
 

 

 

 

Abstract— The generation of useful sensory data from real-

world deployments of Ambient Intelligent Environments 

(AIEs) is challenging because of the high cost, significant 

groundwork and lack of access to human subjects. This 

situation can be improved by providing efficient simulators 

that can produce realistic simulation of the data collection from 

AIEs. One of the main problems for developing AIE simulators 

lies in the ability to verify how close the simulated data are to 

the real world data. In this paper, we present a fuzzy based 

verification agent for Persim – an event driven simulator for 

human activities in AIEs. The employed fuzzy based 

verification agent builds a data model that mimics the 

operation of Persim which allows for the latter’s objective and 

subjective verification. We have conducted the verification on 

real world data captured from an actual smart apartment 

deployment. The results show the effectiveness of the fuzzy 

based verification agent in analyzing and comparing the Persim 

simulated data with the real world collected data. We also 

demonstrate how the verification agent is able to pinpoint 

specific changes to the simulation model to increase the realism 

of the simulation.    

I. INTRODUCTION 

ith the ever-increasing number of miniaturized and 

computerized artefacts and devices, information about 

state, location, roles and much more becomes transparent 

and with the pervasiveness of networks this information is 

made available to anyone, anywhere and at any time. These 

efforts of advancing technology to pervade everyday life and 

to foster wide availability and acceptance materialized in 

1991 when Mark Weiser introduced his vision of ubiquitous 

computing in his famous seminal article “The Computer for 

the 21st Century” [24]. 

Ubiquitous computing aims to make computers aware of 

the needs of the user. In other words, the ubiquitous 

computing system can be regarded as a digital personal 

assistant equipped with some sort of intelligence to 

understand what the users are trying to accomplish, in order 

to determine how best to intervene and assist them.  
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Ambient Intelligence (AmI) is a new paradigm that puts 

forward the criteria for the design of smart spaces and 

ubiquitous computing environments [21]. In the AmI 

paradigm, intelligent computation will be invisibly 

embedded into our everyday environments through a 

pervasive transparent infrastructure (consisting of a 

multitude of sensors, actuators, processors and networks), 

which is capable of recognizing, responding and adapting to 

individuals in a seamless and unobtrusive way [9]. AmI 

offers great opportunities for an enormous number of 

applications such as health and elder care, the efficient use 

of energy resources in homes and public buildings, and in 

leisure and entertainment. However, there are many 

challenges facing the creation of Ambient Intelligent 

Environments (AIEs) which include: 

 Expensive Development.  In recent years it has become 

obvious that the increasing costs of building AIEs 

without a correct design and plan makes research 

initiation and progress in this area extremely difficult 

[12]. Not everybody has a large budget to build an AIE 

to test new algorithms and ideas.  

 Time Consuming Data Generation. Even if budget is 

not an issue, it is usually very time consuming to 

generate adequate data for a meaningful collection of 

patterns or events. For instance some of the available 

data sets are useful to some researchers but not all, 

depending on the events captured and the specific 

sensors that were available in the AIE where the data 

was collected.  

 Scarce Human Resource. Another difficulty is 

recruiting participants to test the AIE and to perform all 

of the activities under all possible conditions or contexts 

that a research team wishes to consider. Addressing 

human subject safety and guarding against abuse and 

exploitation, institutional review boards (IRBs) and 

many governmental agencies limit the length of time 

human subjects can be used in any research study. 

Although financial and human capital may be available, 

the range of data that could be collected would have to 

be restricted, leaving researchers with only a tiny 

fraction of the data they wish to collect.  

Given the aforementioned challenges, it is necessary to 

look for alternative practical ways to experiment with AIE 

design and performance. Simulation is a promising and 

sensible alternative. It enables researchers to create focused 

synthetic replications of important events and activities. 
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Researchers could gain deep insight into the specifics of the 

AIE they may eventually build. Simulations can be easily 

changed and refined allowing the researchers to experiment, 

analyze and fine-tune their model and associated algorithms. 

