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Abstract— In this work we explore the opportunity Pervasive Spaces could provide as supplemental energy sources. We 

utilize the nature of pervasive smart spaces to outsource computation that would normally be performed on a mobile 

device to a surrogate server within the smart space. The decision to outsource a computation depends on whether its 

energy cost on the device is larger than the cost of communicating its data to the surrogate and receiving the results back. 

We propose an approach by which the outsourcing decision is made at runtime, while the intelligence that makes that 

decision is inserted at compile-time as logic that modifies the application code. The merit of our approach is that it is 

application-independent and requires minimal programmer energy awareness. We utilized a methodology from real-time 

systems to aid us in constructing the decision making logic. Additionally, we implemented a runtime support on top of 

Linux to facilitate for testing and experimenting with the client/server outsourcing approach. Our experimental validation 

and benchmarks shows significant energy saving on the mobile device, which validates our approach as a viable and novel 

approach to power saving and management for mobile devices. 

 
Index Terms—Computation Outsourcing, Pervasive Computing, Power-aware Computing, Mobile Computing, Smart 

Spaces.  

I. INTRODUCTION 

he emergence of mobile and then pervasive computing (as new computing domains) 

introduced several new challenges and research opportunities, one of which was energy 

management. These challenges arose from the mobility of used hardware [30]. Such hardware 

includes devices such as cellular phones, PDA’s, laptop computers, and even MP3 players. The 

mobility of these devices implies that they are powered by mobile power sources represented by 

the battery of each device; and that, in turn, implies that the power source is limited.  

As these devices become more popular, and their use becomes more apparent and frequent, the 

need to manage their energy consumption becomes more vital to their operation. This is because 
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the more often a battery needs to be charged, the more often the mobile device is rendered 

immobile (which reduces the pervasiveness of their applications). The problem of energy 

management has gained a lot of attention in the mobile and pervasive computing research 

community. This is due to the increased reliance on mobile devices by a wide spectrum of users. 

This increased reliance on mobile devices stemmed from the increased capability of these 

devices. This argument was supported by Helal [18] who gave a close look at the market for 

Java-enabled phones and PDAs from a commercial standpoint to show that the capabilities of 

these devices are increasing, and will continue to increase over time.  

Starner [32] gave a discussion of how much slower advances in battery technology have been 

than those for the other mobile computer components (the discussion was given for laptop 

computer, but information for wearable computers, PDAs and cellular phones was deduced to be 

similar). Starner [32] provided a graph representing the improvement in laptop technology from 

1990-2001. As the graph indicated, CPU speed has kept up with Moore’s Law, but battery 

capacity has not. As a matter of fact, battery capacity improvements were extremely small.  

The continued increase in reliance and capability of mobile devices indicate that the energy-

saving problem is ongoing, and it needs to continue to be addressed on the long run. Due to their 

capability, mobile device users are ranging from teenagers to the elderly and they span a wide 

range of backgrounds and mobile device utilization. One of the most widely used feature set of 

mobile devices is that dealing with multimedia applications, especially among the youth. The 

young generation uses these devices to play video games; take and edit pictures and videos and 

record and play sounds and music on them.  In addition to this, the medical and dental 

professions rely heavily on 3-D, and having these capabilities on mobile devices would be 
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attractive to them. Other applications would also include graphics design, and voice recognition. 

 Managing the energy consumed by these mobile devices has been an important subject in 

research and industry communities of both mobile and the pervasive computing. Solutions have 

been presented at the various levels and layers of the computer system, and often these solutions 

to the energy problem involve a certain type of tradeoff. One of the most attractive avenues to 

energy management is high-level energy-management techniques. Such a good argument was 

made for handling power management at high level that Ellis [8] proposed a power-based API to 

allow for synergy between the application and the system.  One of the most attractive avenues to 

energy management are high-level energy-management techniques. Such a good argument was 

made for handling power management at high level that Ellis [8] proposed a power-based API to 

allow for synergy between the application and the system.  One of the most attractive high-level 

solutions to energy management is a compiler-based solution that alleviates or minimizes the 

need for programmer power-awareness. This is done via compiler optimization. Velluri et al. 

[36] studied he effect of the traditional compiler optimization techniques on system power (and 

therefore energy). Results showed that (except for loop unrolling and function inlining) most 

optimizations increased the energy consumed by the core of the processor. These results were (at 

least for loop unrolling) confirmed by Kandemir et al. [20]. 

II. OVERVIEW OF THE APPROACH 

To solve the problem stated in the previous section, the solution has to be composed of two 

parts. The first part of the solution is done at compile-time as an optimization technique at the 

high-level source code. The second part of the solution must provide the necessary support to the 
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outcome of the first phase. This is due to the fact that the outcome resulting from the compile-

time phase is a different formation than that initially developed.  

