
 
 
 

3.2   Activity Simulation 

Now we move into the simulation step in Phase 1. The Persim simulator [15], which 
is an event-driven, human activity simulator was used. Persim is capable of capturing 
the physical elements of a space including its sensors, actuators and human activities. 
Persim users typically build a simulation “project” over multiple sessions before they 
are ready to generate data or make a multitude of changes to the sensory elements, the 
activities or even the structure of the output dataset. Data generated by Persim follows 
the Sensory Dataset Description Language (SDDL) proposed standard. Persim 
promotes sharing of efforts through the use of standardized dataset representation 
(SDDL) format standard [13][19]. This allows one user to start a simulation project 
by uploading a dataset originally generated by another user (through Persim), 
modifying the design and fine-tuning the experiments to achieve a specific research-
goal.  

One powerful feature of Persim is its ability to weave simulated events into actual 
events in datasets represented in SDDL. This feature empowers the owner or any 
other user of an actual dataset to go back in time and explore slight variation in the 
actual space without actually repeating the experiments or collecting additional sensor 
data. Thus the simulator is intended to open a new dimension of collaborative 
research in the area of human activity recognition and other simulator applications. 

3.2.1   Scenario-based simulation 

In order to simulate activities, Persim needs a scenario which describes the target 
activities. The scenario includes where the activities happen and how they occur. 
Hence how well and how realistic the scenario is defined is the main key in obtaining 
meaningful simulation results. Daily activities in the morning could be one of the 



examples of scenarios. In the morning a human usually gets up, jogs, and then has 
breakfast. These activities occur in the bedroom, outside of the house and in the 
dining room. The sensors and RFIDs which are deployed or attached on objects in the 
areas generate data when they detect moves related to the activities.  

3.2.2   Mapping Scenario to Simulation 

There are four essential steps to map scenario to simulation. First, a space and its 
various areas are designed to create higher level of realism through the use of space 
templates such as single family home, apartment, etc. In the second step, 
sensor/actuator components provide sensors and actuators to be deployed in the 
designed space. Following the scenario, sensors and actuators are located at proper 
positions with the correct attributes such as the type of sensor, sensor event generator, 
and domain value generator. Note that these attributes also can be edited to get fine 
result of simulation. Thirdly, activities and actuation rules are added. Activities rules 
are defined with their own name and include behaviors such as walking from an area 
to another area or object interactions such as grabbing a spoon. Actuation rules 
specify the logic of the actuation based on sensor events and in terms of invoking 
actuator(s).  
 

 

Fig. 3.  Activity-sensor mapping table. 



In the fourth step, the user prescribes two important mappings: activities-to-sensors 
mapping. The former mapping specifies which sensors are relevant to the detection of 
each activity. For easy and convenient mapping, Persim provides a mapping table, 
shown Fig. 3. In the latter mapping, each actuator is mapped twice, once to the set of 
sensors that could trigger it, and once again by the set of sensors that could be 
affected by that actuator when triggered. Persim also has a mapping table for sensors 
and actuators. 

In the last step, a user finalizes simulation configuration with proper parameters 
such as simulation time and process generating intervals. Fig. 4 shows the simulation 
configuration table. Finally, Persim is ready to simulate activities as defined in the 
scenario. Note that the user may repeatedly go over these five steps to make changes 
or fine-tune the simulation. 

 

Fig. 4.  Persim simulation configuration. 

4   Experiments and Results 

We validated our two phase dataset approach in terms of effectiveness and accuracy 
of the generated dataset through the experimentations. We performed both  
simulation and real sensor deployment/data collection. First, we designed a simulation 
model (e.g. parameters) of two designed activities. Next, we simulated the two 
activities with respect to the model and generated datasets. Then, we instrumented a 
space with real sensor configuration and collected sensor data of the performed 
activity. We compared the effectiveness and performance of the two datasets using an 
activity recognition algorithm/system. The premise of the experiment is that if the 
accuracy of the simulation dataset are similar to the real sensor dataset and their 
effectiveness are the same, we conclude that the two-phase dataset design approach is 



useful.  To illustrate, in terms of effectiveness, both simulation and real sensor 
dataset should have the same result because simulation should help to find the most  
effective sensor set. However, the accuracy of simulation dataset can be higher than 
real sensor dataset because certain unexpected situations that occur in real-world are 
not accounted for in the simulation model. For example, if we want to collect sleeping  
activity data for 20 minutes, simulation data will include sleeping activity data for this 
time. But real sensor dataset can miss some part of the activity data due to sensor 
noise and network delay. Section 4.1 describes the simulation parameters, and 4.2 
provides experimental data collected from the real sensors along with a comparison 
with the simulation results.  

