

Abstract— The generation of useful sensory data from real-

world deployments of Ambient Intelligent Environments

(AIEs) is challenging because of the high cost, significant

groundwork and lack of access to human subjects. This

situation can be improved by providing efficient simulators

that can produce realistic simulation of the data collection from

AIEs. One of the main problems for developing AIE simulators

lies in the ability to verify how close the simulated data are to

the real world data. In this paper, we present a fuzzy based

verification agent for Persim – an event driven simulator for

human activities in AIEs. The employed fuzzy based

verification agent builds a data model that mimics the

operation of Persim which allows for the latter’s objective and

subjective verification. We have conducted the verification on

real world data captured from an actual smart apartment

deployment. The results show the effectiveness of the fuzzy

based verification agent in analyzing and comparing the Persim

simulated data with the real world collected data. We also

demonstrate how the verification agent is able to pinpoint

specific changes to the simulation model to increase the realism

of the simulation.

I. INTRODUCTION

ith the ever-increasing number of miniaturized and

computerized artefacts and devices, information about

state, location, roles and much more becomes transparent

and with the pervasiveness of networks this information is

made available to anyone, anywhere and at any time. These

efforts of advancing technology to pervade everyday life and

to foster wide availability and acceptance materialized in

1991 when Mark Weiser introduced his vision of ubiquitous

computing in his famous seminal article “The Computer for

the 21st Century” [24].

Ubiquitous computing aims to make computers aware of

the needs of the user. In other words, the ubiquitous

computing system can be regarded as a digital personal

assistant equipped with some sort of intelligence to

understand what the users are trying to accomplish, in order

to determine how best to intervene and assist them.

This work was supported in part by the US National Institute of Health

(NIH) Grant number1R21-DA024294-01.

A. ElFaham is with the German University in Cairo, Egypt.

H. Hagras is with the German University in Cairo, Egypt, he is also with

the Computational Intelligence Centre, School of Computer Science and
Electronic Engineering, University of Essex, Wivenhoe Park, Colchester,

CO43SQ, UK. (e-mail: hani@essex.ac.uk).

S. Helal, S. Hossain and J.W. Lee are with the Computer and Information
Science & Engineering Department, University of Florida, USA (e-mail:

helal@cise.ufl.edu).

D. Cook is with the School of Electrical Engineering and Computer
Science at Washington State University, USA (email: cook@eecs.wsu.edu).

Ambient Intelligence (AmI) is a new paradigm that puts

forward the criteria for the design of smart spaces and

ubiquitous computing environments [21]. In the AmI

paradigm, intelligent computation will be invisibly

embedded into our everyday environments through a

pervasive transparent infrastructure (consisting of a

multitude of sensors, actuators, processors and networks),

which is capable of recognizing, responding and adapting to

individuals in a seamless and unobtrusive way [9]. AmI

offers great opportunities for an enormous number of

applications such as health and elder care, the efficient use

of energy resources in homes and public buildings, and in

leisure and entertainment. However, there are many

challenges facing the creation of Ambient Intelligent

Environments (AIEs) which include:

 Expensive Development. In recent years it has become

obvious that the increasing costs of building AIEs

without a correct design and plan makes research

initiation and progress in this area extremely difficult

[12]. Not everybody has a large budget to build an AIE

to test new algorithms and ideas.

 Time Consuming Data Generation. Even if budget is

not an issue, it is usually very time consuming to

generate adequate data for a meaningful collection of

patterns or events. For instance some of the available

data sets are useful to some researchers but not all,

depending on the events captured and the specific

sensors that were available in the AIE where the data

was collected.

 Scarce Human Resource. Another difficulty is

recruiting participants to test the AIE and to perform all

of the activities under all possible conditions or contexts

that a research team wishes to consider. Addressing

human subject safety and guarding against abuse and

exploitation, institutional review boards (IRBs) and

many governmental agencies limit the length of time

human subjects can be used in any research study.

Although financial and human capital may be available,

the range of data that could be collected would have to

be restricted, leaving researchers with only a tiny

fraction of the data they wish to collect.

Given the aforementioned challenges, it is necessary to

look for alternative practical ways to experiment with AIE

design and performance. Simulation is a promising and

sensible alternative. It enables researchers to create focused

synthetic replications of important events and activities.