Simulation also allows a wider community of researchers to 

engage and collaborate to solve a specific problem. Hence, a 

design based on preliminary simulation studies would most 

likely to be a more robust and inclusive design. Also, a 

simulation model that mimics an existing real world AIE is 

most likely to answer more questions (generate much more 

data) than the actual AIE. This early stage simulation can 

help researchers evaluate their ideas and algorithms quickly 

and with reasonable accuracy.  

There is a major roadblock that impedes the use of 

simulation in AIE which is: How do researchers know that 

the simulation is a reasonable capture of the real AIE? 

Simulating an AIE is a complex task. It encompasses a 

capture of sensors, actuators, activities, behaviors, space 

elements and semantics, as well as a large collection of 

dependent and independent events. This complexity creates 

room for inaccuracies and errors in the simulation model. 

Hence checks and balances are needed to ensure that 

simulation-generated datasets are adequately realistic and 

comparable to real datasets that would result from the actual 

AIE they simulate.  

In this paper, we present a fuzzy verification agent and a 

framework for verifying AIE simulators. Our verification 

agent is capable of analyzing and quantifying similarities 

between an AIE simulated dataset and the real world dataset 

that the simulator is emulating. We demonstrate our 

verification agent in the context of a case study to verify the 

design of an event-driven simulator called Persim [12], [13], 

[19]. We present experiments which verify Persim output in 

comparison with a real world dataset that was collected to 

capture information about human activities in a smart living 

space.  

The rest of the paper is organized as follows. Section II 

presents related work on verification of AIE simulators. 

Section III presents a brief overview on the Persim simulator 

used in this paper. In Section IV, we present the fuzzy based 

verification agent. Section V presents the experiments and 

results followed by conclusions and future work in Section 

VI.  

II. PREVIOUS WORK IN AIE SIMULATION VERIFICATION 

In the fields of wireless sensor networks (WSN) and 

pervasive computing, many simulation concepts have been 

researched and various simulation tools have been built. But 

they differ in the focus and fields of application. SENSORIA 

[2] is a simulator focusing on traffic generation, energy 

consumption and inherent protocols of WSN. In [23], a 

detailed simulation model was presented which also focuses 

on accurate models for battery, processor power 

consumption and network traffic. In [1], the Discrete-Event 

system Specification (DEVS) was proposed to define 

asynchronous discrete-events occurring in WSN. None of 

the above mentioned simulators provide any verification of 

simulation output against real data.   

On the other hand, there are some approaches such as 

[14], [17] which simulate a specific system at a very low 

level. For example, TOSSIM [17] simulates the TinyOS 

operating system in a WSN. TOSSIM emulates the operating 

system operation step by step. As such it embodies a self-

validation by simply comparing the performance of its 

simulation traces with an actual WSN running TinyOS.  

The DiaSim simulator [15] executes pervasive computing 

applications by using an emulation layer and developing 

simulation logic of the parts that needs to be simulated. 

Under DiaSim, a pervasive computing environment is 

described in terms of “stimulus” procedures (any change in 

the environment that can be consumed by sensors) and 

simulated services in a specification language called 

DiaSpec. Unlike Persim, DiaSim does not attempt to model 

an entire pervasive space for analysis and examination. It 

does emulate some of the pervasive system services (sensors 

and actuators) as part of a programming and development 

methodology. The programmers start off emulating almost 

all services and gradually, as they verify the correctness of 

application logic, replace emulated entities by actual 

devices. As such DiaSim’s verification goals are different 

from Persim. It focuses on validating the application logic 

and making sure the pervasive application does what it is 

intended to do. Unlike DiaSim, Persim verification, which is 

introduced in this paper focuses on ensuring high realism of 

the simulation. Our approach uses a fuzzy based agent to 

directly measure the level of fidelity between the simulated 

system and its real counterpart in terms of their 

corresponding datasets. 

III. OVERVIEW OF THE PERSIM SIMULATOR DESIGN  

Persim is an event-driven simulator developed at the 

Pervasive Computing laboratory at the University of Florida. 