4.1 Simulation based Dataset 

We considered five morning activities performed daily, which are: sleeping, getting 
out through a door, getting in through a door, relaxing on a couch and having 
breakfast. In each activity, we deployed three types of sensors – vibration sensor, 
force sensor, and RFID tags. Table 4 provides a labeled list of all the sensors used in 
the simulation experiments. Since our goal is to determine the effective types and 
numbers of sensors, we considered several possible sensor combinations. In this 
experiment, all sensors have uniform distribution with 0 mean and a variance of 1. 
RFID tags generate only 0 or 1 values (1 when a tag is detected). 

Table 4.  Sensors and RFID tags for each activity. 

Activity Vibration Sensor Force Sensor RFID Tags 
Sleeping V01, V02, V03 F01, F02  
Getting out/in  F03, F04 RFID_Door01 
Relaxing V04, V05, V06   
Eating  F05 RFID_Fork 01 & 02 

RFID_Knife 01& 02 
RFID_Spoon 01& 02 

Parameters generated by an activity recognition algorithm are provided as inputs to 
the simulator. In our experiment, we applied neural network based activity 
recognition algorithm [1]. The algorithm is compared to the activity recognition 
algorithm in [10] and is shown to have better performance. 

Table 5 shows simulation results for the sleeping activity. This activity is split into 
two actions: Lying down and getting up. Since Lying down is at most associated with 1 
force sensor (F01) and 3 vibration sensors, we test 3 cases. Another force sensor, F02 
detects a movement when a human subject gets up and puts his/her foot on the carpet 
that is attached to the sensor. Hence this sensor is used in every single case. The right-
most column of Table 5 presents the simulation accuracy based on the activity 
recognition algorithm described previously. The algorithm [1] slices simulated events 
in a unit time (1 minute) so that the number of time slots the test case has been 
simulated can be determined. Then the algorithm can show how many time slots 



might be recognized among them. Therefore, their ratio, shown in the right-most 
column, indicates how many unit events are generated in a time window slot.  

In these simulation experiments, we assume that the sensors for case 2 are 
deployed between the positions of sensors for case 3. Therefore sensors at the edges 
in case 3 might have greater distance between each other. We think it will reduce the 
probability of detecting “vibration on the bed”, and eventually the number of the 
recognized time slots is slightly less than the one in case 2. Hence, we might see that 
case 2 indicates higher efficiency than case 3, even though it has less vibration 
sensors than case 3. Also, case 2 will be efficient in terms of cost of devices.  

 

Table 5.  The sleeping activity simulation cases. 

Case 
# 

Number of 
Vibration 
Sensors  

Number of 
Force Sensors 

Number of 
Detections 

Number of 
1 min. Slots 

Number of  
Activities 
Recognized  

Accuracy 

1 1 2 46 20 14 70.0% 
2 2 2 49 20 17 85.0% 
3 3 2 37 20 16 80.0% 

For eating activity results, we have four cases resulting from the combination of 
one force sensor and two RFID readers. Their simulation results are shown in Table 6. 
When only RFIDs are used to sense the activity, intuitively these cases cannot 
recognize the activity well because sensing some tableware does not always involve 
eating. In the worst case, for instance, a human may intends to eat and hence prepares 
utensils, but does not actually eat anything. A force sensor, F05 could help to detect 
the activity accurately, since it is triggered by change of force on the plate. For 
instance, when the user scoops mashed potato on the plate, the force sensor detects it 
and we could conclude that eating is happening with a spoon sensed by an RFID 
reader. 

Table 6.  The eating activity simulation cases. 