A Fuzzy Based Verification Agent for the Persim Human Activity

Simulator in Ambient Intelligent Environments

Amr Elfaham, Hani Hagras, Senior Member, IEEE, Sumi Helal, Senior Member, IEEE, Shantonu

Hossain, Jae Woong Lee and Diane Cook, Fellow, IEEE

W

mailto:hani@essex.ac.uk
mailto:helal@cise.ufl.edu
mailto:cook@eecs.wsu.edu

Researchers could gain deep insight into the specifics of the

AIE they may eventually build. Simulations can be easily

changed and refined allowing the researchers to experiment,

analyze and fine-tune their model and associated algorithms.

Simulation also allows a wider community of researchers to

engage and collaborate to solve a specific problem. Hence, a

design based on preliminary simulation studies would most

likely to be a more robust and inclusive design. Also, a

simulation model that mimics an existing real world AIE is

most likely to answer more questions (generate much more

data) than the actual AIE. This early stage simulation can

help researchers evaluate their ideas and algorithms quickly

and with reasonable accuracy.

There is a major roadblock that impedes the use of

simulation in AIE which is: How do researchers know that

the simulation is a reasonable capture of the real AIE?

Simulating an AIE is a complex task. It encompasses a

capture of sensors, actuators, activities, behaviors, space

elements and semantics, as well as a large collection of

dependent and independent events. This complexity creates

room for inaccuracies and errors in the simulation model.

Hence checks and balances are needed to ensure that

simulation-generated datasets are adequately realistic and

comparable to real datasets that would result from the actual

AIE they simulate.

In this paper, we present a fuzzy verification agent and a

framework for verifying AIE simulators. Our verification

agent is capable of analyzing and quantifying similarities

between an AIE simulated dataset and the real world dataset

that the simulator is emulating. We demonstrate our

verification agent in the context of a case study to verify the

design of an event-driven simulator called Persim [12], [13],

[19]. We present experiments which verify Persim output in

comparison with a real world dataset that was collected to

capture information about human activities in a smart living

space.

The rest of the paper is organized as follows. Section II

presents related work on verification of AIE simulators.

Section III presents a brief overview on the Persim simulator

used in this paper. In Section IV, we present the fuzzy based

verification agent. Section V presents the experiments and

results followed by conclusions and future work in Section

VI.

II. PREVIOUS WORK IN AIE SIMULATION VERIFICATION

In the fields of wireless sensor networks (WSN) and

pervasive computing, many simulation concepts have been

researched and various simulation tools have been built. But

they differ in the focus and fields of application. SENSORIA

[2] is a simulator focusing on traffic generation, energy

consumption and inherent protocols of WSN. In [23], a

detailed simulation model was presented which also focuses

on accurate models for battery, processor power

consumption and network traffic. In [1], the Discrete-Event

system Specification (DEVS) was proposed to define

asynchronous discrete-events occurring in WSN. None of

the above mentioned simulators provide any verification of

simulation output against real data.

On the other hand, there are some approaches such as

[14], [17] which simulate a specific system at a very low

level. For example, TOSSIM [17] simulates the TinyOS

operating system in a WSN. TOSSIM emulates the operating

system operation step by step. As such it embodies a self-

validation by simply comparing the performance of its

simulation traces with an actual WSN running TinyOS.

The DiaSim simulator [15] executes pervasive computing

applications by using an emulation layer and developing

simulation logic of the parts that needs to be simulated.

Under DiaSim, a pervasive computing environment is

described in terms of “stimulus” procedures (any change in

the environment that can be consumed by sensors) and

simulated services in a specification language called

DiaSpec. Unlike Persim, DiaSim does not attempt to model

an entire pervasive space for analysis and examination. It

does emulate some of the pervasive system services (sensors

and actuators) as part of a programming and development

methodology. The programmers start off emulating almost

all services and gradually, as they verify the correctness of

application logic, replace emulated entities by actual

devices. As such DiaSim’s verification goals are different

from Persim. It focuses on validating the application logic

and making sure the pervasive application does what it is

intended to do. Unlike DiaSim, Persim verification, which is

introduced in this paper focuses on ensuring high realism of

the simulation. Our approach uses a fuzzy based agent to

directly measure the level of fidelity between the simulated

system and its real counterpart in terms of their

corresponding datasets.