A. Overview of the Compile-Time Solution 

We have introduced this work as part of our fine-grain approach to power-aware computing 

[2]. First at compile-time, an assumption has been made that the source code has been tested and 

verified in its original form. Although that is done, this solution still validates the source code 

syntactically to make sure that no inadvertent errors were introduced along the way. In addition 

to syntax checking, the source code is also disassembled and the outcome of this process is an 

assembly representation using the mnemonic representation of each instruction of the target 

architecture. At this point, information about the high-level source code and the low-level 

instructions will become available for the optimization technique part of this contributed 

research. 

The next step is to recognize basic program blocks (mainly loops) in both the source code and 

the assembly code, and simply match them. Recognizing loops at the high-level representation of 

the source code will result in the ability to collect all the data involved in the computation of the 

loop, and that will yield the energy cost of communication for sending all the data involved in the 

calculation out, and receiving only the data that changes (L-Values). Also, using the technique 

mentioned by Healy et al. [17], the number of iterations for each loop is calculated. As for the 

assembly code, the loops are recognized to determine the instructions involved in each loop, 

which will yield the entire energy cost of executing a single iteration of the each loop. In addition 

to instructions, at compile-time, we recognized whole library functions such as those belonging 

to the math library, and we added the value of their energy cost to the cost of the loop in which 
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they are executed. This, along with the metric calculated before to find out the number of each 

loop’s iteration construct a good estimate of the total cost of the local execution of each loop. 

Before calculating the total cost of communication and the total cost of each loop’s computation, 

experiments were done to find out the cost of communicating a single unit of data (a byte), and 

the cost for executing each machine instruction for the target architecture. As for calculating the 

cost of communicating a single byte, a client/server application was tested with multiple sizes of 

data to communicate between two machines, and the measurement for this was recorded and 

averaged. As far as each instruction’s energy cost, a similar approach to that presented by Tiwari 

et al. [35] was utilized where each supported instruction is isolated via high-level code 

implementation, and executed multiple times within a loop and the final result is averaged based 

on the number of instructions used (we used 100 instructions within a loop executing 100 million 

times). In addition to testing machine instructions and verifying their cost, we tested pre-existing 

library function and verified their energy cost in a similar manner to the individual machine 

instructions.  

B. Overview of the Runtime Support 

To support the ability to outsource code, the application must be able to run in one of two 

modes: normal mode, or energy-saving mode. So, when an application starts, it will have to get 

some information based on the resources that are available. If the battery is susceptible to be 

drained quickly, then the application needs to run in energy-saving mode, the user also has 

control over this. However, if the user decides to run in normal mode, then the application should 

not worry about computation outsourcing.  

In order for the application to be able to make the right decision, it has to contact the battery 

monitor at startup. The battery monitor would have already determined if energy saving is 
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available via outsourcing (this decisions is based on user preference also). Additionally, the 

battery monitor will contact the network monitor to check if the devices is actually connected to a 

network and that network contains surrogate servers. If so, then it will run in energy-saving mode 

listing the appropriate surrogate available for the application to utilize. This monitor is also 

similar to, but much simpler than, those discussed by Flinn and Satyanarayanan [9] and by Gu et 

al. [15].  

The work done by Flinn et al. [9] suggests that the cost of these monitors is “non-negligible”. 

This is true in their case, as a lot of the intelligence to execute code remotely is done at runtime 

as opposed to compile-time, and that is why their approach is a coarse-grained approach to 

energy management. However in our approach, while may utilize an idea presented by Flinn and 

Satyanarayanan [9] and by Gu et al. [15], the solution is much simpler and that is because the 

battery monitor is a straightforward inquiry to operating system’s advance power management 

(APM). As far as the network monitor is concerned, it will only be invoked if an energy-saving 

mode of operation is decided (mainly as an outcome of the battery monitor). Therefore, the cost 

is negligible for these two monitors. Implementation of the battery monitor was as easy as 

looking at a single file containing information about the battery at certain increments of time. As 

for the network monitor, several approaches can be investigated, the simplest of which was 

proposed by Gu et al. [15] and it is based on wireless broadcast for discovering surrogates.  

III. COMPUTATION OUTSOURCING FRAMEWORK 

Outsourcing computation is not a new terminology here. However, the motivation behind 

outsourcing the computation to a remote server, and the approach under which we are 

outsourcing the computation is the contribution here. Our goal from this research is to show that 
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an intelligent runtime decision can be made to decide if it is better to execute a section of code 

locally on the mobile device, or would it be more energy-beneficial to send its data to a remote 

server, and get the results back.  