Case 
# 

Number 
of RFID 
Readers 

Number 
of RFID 
Tags 

Number 
of Force  
Sensors 

Number of 
Detection 

Number of 
1 min. 
Slots 

Number of  
Activity 
Recognized  

Accuracy 

1 1 3 0 38 15 0 0.0% 
2 2 3 0 50 15 0 0.0% 
3 1 3 1 59 15 12 80.0% 
4 2 3 1 102 15 13 86.7% 

The test case with two RFID readers and one force sensor shows good accuracy, 
which is 86.7%. However, when we use only one RFID reader, the accuracy does not 
drop by much (drops to only 80.0%). Even though the first case has better 
performance, it costs almost twice as much as the case with a single RFID reader. 
Trading off little performance for significant cost reduction, the one RFID and one 
force sensor case could be most effective. 



4.2   Verification by Real Sensor Deployment 

In this section, we verify our two-phase approach by experiments with real sensors. 
The real sensor set is the same as that used for the simulation in section 4.1. We 
implemented and executed an activity recognition algorithm to compare the 
performance of dataset. The activity recognition system has 96.9 % accuracy 
performance which is better than that of an activity recognition system in [10]. The 
real sensor dataset is compared to the simulation dataset.  

In Table 7 the performance of sleeping datasets is shown. The datasets represent 20 
minutes of sleeping activity. Both simulation and real dataset show that the second 
case is more effective than other cases. However, simulation dataset shows better 
performance than the real sensor dataset. 

Table 7.  Comparison of sleeping activity. It presents accuracy between simulation and real 
sensor datasets for sleeping activity.    

Case 
# 

Number of 
Vibration 
Sensor 

Number of 
Force Sensor 
(Bed) 

Number of 
Force Sensor 
(Floor) 

Accuracy of 
Simulation 
Dataset 

Accuracy of  
Real Sensors 
Dataset 

1 1 1 1 70.0 % 65.0 % 
2 2 1 1 85.0 % 80.0 % 
3 3 1 1 80.0 % 75.0 % 

 
Table 8 shows the eating activity datasets which are performed 15 minutes for each 

case. It compares the performance of simulation dataset with real sensor dataset. To 
filter out false eating activity, the activity recognition system does not consider the 
eating activity to be executed if there is only a single action in a specific time slot (e.g. 
one minute). For example, if there is only serving action or cutting in a time slot, it is 
unlikely that the person is actually eating the food. Both cases show that force sensor 
is crucial for detecting eating activity. Table 8 shows that the dataset of both cases 
exhibit better performance when the number of RFID readers increased. However, the 
effect of increasing the number of RFID readers is less than 7%. 

Table 8.  Comparison of eating activity datasets. It presents accuracy between simulation  
and real sensor datasets for sleeping activity.    

Case 
# 

Number of 
RFID  
Readers 

Number of 
RFID Tags 

Number of 
Force Sensor 
(Plate) 

Accuracy of 
Simulation 
Dataset 

Accuracy of 
Real Sensors 
Dataset 

1 1 3 0 0.0 % 0.0 % 
2 2 3 0 0.0 % 0.0 % 
3 1 3 1 80.0 % 93.3 % 
4 2 3 1 86.7 % 100.0 % 
 
In Table 7 and Table 8, we observe that eating activity dataset shows better 

performance than sleeping activity. It means sleeping is more difficult to detect than 
eating. This is because of the inherent features of the sleeping activity. To illustrate, 
when people sleep well, there is very little action that can be detected by a sensor. 



However, when people eat well, it usually translates into greater physical activity. 
Since activity is recognized depending on the performance of their actions, eating 
activity is easier to detect than sleeping activity. 

5   Conclusion 

Activity recognition research requires availability of datasets for testing and 
evaluation of recognition algorithms and for better understanding of human activities. 
However, it is often difficult to acquire or establish suitable datasets because they 
may simply not exist or if they have to be constructed, they require a lot of effort, 
time, and cost. In order to alleviate this problem, we proposed a two-phase activity 
dataset design approach, which is composed of three steps. To validate our approach, 
we implemented both a simulator and a real sensor environments for sleeping and 
eating activities. We compared the simulation datasets with real sensor datasets and 
showed similar results in terms of performance and effectiveness of the sensor set 
chosen according to our design approach.  

A major advantage of the proposed approach is that researchers can acquire the 
most effective sensor configuration through well-controlled simulations instead of 
repeated real-world sensor deployment/assessment loops. This allows researchers to 
test novel activity recognition algorithms and activity models quickly, cost-effectively 
and accurately. Therefore, this approach can potentially accelerate the research and 
development of activity recognition systems.  
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