III. OVERVIEW OF THE PERSIM SIMULATOR DESIGN

Persim is an event-driven simulator developed at the

Pervasive Computing laboratory at the University of Florida.

It focuses on simulating human activities [10] in ambient

intelligent environments [12], [13], [19]. It is capable of

capturing the physical elements of AIEs in terms of its

sensors and user behaviors (activities). It allows researchers

to simulate AIEs by first defining a target ambient space

(e.g., Washington State’s CASAS Smart Apartment Testbed

[7] or the Gator Tech Smart House [4], [11]). The researcher

adds a variety of sensors into the space. Activities of interest

that can happen inside the space are then added. When the

simulation design is complete, the researcher has the

flexibility to define causal relationships between activities

and sensors. In the last step, one has the choice to simulate

the entire state space (similar to the dataset format of the

iDorm AIE project of University of Essex [5]) or zoom into

the space and simulate only activities of interest (similar to

the CASAS dataset of WSU [7]). In Persim, researchers are

empowered to design a simulation incrementally over

multiple sessions. They may modify the design several times

before a design is realized that adequately captures the target

AIE. They can also modify the design to specialize the

simulation for specific individual experiments. Persim

simulated data follow the Sensory Data Description

Language (SDDL) standard [12], [19], which significantly

enables sharing of the simulation results.

A. Brief Description of the Simulation Model

Persim is a component-based simulator. These

components are used for defining (i) space to be simulated in

terms of layout and sensors, (ii) activities to be simulated

and (iii) simulation criteria/configuration. Each component

is characterized by several attributes. The major components

of the simulator are Space, Sensor, Activity, Activity-Sensor

Mapper and Simulation Configurator. Persim supports two

simulation modes – Activity-driven and State-space. In

Activity-driven mode, a user can specify a set of activities,

which would trigger a set of dependent sensors based on the

Activity-Sensor mapping. On the other hand, in State-space

mode, Persim generates a time-stamped sequence of events

reporting on all sensor values, which are independent of any

activity.

Persim adopts the discrete-event simulation model [16]

using a next-event, time-advance approach to capture the

dynamic nature of the AIEs, which evolve over time.

According to this classical simulation technique, the target

state space changes whenever any event (either activity-

driven or time-driven) occurs and the system variables of the

space are updated based on the simulation logic.

The flow chart of the Persim simulation algorithm is

shown in Fig. 1. The simulation invokes the timing routine

to get the most imminent event from an event list. Then it

processes the event according to the type of the event,

whether simulation mode is Activity-driven or State-space. It

also advances the simulation clock to the time of occurrence

of the current event. The simulation continues until the

predefined value for the simulation clock is reached. Finally,

it generates simulated data in SDDL form, which is a

proposed standard format for representing sensory datasets

[12], [19].

B. Simulation Steps

Fig. 2 shows a screen shot of the Persim parameter

configuration interface. The user first defines the space to be

simulated (e.g., kitchen, living room). Then she/he can add

the desired sensors (e.g., motion sensor, light sensor) in each

space area and configure the sensors with information such

as the sensor name, id, type, value generation function,

min/max value, and so forth. Then the user can add AIE

activities (e.g. move to kitchen, clean dishes).

Next, the user needs to map each activity to a set of

relevant sensors using the Activity-Sensor Mapper. While

mapping, a user can specify the sequence of sensor-triggers

for each activity. For example, if motion sensor M1 is

assigned a sequence number 1 and motion sensor M2 is

assigned a sequence number 2 for a specific activity, then

M1 will trigger before M2 in the course of simulation of that

activity.

Finally, the user needs to define several simulation

parameters as shown in Fig 2, such as simulation mode,

activities to be simulated with an inter-arrival distribution

function, and start time and end time of an activity. This

completes all information required for the simulation of

events in the space. Now the user can click the “Run

Simulation" button to generate data from the space.

Fig.1. Flowchart of Persim event simulation.

IV. OVERVIEW OF THE FUZZY VERIFICATION AGENT

In order to verify the accuracy of the Persim simulator, we

have followed a verification approach, which employs fuzzy

logic based modeling.