It focuses on simulating human activities [10] in ambient 

intelligent environments [12], [13], [19]. It is capable of 

capturing the physical elements of AIEs in terms of its 

sensors and user behaviors (activities). It allows researchers 

to simulate AIEs by first defining a target ambient space 

(e.g., Washington State’s CASAS Smart Apartment Testbed 

[7] or the Gator Tech Smart House [4], [11]). The researcher 

adds a variety of sensors into the space. Activities of interest 

that can happen inside the space are then added. When the 

simulation design is complete, the researcher has the 

flexibility to define causal relationships between activities 

and sensors. In the last step, one has the choice to simulate 

the entire state space (similar to the dataset format of the 

iDorm AIE project of University of Essex [5]) or zoom into 

the space and simulate only activities of interest (similar to 

the CASAS dataset of WSU [7]). In Persim, researchers are 

empowered to design a simulation incrementally over 

multiple sessions. They may modify the design several times 

before a design is realized that adequately captures the target 

AIE.  They can also modify the design to specialize the 

simulation for specific individual experiments. Persim 



 

 

 

simulated data follow the Sensory Data Description 

Language (SDDL) standard [12], [19], which significantly 

enables sharing of the simulation results. 

A. Brief Description of the Simulation Model 

Persim is a component-based simulator. These 

components are used for defining (i) space to be simulated in 

terms of layout and sensors, (ii) activities to be simulated 

and (iii) simulation criteria/configuration. Each component 

is characterized by several attributes. The major components 

of the simulator are Space, Sensor, Activity, Activity-Sensor 

Mapper and Simulation Configurator. Persim supports two 

simulation modes – Activity-driven and State-space. In 

Activity-driven mode, a user can specify a set of activities, 

which would trigger a set of dependent sensors based on the 

Activity-Sensor mapping. On the other hand, in State-space 

mode, Persim generates a time-stamped sequence of events 

reporting on all sensor values, which are independent of any 

activity. 

Persim adopts the discrete-event simulation model [16] 

using a next-event, time-advance approach to capture the 

dynamic nature of the AIEs, which evolve over time. 

According to this classical simulation technique, the target 

state space changes whenever any event (either activity-

driven or time-driven) occurs and the system variables of the 

space are updated based on the simulation logic. 

The flow chart of the Persim simulation algorithm is 

shown in Fig. 1. The simulation invokes the timing routine 

to get the most imminent event from an event list. Then it 

processes the event according to the type of the event, 

whether simulation mode is Activity-driven or State-space. It 

also advances the simulation clock to the time of occurrence 

of the current event. The simulation continues until the 

predefined value for the simulation clock is reached. Finally, 

it generates simulated data in SDDL form, which is a 

proposed standard format for representing sensory datasets 

[12], [19]. 

B.  Simulation Steps 

Fig. 2 shows a screen shot of the Persim parameter 

configuration interface. The user first defines the space to be 

simulated (e.g., kitchen, living room). Then she/he can add 

the desired sensors (e.g., motion sensor, light sensor) in each 

space area and configure the sensors with information such 

as the sensor name, id, type, value generation function, 

min/max value, and so forth. Then the user can add AIE 

activities (e.g.  move to kitchen, clean dishes).  

Next, the user needs to map each activity to a set of 

relevant sensors using the Activity-Sensor Mapper. While 

mapping, a user can specify the sequence of sensor-triggers 

for each activity. For example, if motion sensor M1 is 

assigned a sequence number 1 and motion sensor M2 is 

assigned a sequence number 2 for a specific activity, then 

M1 will trigger before M2 in the course of simulation of that 

activity.  

Finally, the user needs to define several simulation 

parameters as shown in Fig 2, such as simulation mode, 

activities to be simulated with an inter-arrival distribution 

function, and start time and end time of an activity. This 

completes all information required for the simulation of 

events in the space. Now the user can click the “Run 

Simulation" button to generate data from the space.  

 

 
 

 

Fig.1. Flowchart of Persim event simulation. 

IV. OVERVIEW OF THE FUZZY VERIFICATION AGENT 

In order to verify the accuracy of the Persim simulator, we 

have followed a verification approach, which employs fuzzy 

logic based modeling. 