A. Overview 

The overall framework for outsourcing is described in Figure 1. The idea is that a server 

machine accessible via a wireless network can serve as a surrogate server for a host of mobile 

devices such as handhelds, PDAs and laptop computers. This server at runtime will receive 

requests from client programs running on any of these devices for outsourcing code to the server. 

The code that is in charge of making this decision is completely transparent to the programmer. 

All the programmer is required to do is to compile the code to optimize for energy. This will 

result in two version of the program being generated which the programmer will eventually have 

to compile and install. We believe that this is not a burden on the programmer in any way, and it 

is not a requirement for the programmer to have any knowledge of energy 

requirements/constraints.  

Once an application is compiled, and two versions have been generated (a server version and a 

client version), and they are installed on their respective machines, the user can then execute a 

client application on the mobile device. This client application executes normally until it reaches 

a section of code that has been designated as outsource-able (having the potential for 

outsourcing), this is what we call the outsourcing candidate. Once this section is reached, then 

the intelligent code that was inserted at compile-time is executed to make the outsourcing 

decision. As a matter of fact, the candidate code will not be executed (locally or remotely) until 

the decision making code is executed. 
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client application
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Figure 1. Framework for computation outsourcing at runtime 

In figure 2, an illustration of the outsourcing mechanism at runtime is given. The client runs on 

the mobile device, and once it reaches an outsource-able section of code, it determines if it is 

more energy beneficial to outsource or is it more beneficial to execute locally. If the 

determination is made to outsource, then it will send the data to the server and wait for the results 

back, otherwise it will continue to execute locally until it reaches the next available outsource-

able section of code. At all times, the server running on the surrogate machine is waiting for 

requests from client programs. Once it services the client’s request it goes back to waiting for 

client requests again, which occur once a candidate section of code decides to outsource its 

computation. 

The decision to outsource a section of code is not an arbitrary decision. The mobile machine 

user must configure it to determine if outsourcing is desirable in the first place. Therefore, there 

is a battery and a network monitor running on the client machine that will help in making this 
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determination. The battery monitor will run and ask the user to determine the outsourcing policy 

that the user chooses. Once that is determined, then the network monitor gets involved to 

determine the feasibility of outsourcing (if there is no network connection to a surrogate, then 

outsourcing will not occur. Once the feasibility is determined, applications either run in energy-

saving mode, or they will run in normal mode. 
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Figure 2. Steps for executing a client program under the outsourcing framework 

Using our model, we envision the development and creation of an entity called a computation 

service provider (CSP). Different mobile users would subscribe to the CSP in order to service 

their energy-needs. The subscription will be by registering a copy of the server of the energy-

aware application with the CSP. Whenever the user is within the proximity of (in the pervasive 
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smart space containing) the surrogate machine containing the server code, it would be possible 

for the client to outsource code to the server located on the surrogate. The outsourcing takes 

place by the client communicating its data to the server, let the server process the data, and then 

the client will get the results back. 

B. Formal Model 

When dealing with research that targets computation outsourcing via a distributed computing 

system, you have to consider grid computing as it is a new model that has a great potential in 

benefiting this type of research. In looking into grid computing [12] and [23], it looks like it 

would be a good model for our system on a much smaller scale, and therefore we defined our 

formal model to be based on one that was presented in the grid computing. Nemeth and 

Sunderam [26] presented a formal approach for defining the functionality of a grid system. Their 

approach started by defining distributed systems and showed how a grid system differs from the 

classic distributed system environment. Our model is a much more simplistic model than that 

they presented. Our model has a limited number of resources, and a limited number of processes. 

The resources in our model are the wireless network (WiFi) and the surrogate device. Our two 

processes are represented by the client and by the server versions of the original code. The model 

presented is based on an abstract state machine (ASM). 

In looking at their model, we realized that their model encompasses a general description of 

grid and distributed systems. Our model is a simplified representation of theirs. In our model, we 

define the process universe as PROCESS = {client, server}, the resource universe as RESOURCE 

= {wireless_net, surrogate}, and the location universe as LOCATION = {within-range, out-of-

range}.  We use the same functions used in the grid and distributed computing domain, and add 

two of our own functions which are: execCost: TASK → VALUE, and comCost: TASK → 
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VALUE, where execCost is a function that produces the value of the energy consumed by a 

specific task of a process. Similarly, the comCost produces the value of the energy consumed by 

communicating the data for a specific task of a process. 