Fig.2. Persim simulation configuration.

Fuzzy Logic Systems (FLSs) attempt to mimic the way of

human thinking to reason in an approximate way rather than

a precise way. The smooth transition between the fuzzy sets

will give a good decision response when facing noise and

uncertainties. Furthermore, FLSs employ linguistic IF-

THEN rules, which enables a representation of the control

information in a human readable form.

The employed verification approach uses data to construct

a fuzzy logic based system that models the given process

and gives mapping from the data (real or simulated) to the

correct activities. The motivation behind this approach is

that just by using data, we can generate fuzzy models, which

could be easily read and interpreted by the user.

Fig. 3 shows an overview of the fuzzy based verification

agent. The agents start in Phase 1 by aggregating the

simulation and real data logs to generate the fuzzy sets for

the simulated and real FLSs, respectively. In Phase 2, a

sliding window approach is employed to generate the

rulebases of the simulated and real FLSs respectively. In

Phase 3, the agent perfoms a numerical verification by

feeding the real data to the simulation FLS and then

verifying how close are the outputs of the simulated FLS to

the real data. In Phase 4, the agent perfoms a linguistic

verification by comparing the fuzzy sets and rule bases of

the real and simulated FLSs. In the following subsections,

we presnet phases 1 and 2 whereas phases 3,4 will be further

illustrated in the experiments section.

A. Phase 1: Learning the Fuzzy Sets of Simulation and Real

FLSs

Phase 1 deals with learning fuzzy sets for the simulation

and real FLSs from the accumuated simulation and real logs,

respectively. Both the simulated and real data logs share the

same time frames. We employ a Fuzzy C-means Clustering

approach to learn the numerical values associated with the

various fuzzy sets as follows:

Consider a family of fuzzy sets 𝐴𝑖 , 𝑖 = 1, 2, … , 𝑐, as fuzzy

c-partitions on the universe 𝑋. Fuzzy sets allow a degree of

membership, hence, we can assign memberships to the

various data in each fuzzy cluster and a single data point can

have a membership to more than one cluster [3]. The

membership value of the 𝑘th data point in the 𝑖th cluster is

described as follows:

 𝜇𝑖𝑘 = 𝜇𝐴𝑖
 𝑥𝑘 ∈ [0,1] (1)

The objective function for optimal fuzzy c-partition can

be written as follows:

 𝐽𝑚 𝑈, 𝑣 = 𝜇𝑖𝑘
𝑚 ′

 𝑑𝑖𝑘
2

𝑐

𝑖=1

𝑛

𝑘=1

 (2)

Where 𝑖 = 1,2, … , 𝑐 and 𝑘 = 1, 2, … , 𝑛, where c is the

number of centres or fuzzy sets and n is the number of data

points. Where

 𝑑𝑖𝑘 = 𝑑 𝑥𝑘 − 𝑣𝑖 = 𝑥𝑘𝑗 − 𝑣𝑖𝑗
2

𝑚

𝑗 =1

1
2

 (3)

The membership 𝜇𝑖𝑘 is the membership of the 𝑘th data

point in the 𝑖th cluster. The goal of the objective function is

to get the best clustering. The parameter 𝑚′is the weighting

parameter which has a range 𝑚′ ∈ [0, ∞). This parameter

controls the amount of fuzziness in the classification process

and usually takes the values between [1.25, 2]. In our

experiments 𝑚′ was set to 2. The vector for a cluster center

𝑣𝑖 = {𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝑚 } is calculated as follows:

 𝑣𝑖𝑗 =
 𝜇𝑖𝑘

𝑚 ′
 𝑛

𝑘=1

𝑥𝑘𝑗

 𝜇𝑖𝑘
𝑚 ′𝑛

𝑘=1

 (4)

Where 𝑗 is the variable on the feature space, i.e. 𝑗 =

1, 2, . . 𝑚. The Fuzzy C-means clustering operate as follows:

1. Fix 𝑐 2 ≤ 𝑐 < 𝑛 and select a value for parameter 𝑚′.

Initialize the partition matrix 𝑈 𝑟 , 𝑟 = 0,1,2, …

2. Calculate the 𝑐 center vectors {𝑣𝑖
𝑟} for each step.

3. Update 𝑈 𝑟 , the partition matrix in the 𝑟th step;

calculate the updated membership function matrix as

follows:

 𝜇𝑖𝑘
 𝑟+1

=
𝑑𝑖𝑘

 𝑟

𝑑𝑗𝑘
 𝑟

2

𝑚 ′−1
𝑐

𝑗 =1

−1

 𝑓𝑜𝑟 𝐼𝑘 = ∅ (5)

 𝜇𝑖𝑘
 𝑟+1

= 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 𝐼 𝑘 (6)

𝐼𝑘 = 𝑖 2 ≤ 𝑐 < 𝑛 ; 𝑑𝑖𝑘
 𝑟 = 0}, 𝐼 𝑘 = 1, 2, … , 𝑐 − 𝐼𝑘 .

4. If 𝑈 𝑟+1 − 𝑈 𝑟 ≤ 𝜀 (tolerance level) STOP, otherwise

set 𝑟 = 𝑟 + 1 and return to step 2.
We perform the above algorithm to get the cluster centres

and then each data point is matched against the various

cluster centres to form the shape of the given fuzzy set as

shown in Fig.4. The shapes of the fuzzy sets are then

smoothed by piecewise linear membership function as

shown in Fig.4.

B. Phase 2: Learning the Fuzzy Rule Bases of the

Simulated and Real FLSs

We employ a sliding window approach as shown in Fig.5

to pass through the data and generate fuzzy rules. Each

training data pattern (x
(t)

;y
(t)

) will consist of the x
(t)

for the

given sensors within the given window and the associated

activity y
(t)

. In case of Boolean sensors like motion sensors,

the value of x
(t)

 will be a binary value indicating if the

relevant sensor has been triggered within the window or not,

in relation to the sensor changing from OFF to ON

indicating that someone has crossed the relevant area.

The fuzzy rule extraction approach used in this paper is

similar to the AOFIS system reported in [8]. In the following

steps we summarize the different steps involved in rule

extraction:

Step 1: For a fixed input-output pair (x
(t)

;y
(t)

) in the

dataset (t=1,2, …,N), compute the membership)()(t

sA
xq

s

values q=1,2, …,V and for each input variable s (s=1,2, …,n)

find q*∈ {1, …𝑉), such that

*
() ()() ()qq

s
s

t t
s sAA

x x (7)

Let the following rule be called the rule generated by

(x
(t)

;y
(t)

):

IF
tx1 is

*

1
qA and … and

t

nx is ,
*q

nA THEN y is

activity)(ty (8)

For each input variable xs there are V fuzzy sets

VqAq

s ,...,1, , to characterize it; so that the maximum

number of possible rules that can be generated is V
n
.

However given the dataset only those rules among the V
n

possibilities whose dominant region contains at least one

data point will be generated. In step 1, one rule is generated

for each input–output data pair, where for each input the

fuzzy set that achieves the maximum membership value at

the data point is selected as the one in the IF part of the rule.

This however is not the final rule, which will be calculated

in the next step. The weight of the rule is computed as:

n

s

sA

t
txw q

s
1

)(
))(((9)

Fig. 3. An overview of the fuzzy based verification agent approach.

Fig. 4. The clustered points against the cluster centers and the smoothed

fuzzy set.

Step 2: Step 1 is repeated for all the t data points from 1

to N to obtain N data generated rules. Due to the fact that the

number of data points is quite large, many rules are

generated in step 1, that all share the same IF part and are

conflicting, i.e. rules with the same antecedent membership

functions and different consequent activities. In this step

rules with the same IF part are combined into a single rule.

The N rules are therefore divided into groups, with rules

in each group sharing the same IF part. Within each group of

rules sharing the same antecedents, the rule with the highest

value ()tw will select its consequent to be overall rule

consequent. If more than one rule share the same ()tw , then

the consequent which appears with higher frequency will be

selected.