 



 

 

 

 
 
Fig.2. Persim simulation configuration. 

 

Fuzzy Logic Systems (FLSs) attempt to mimic the way of  

human thinking to reason in an approximate way rather than 

a precise way. The smooth transition between the fuzzy sets 

will give a good decision response when facing noise and 

uncertainties. Furthermore, FLSs employ linguistic IF-

THEN rules, which enables a representation of the control 

information in a human readable form. 

The employed verification approach uses data to construct 

a fuzzy logic based system that models the given process 

and gives mapping from the data (real or simulated) to the 

correct activities. The motivation behind this approach is 

that just by using data, we can generate fuzzy models, which 

could be easily read and interpreted by the user.  

Fig. 3 shows an overview of the fuzzy based verification 

agent. The agents start in Phase 1 by aggregating the 

simulation and real data logs to generate the fuzzy sets for 

the simulated and real FLSs, respectively. In Phase 2, a 

sliding window approach is employed to generate the 

rulebases of the simulated and real FLSs respectively. In 

Phase 3, the agent perfoms a numerical verification by 

feeding the real data to the simulation FLS and then 

verifying how close are the outputs of the simulated FLS to 

the real data. In Phase 4, the agent perfoms a linguistic 

verification by comparing the fuzzy sets and rule bases of 

the real and simulated FLSs. In the following subsections, 

we presnet phases 1 and 2 whereas phases 3,4 will be further 

illustrated in the experiments section.   

A. Phase 1: Learning the Fuzzy Sets of Simulation and Real 

FLSs 

Phase 1 deals with learning fuzzy sets for the simulation 

and real FLSs from the accumuated simulation and real logs,  

 

respectively. Both the simulated and real data logs share the 

same time frames. We employ a Fuzzy C-means Clustering 

approach to learn the numerical values associated with the 

various fuzzy sets as follows: 

Consider a family of fuzzy sets 𝐴𝑖 , 𝑖 = 1, 2, … , 𝑐, as fuzzy 

c-partitions on the universe 𝑋. Fuzzy sets allow a degree of 

membership, hence, we can assign memberships to the 

various data in each fuzzy cluster and a single data point can 

have a membership to more than one cluster [3]. The 

membership value of the 𝑘th data point in the 𝑖th cluster is 

described as follows: 

                               𝜇𝑖𝑘 =  𝜇𝐴𝑖
 𝑥𝑘 ∈ [0,1]                         (1) 

The objective function for optimal fuzzy c-partition can 

be written as follows: 

               𝐽𝑚 𝑈, 𝑣 =     𝜇𝑖𝑘 
𝑚 ′

 𝑑𝑖𝑘  
2

𝑐

𝑖=1

𝑛

𝑘=1

                           (2) 

Where 𝑖 = 1,2, … , 𝑐 and  𝑘 = 1, 2, … , 𝑛, where c is the 

number of centres or fuzzy sets and n is the number of data 

points. Where  
 

          𝑑𝑖𝑘 = 𝑑 𝑥𝑘 −  𝑣𝑖 =     𝑥𝑘𝑗 − 𝑣𝑖𝑗  
2

𝑚
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                   (3) 

The membership 𝜇𝑖𝑘  is the membership of the 𝑘th data 

point in the 𝑖th cluster. The goal of the objective function is 

to get the best clustering. The parameter 𝑚′is the weighting 

parameter which has a range 𝑚′ ∈ [0, ∞). This parameter 

controls the amount of fuzziness in the classification process 

and usually takes the values between [1.25, 2]. In our 



 

 

 

experiments 𝑚′ was set to 2. The vector for a cluster center 

𝑣𝑖 = {𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝑚 } is calculated as follows: 

                                   𝑣𝑖𝑗 =
 𝜇𝑖𝑘

𝑚 ′
 𝑛

𝑘=1
 

𝑥𝑘𝑗

 𝜇𝑖𝑘
𝑚 ′𝑛

𝑘=1

                             (4) 

Where 𝑗 is the variable on the feature space, i.e. 𝑗 =

1, 2, . . 𝑚. The Fuzzy C-means clustering operate as follows: 