Fig. 5. The sliding window for forming data for rule extraction

V. EXPERIMENTS AND RESULTS

This section reports on the verification of the Persim

simulator using data which were obtained from the smart

three-bedroom apartment (shown in Fig.6) on the

Washington State University campus that is part of the

CASAS smart home project [7] The CASAS project treats

environments as intelligent agents, where the status of the

residents and their physical surroundings are perceived using

sensors and the environment is acted upon using controllers

in a way that improves the comfort, safety, and/or

productivity of the residents. The smart apartment testbed

includes three bedrooms, one bathroom, a kitchen, and a

living / dining room. The apartment is equipped with motion

sensors distributed approximately 1 meter apart throughout

the space. In addition, digital sensors provide ambient

temperature readings and analog sensors provide readings

for hot water, cold water, and stove burner use. VOIP

captures phone usage and contact switch sensors are used to

monitor door closure as well as usage of the phone book, a

cooking pot, the medicine container, and key cooking

ingredients in the apartment. Sensor data is captured using a

customized sensor network and is stored in a SQL database.

The data were collected to mimic the Activities of Daily

Living (ADLs), which are activities to be identified by

assistive technologies as desired most by family caregivers

of Alzheimer’s disease patients. Hence, this data mapped

raw sensor values to ADL activities. In this paper we focus

only on three of these ADL activities, which are:

 Making a Phone Call (T1): Participants are asked to

look up a specified number in a phone book, call the

number, and write down the cooking directions given on

the recorded message. The phone book, notepad and

telephone were located on the dining room table.

 Hand Washing (T2): Participants were told to wash their

hands in the kitchen sink using the soap and paper

towels provided.

 Cleaning (T3): This activity required participants to

clean the dishes and put the medicine bottle and other

materials back in the cabinet.

The selected activities include both instrumental and basic

ADLs. These ADLs are typically found in clinical

questionnaires assessing everyday functional activities [18],

[20] and deficits in these ADLs can help identify individuals

who are having difficulty living independently at home [22].

In addition, poor performance for these activities has been

associated with greater use of health care services and

increased risk for institutionalization [6].

In order to evaluate the accuracy of the produced model,

we have provided test data to measure the accuracy for the

simulation FLS. The fuzzy simulation models predicted T1

with an accuracy of 99.8% while predicting T2 with an

accuracy of 98.7% and predicting T3 with an accuracy of

99.8%. Hence the simulation FLS provided a very reliable

FLS to validate Persim.

In order to perform the verification, the real world data

were fed to the FLS-simulated model. As the FLS model

provides a near-accurate approximation of the Persim

generated dataset, we can predict Persim accuracy based on

how accurate the FLS maps the real world sensors values to

the correct activities.

From this numerical analysis, it has been seen that when

the simulation FLS was fed by time stamped sensors data,

the following accuracies were achieved for the associated

activities: 66.7% accuracy for predicting T1 and 95.8% for

predicting T2 and 29.2% for predicting T3. When dealing

with time independent real sensor data the following

accuracies were achieved for the associated activities:

70.83% accuracy for predicting T1, 100% accuracy for

predicting T2 and 41.67% accuracy for predicting T3.

Another metric we employed to judge the accuracy of the

simulation was by calculating R, which is the set of sensors

triggered within the window of instances in real data and

calculating S, which is the set of sensors triggered within the

same window size in the simulated data. We define window

percentage to be W = |
 𝑅 − 𝑆

 𝑅
|. W presents a measure for

the similarity between the simulated and real data in terms of

comparing the number of sensor triggers in each of the real

and simulated windows. For T1, W= 0.87, for T2, W=0.89

and for T3 W= 0.71. This analysis again shows that more

accuracy was achieved for T2 than for T1 or for T3.

The advantage of FLS is that it provides both linguistic

rules and fuzzy sets which are easily readable allowing us

(through analyzing the rules and fuzzy sets) to find why

there are differences in the accuracy of predicting the

various activities. For example, Fig. 7 shows the extracted

fuzzy sets (and the associated smoothed piece-wise linear

fuzzy sets) from the real data for the Time variable, which

looks very similar to the extracted fuzzy sets from the

simulated data in Fig. 8. For T3 where the accuracy of the

simulation is not as high, it is obvious that the extracted

fuzzy sets for the variables are different as shown in Fig. 9a

and Fig.9b which shows the extracted fuzzy sets for the

Water_B sensor from the real and simulated data in Fig. 9a

and Fig. 9b respectively. This difference can be then fed

back to the simulator to help to adjust the sensor ranges in

simulation to be in line with those used in the real data

Fig. 6. The kitchen/living room area and the sensor distribution in the smart
apartment in WSU. (Sensors include motion sensors (M), temperature

sensors (T), water sensors (W), phone sensors (P) and item sensors (I).

Fig. 7. The extracted fuzzy sets by the Fuzzy C-means and the associated

smoothed piece-wise linear membership structure of the Fuzzy Logic

System (FLS) for the time variable for the real data.

More insights about the differences between the

simulation and the real data can be discovered when

investigating the rule bases of the FLS generated from the

real world data and the FLS generated from the simulated

data. For example for T3, when investigating the rules of the

simulated and real FLSs, it was discovered that as shown in

Fig. 8, the user follows the red line of going through the

motion sensor M13 to M14 to M15 to M16 to M17 where

the user reaches the wash basin area. It was noted that the

real FLS has shown this sequence. However, in simulation

FLS has shown a sequence of M13 to M14 to M17, which is

physically not possible without also triggering M15 and

M16. Hence, this information was fed back to the simulator

to improve its performance or those activities where the

simulation did not perform well, as in the case of T3.

Fig. 8. The extracted fuzzy sets by the Fuzzy C-means and the associated

smoothed piece-wise linear membership structure of the Fuzzy Logic
System (FLS) for the time variable for the simulated data.

.

 (a) (b)

Fig. 9. The extracted fuzzy sets by the Fuzzy C-means and the associated
smoothed piece-wise linear membership structure of the Fuzzy Logic

System (FLS) for the water sensors for (a) Real data (b) Simulated data.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a fuzzy based agent approach for the

verification of an AIE simulator entitled Persim. We propose

a fuzzy verification agent which operates in four phases. It

starts in phase 1 by aggregating the simulation and real data

logs to generate the fuzzy sets for the simulated and real

FLSs, respectively. In phase 2, a sliding window approach is

employed to generate the rulebases of the simulated and real

FLSs respectively. In phase 3, the agent perfoms a numerical

verification by feeding the real data to the simulation FLS

and then verifying how close are the outputs of the simulated

FLS to the real data.

In phase 4, the agent perfoms a linguistic verification by

comparing the fuzzy sets and rule bases of the real and

simulated FLSs. The fuzzy based agent verification

approach has been applied for the verification of a Persim

simulation results against real data obtained from the smart

apartment in WSU. It was shown that the fuzzy based

verification agent can verify the Persim simulator both

numerically and linguistically. Our verification approach

helps simulator designers in debugging their developemnt

and in assessing the adequacy of “reality capture” in their

simulation loops.

Although the fuzzy based verification agent was applied

to event driven simulators, it can be easily applied to any

kind of AIE simulator which will be the subject of future

work. Also type-2 fuzzy systems will be investigated in

generating the fuzzy model due to their abilities to better

handle the uncertainties than their type-1 counterparts.

REFERENCES

[1] T. Antoine-Santoni, J. Santucci, E. De Gentili and B. Costa,

“Modelling & simulation oriented components of wireless sensor
network using DEVS formalism,” In SpringSim '07: Proceedings of

the 2007 spring simulation multiconference, March 2007, pp. 299-

306.
[2] J. Al-Karaki and G. Al-Mashaqbeh “SENSORIA: A new Simulation

platform for wireless sensor networks,” In SENSORCOMM '07:

Proceedings of the 2007 International Conference on Sensor
Technologies and Applications, October 2007, pp. 424-429.

[3] J. Bezdek, "Pattern Recognition with Fuzzy Objective Function

Algorithms," Kluwer Academic Publishers, Norwell, USA, 1981.
[4] R. Bose, J. King, H. El-zabadani, S. Pickles, and A. Helal, "Building

Plug-and-Play Smart Homes Using the Atlas Platform," Proceedings

of the 4th International Conference on Smart Homes and Health
Telematic (ICOST), Belfast, the Northern Islands, June 2006.

[5] V. Callaghan, J. Woods, S. Fitz, T. Dennis, H. Hagras, M. Colley, I.