1. Fix 𝑐  2 ≤ 𝑐 < 𝑛  and select a value for parameter 𝑚′. 

Initialize the partition matrix 𝑈 𝑟 , 𝑟 = 0,1,2, … 

2. Calculate the 𝑐 center vectors {𝑣𝑖
𝑟} for each step. 

3. Update 𝑈 𝑟 , the partition matrix in the 𝑟th step; 

calculate the updated membership function matrix as 

follows: 

          𝜇𝑖𝑘
 𝑟+1 

=    
𝑑𝑖𝑘

 𝑟 
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             𝜇𝑖𝑘
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= 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 𝐼 𝑘           (6) 

𝐼𝑘 =  𝑖  2 ≤ 𝑐 < 𝑛 ; 𝑑𝑖𝑘
 𝑟 = 0}, 𝐼 𝑘 =  1, 2, … , 𝑐 −  𝐼𝑘 . 

4. If  𝑈 𝑟+1 −   𝑈 𝑟   ≤ 𝜀 (tolerance level) STOP, otherwise 

set 𝑟 = 𝑟 + 1 and return to step 2. 
We perform the above algorithm to get the cluster centres 

and then each data point is matched against the various 

cluster centres to form the shape of the given fuzzy set as 

shown in Fig.4. The shapes of the fuzzy sets are then 

smoothed by piecewise linear membership function as 

shown in Fig.4. 

 

B. Phase 2: Learning the Fuzzy Rule Bases of the 

Simulated and Real FLSs 

We employ a sliding window approach as shown in Fig.5 

to pass through the data and generate fuzzy rules. Each 

training data pattern (x
(t)

;y
(t)

) will consist of the x
(t) 

for the 

given sensors within the given window and the associated 

activity y
(t)

. In case of Boolean sensors like motion sensors, 

the value of x
(t)

 will be a binary value indicating if the 

relevant sensor has been triggered within the window or not, 

in relation to the sensor changing from OFF to ON 

indicating that someone has crossed the relevant area. 

The fuzzy rule extraction approach used in this paper is 

similar to the AOFIS system reported in [8]. In the following 

steps we summarize the different steps involved in rule 

extraction: 

Step 1: For a fixed input-output pair (x
(t)

;y
(t)

) in the 

dataset (t=1,2, …,N), compute the membership )( )(t

sA
xq

s



values q=1,2, …,V and for each input variable s (s=1,2, …,n) 

find q*∈ {1, …𝑉), such that  

*
( ) ( )( ) ( )qq

s
s

t t
s sAA

x x                        (7) 

Let the following rule be called the rule generated by 

(x
(t)

;y
(t)

): 

IF 
tx1 is 

*

1
qA and … and 

t
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*q

nA THEN y  is 

activity )( ty                                                                        (8) 

For each input variable xs there are V fuzzy sets 

VqAq

s ,...,1,  , to characterize it; so that the maximum 

number of possible rules that can be generated is V
n
. 

However given the dataset only those rules among the V
n
 

possibilities whose dominant region contains at least one 

data point will be generated. In step 1, one rule is generated 

for each input–output data pair, where for each input the 

fuzzy set that achieves the maximum membership value at 

the data point is selected as the one in the IF part of the rule.     

This however is not the final rule, which will be calculated 

in the next step. The weight of the rule is computed as: 
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Fig. 3. An overview of the fuzzy based verification agent approach. 

 

            

 

Fig. 4. The clustered points against the cluster centers and the smoothed 

fuzzy set. 

 

Step 2: Step 1 is repeated for all the t data points from 1 

to N to obtain N data generated rules. Due to the fact that the 

number of data points is quite large, many rules are 

generated in step 1, that all share the same IF part and are 

conflicting, i.e. rules with the same antecedent membership 

functions and different consequent activities. In this step 



 

 

 

rules with the same IF part are combined into a single rule.  