Henning, “The Essex iDorm: A Testbed for Exploring Intelligent

Energy Usage Technologies in the Home”, Proceedings of the

International Conference on Intelligent Green and Energy Efficient

Building and Technologies, Beijing, China, April 2008.
[6] K. Cameron, K. Hughes, and K. Doughty, “Reducing fall incidence in

community elders by telecare using predictive systems,” In

Proceedings of the International IEEE-EMBS Conference, October

1997, pp. 1036-1039.

[7] D. Cook and M. Schmitter-Edgecombe, “Activity profiling using

pervasive sensing in smart homes,” IEEE Transactions on Information
Technology for Biomedicine, 2008.

[8] F. Doctor, H. Hagras, and V. Callaghan, “A type-2 fuzzy embedded

agent to realise ambient intelligence in ubiquitous computing
environments,” Journal of Information Sciences, vol. 171, no. 4, pp.

309-334, May 2005.

[9] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.
Burgelman, “Scenarios for Ambient Intelligence in 2010,” IST

Advisory Group Final Report, European Commission, February 2001.

[10] E. Kim, A. Helal and D. Cook, "Human Activity Recognition and
Pattern Discovery," IEEE Pervasive Computing Magazine, December

2009.

[11] A. Helal, W. Mann, H. Elzabadani, J. King, Y. Kaddourah and E.
Jansen, "Gator Tech Smart House: A Programmable Pervasive

Space", IEEE Computer magazine, pp 64-74, March 2005.

[12] S. Hossain, A. Helal and H. Hagras “Persim – Pervasive System
Simulation,” Proceedings of the 2010 International Conference on

Pervasive Computing, (PERVASIVE 2010), Poster track, Helsinki,

Finland, May 2010.
[13] S. Hossain, A. Helal, J.W. Lee, H. Hagras, A. Elfaham, H. Gabr and

D. Cook, “Persim – A Simulator for Human Activities in Pervasive

Spaces,” Submitted to the 2010 International Conference on

Ubiquitous Computing (Ubicomp 2010), September 2010,

Copenhagen, Denmark.

[14] M. Huebscher and J. McCann. “Simulation model for self-adaptive

applications in pervasive computing”, In DEXA '04: Proceedings of

the Database and Expert Systems Applications, 15th International
Workshop, August 2004, pp. 694-698

[15] W. Jouve, J. Bruneau and C. Consel. “DiaSim: A parameterized

simulator for pervasive computing applications,” In PERCOM '09:
Proceedings of the 2009 IEEE International Conference on Pervasive

Computing and Communications, March 2009, pp.1-3.

[16] A. Law and W. Kelton, Simulation Modeling and Analysis, McGraw-
Hill, 2nd edition, 1997.

[17] S. Nath, P. B. Gibbons, S. Seshan and Z. Anderson, “TOSSIM:

accurate and scalable simulation of entire tinyos applications,” In
Transactions on Sensor Networks (TOSN), Volume 4 Issue 2. ACM,

pp. 126-137, March 2008.

[18] M. Patterson and J. Mack, “The Cleveland scale for activities of dailyl

living (CSADL): Its reliability and validity,” Journal of Clinical

Gerontology,” pp. 15-28, November 2001.

[19] Persim – A simulator for human-activities in Pervasive Spaces.
Project web site: http://www.icta.ufl.edu/projects_persim.

[20] B. Reisberg and S. Finkel, “The Alzheimer’s disease activities of

daily living international scale (ADL-IS),” International
Psychogeriatrics, vol. 13, no. 2, pp. 163-181, 2001.

[21] P. Remagnino and Gian Luca Foresti, “Ambient Intelligence: A New

Multidisciplinary Paradigm,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 35, no. 1, pp.1-6, January 2005.

[22] M. Schmitter-Edgecombe, E. Woo, and D. Greeley, “Memory deficits,
everyday functioning, and mild cognitive impairment”, Proceedings

of the Annual Rehabilitation Psychology Conference, Tucson,

Arizona, 2008.
[23] M. Varshney and R. Bagrodia, “ Detailed models for sensor network

simulations and their impact on network performance,” In MSWiM

'04: Proceedings of the 7th ACM international symposium on
Modeling, analysis and simulation of wireless and mobile systems,

ACM, October 2004, pp. 70-77

[24] M. Weiser, “The Computer for the 21st Century”, Scientific American,
Vol. 265, no. 3, pp. 66-75, September 1991.