The N rules are therefore divided into groups, with rules 

in each group sharing the same IF part. Within each group of 

rules sharing the same antecedents, the rule with the highest 

value ( )tw will select its consequent to be overall rule 

consequent. If more than one rule share the same ( )tw , then 

the consequent which appears with higher frequency will be 

selected. 

 

 
Fig. 5. The sliding window for forming data for rule extraction 

V. EXPERIMENTS AND RESULTS 

This section reports on the verification of the Persim 

simulator using data which were obtained from the smart 

three-bedroom apartment (shown in Fig.6) on the  

Washington State University campus that is part of the 

CASAS smart home project [7] The CASAS project treats 

environments as intelligent agents, where the status of the 

residents and their physical surroundings are perceived using 

sensors and the environment is acted upon using controllers 

in a way that improves the comfort, safety, and/or 

productivity of the residents. The smart apartment testbed 

includes three bedrooms, one bathroom, a kitchen, and a 

living / dining room. The apartment is equipped with motion 

sensors distributed approximately 1 meter apart throughout 

the space.  In addition, digital sensors provide ambient 

temperature readings and analog sensors provide readings 

for hot water, cold water, and stove burner use.  VOIP 

captures phone usage and contact switch sensors are used to 

monitor door closure as well as usage of the phone book, a 

cooking pot, the medicine container, and key cooking 

ingredients in the apartment. Sensor data is captured using a 

customized sensor network and is stored in a SQL database.  

The data were collected to mimic the Activities of Daily 

Living (ADLs), which are activities to be identified by 

assistive technologies as desired most by family caregivers 

of Alzheimer’s disease patients. Hence, this data mapped 

raw sensor values to ADL activities. In this paper we focus 

only on three of these ADL activities, which are:  

 Making a Phone Call (T1): Participants are asked to 

look up a specified number in a phone book, call the 

number, and write down the cooking directions given on 

the recorded message. The phone book, notepad and 

telephone were located on the dining room table. 

 Hand Washing (T2): Participants were told to wash their 

hands in the kitchen sink using the soap and paper 

towels provided. 

 Cleaning (T3): This activity required participants to 

clean the dishes and put the medicine bottle and other 

materials back in the cabinet. 

The selected activities include both instrumental and basic 

ADLs. These ADLs are typically found in clinical 

questionnaires assessing everyday functional activities [18], 

[20] and deficits in these ADLs can help identify individuals 

who are having difficulty living independently at home [22].   

In addition, poor performance for these activities has been 

associated with greater use of health care services and 

increased risk for institutionalization [6]. 

In order to evaluate the accuracy of the produced model, 

we have provided test data to measure the accuracy for the 

simulation FLS. The fuzzy simulation models predicted T1 

with an accuracy of 99.8% while predicting T2 with an 

accuracy of 98.7% and predicting T3 with an accuracy of 

99.8%. Hence the simulation FLS provided a very reliable 

FLS to validate Persim. 

In order to perform the verification, the real world data 

were fed to the FLS-simulated model. As the FLS model 

provides a near-accurate approximation of the Persim 

generated dataset, we can predict Persim accuracy based on 

how accurate the FLS maps the real world sensors values to 

the correct activities. 

From this numerical analysis, it has been seen that when 

the simulation FLS was fed by time stamped sensors data, 

the following accuracies were achieved for the associated 

activities: 66.7% accuracy for predicting T1 and 95.8% for 

predicting T2 and 29.2% for predicting T3. When dealing 

with time independent real sensor data the following 

accuracies were achieved for the associated activities: 

70.83% accuracy for predicting T1, 100% accuracy for 

predicting T2 and 41.67% accuracy for predicting T3. 

Another metric we employed to judge the accuracy of the 

simulation was   by calculating R, which is the set of sensors 

triggered within the window of instances in real data and 

calculating S, which is the set of sensors triggered within the 

same window size in the simulated data. We define window 

percentage to be W = |
 𝑅 −  𝑆 

 𝑅 
|. W presents a measure for 

the similarity between the simulated and real data in terms of 

comparing the number of sensor triggers in each of the real 

and simulated windows. For T1, W= 0.87, for T2, W=0.89 

and for T3 W= 0.71. This analysis again shows that more 

accuracy was achieved for T2 than for T1 or for T3.  

The advantage of FLS is that it provides both linguistic 

rules and fuzzy sets which are easily readable allowing us 

(through analyzing the rules and fuzzy sets) to find why 

there are differences in the accuracy of predicting the 

various activities. For example, Fig. 7 shows the extracted 

fuzzy sets (and the associated smoothed piece-wise linear 

fuzzy sets) from the real data for the Time variable, which 

looks very similar to the extracted fuzzy sets from the 

simulated data in Fig. 8. For T3 where the accuracy of the 

simulation is not as high, it is obvious that the extracted 

fuzzy sets for the variables are different as shown in Fig. 9a 



 

 

 

and Fig.9b which shows the extracted fuzzy sets for the 

Water_B sensor from the real and simulated data in Fig. 9a 

and Fig. 9b respectively. This difference can be then fed 

back to the simulator to help to adjust the sensor ranges in 

simulation to be in line with those used in the real data 

 

 

 
Fig. 6. The kitchen/living room area and the sensor distribution in the smart 
apartment in WSU. (Sensors include motion sensors (M), temperature 

sensors (T), water sensors (W), phone sensors (P) and item sensors (I). 

 
 

 
      

Fig. 7. The extracted fuzzy sets by the Fuzzy C-means and the associated 

smoothed piece-wise linear membership structure of the Fuzzy Logic 

System (FLS) for the time variable for the real data. 

 

More insights about the differences between the 

simulation and the real data can be discovered when 

investigating the rule bases of the FLS generated from the 

real world data and the FLS generated from the simulated 

data. For example for T3, when investigating the rules of the 

simulated and real FLSs, it was discovered that as shown in 

Fig. 8, the user follows the red line of going through the 

motion sensor M13 to M14 to M15 to M16 to M17 where 

the user reaches the wash basin area. It was noted that the 

real FLS has shown this sequence. However, in simulation 

FLS has shown a sequence of M13 to M14 to M17, which is 

physically not possible without also triggering M15 and 

M16. Hence, this information was fed back to the simulator 

to improve its performance or those activities where the 

simulation did not perform well, as in the case of T3.   
 

 
Fig. 8. The extracted fuzzy sets by the Fuzzy C-means and the associated 

smoothed piece-wise linear membership structure of the Fuzzy Logic 
System (FLS) for the time variable for the simulated data. 

. 

 
                         (a)                                           (b) 

Fig. 9. The extracted fuzzy sets by the Fuzzy C-means and the associated 
smoothed piece-wise linear membership structure of the Fuzzy Logic 

System (FLS) for the water sensors for (a) Real data (b) Simulated data. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presents a fuzzy based agent approach for the 

verification of an AIE simulator entitled Persim. We propose 

a fuzzy verification agent which operates in four phases.  It 

starts in phase 1 by aggregating the simulation and real data 

logs to generate the fuzzy sets for the simulated and real 

FLSs, respectively. In phase 2, a sliding window approach is 

employed to generate the rulebases of the simulated and real 

FLSs respectively. In phase 3, the agent perfoms a numerical 

verification by feeding the real data to the simulation FLS 

and then verifying how close are the outputs of the simulated 

FLS to the real data. 



 

 

 

In phase 4, the agent perfoms a linguistic verification by 

comparing the fuzzy sets and rule bases of the real and 

simulated FLSs. The fuzzy based agent verification 

approach has been applied for the verification of a Persim 

simulation results against real data obtained from the smart 

apartment in WSU. It was shown that the fuzzy based 

verification agent can verify the Persim simulator both 

numerically and linguistically. Our verification approach 

helps simulator designers in debugging their developemnt 

and in assessing the adequacy of “reality capture” in their 

simulation loops.  

Although the fuzzy based verification agent was applied 

to event driven simulators, it can be easily applied to any 

kind of AIE simulator which will be the subject of future 

work. Also type-2 fuzzy systems will be investigated in 

generating the fuzzy model due to their abilities to better 

handle the uncertainties than their type-1 counterparts.  
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