As far as the functions that we use from grid and distributed computing are concerned, we use 

the same exact definition presented by Nemeth and Sunderam [26]. The following functions are 

defined: 

• user: PROCESS → USER 

• request: PROCESS × RESOURCE → {true, false} 

• uses: PROCESS × RESOURCE → {true, false} 

• loc: RESOURCE → LOCATION 

• CanUse :USER × RESOURCE → {true, false} 

• state: PROCESS → {running-normal, running-energy-saving, receive-waiting}, we 

modified this function to fit our execution framework. 

• from: MESSAGE → PROCESS 

• to: MESSAGE → PROCESS 

• event: TASK → {req-res, send, receive, terminate} 

Upon defining the above functions, and universe sets, the rules for defining our system as a 

simplified grid computing system can clearly be defined. We present definitions of the rules 

system in figure 3.  

IV. COMPILE-TIME STRATEGY 

Our compiler optimization technique for low energy analyzes a source program at the three 

different levels of representation (high, intermediate, and low). At the high-level, we collect 

information about the data involved in each loop. At the intermediate level we utilize an 

algorithm described by Healy et al. [17] to find out the number of loop iterations. The reason this 

is an intermediate level analysis is because they analyze the register transfer list (RTL) [6] 

representation of the source code. At the low level, we determine the machine instructions 

generated by an assembler to determine which instructions are getting executed within each loop. 
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All of the three levels of source code analysis are embedded in our algorithm. 

A. Overview 

This new compilation technique utilizes pre-existing utilities such as the gcc compiler and 

Metrowerks’ assembler and compiler. We first pass the code that needs to be compiled to the gcc 

compiler to make sure that it is syntactically correct, once that is done, we remove the resulting 

machine code as it will not be needed. Then we pass the same source code through our  



 13 

 

Figure 3. Rule definitions for the formal model. A) The resource selection. B) The send rules. C) The receive 

rule. D) The state transition rule. 

optimization preprocessing, along with the assembly code generated from passing the original 

source code through the Metrowerks’ assembler, to generate the two versions of the code, the 

client and the server. Once the client and the server codes are generated, then the server is 

compiled for the target server machine, and the client is compiled for the mobile device. In our 
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environment, the client is compiled using Metrowerks’ Codewarrrior, and the server is compiled 

on a Linux machine using the gcc compiler.  Figure 7 shows the process for optimizing a C 

program using our technique.  
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Figure 4. Overview of compilation and optimization process 

B. Energy-Optimization Process 

Our optimization technique modifies the high-level code (the C source code). The input to this 

process is a file containing the source code, and a file containing the assembly representation of 
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his source code. Using the source code program, we determine the number of loop iterations, the 

size of the data involved in the loop execution. Then we determine, using the assembly 

representation (low-level representation) of the program, the instructions involved, and we 

calculate the total energy cost for all of the instructions using the energy cost of each individual 

instruction. In addition to the machine instructions we handle also library functions (such as the 

math and standard libraries) called within each loop. The energy cost of each individual 

instruction was calculated using a methodology similar to that presented by Tiwari et al. [35], 

and we give an explanation of this in our experimental validation. We calculate the energy cost 

for library functions in a similar manner to that of the machine instructions. Also, we had already 

measured the cost of transferring one byte of data using our wireless card. Given all of these 

metrics, we were able to insert socket code within our source program and conditional statements 

to determine at runtime if it is more energy-beneficial to outsource a candidate section of code 

(basic program block/loop) or to execute it locally on the mobile device. 

1) Calculating the Number of Loop Iterations 

Healy et al. [17] developed a useful utility for predicting the worst-case execution time 

(WCET) of a program. They provided us with the software that will accomplish this task for C 

programs. Their algorithm is part of implementing a static timing analyzer for analyzing real-

time systems, as predicting the number of loop iteration is essential for analyzing real-time 

systems. Their approach automatically bounds the number of loop iterations.  They handle nested 

loops, and loops with multiple exits. Their methodology is implemented by analyzing the register 

transfer list (RTL) [6], which is an intermediate representation of the source program. 

First, they identify the branches that can affect the number of times the loop executes. 

Secondly, they calculate when each branch can change its direction. Third, they determine when 
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each iteration branch can be reached.  Finally, they calculate the minimum and maximum number 

of each loop’s iteration. If the loop invariant is a non-constant, for the purposes of the timing 

analyzer they are implementing, they allowed the user to input the minimum and maximum 

values for this variable, and that is not needed for our compiler optimization technique, as our 

methodology supports non-constant loop invariant as, at runtime, its value will be known, and we 

can use a formula involving the invariant to be multiplied by the cost of executing each loop once 

(the energy cost) which gives us as a formula that is easily evaluated at runtime to determine if a 

section of code should be outsourced. 

Their implementation is integrated in the implementation of the Very Portable C Compiler 

(vpcc) introduced by Benitez and Davidson [6]. The input to the modified vpcc (we will refer to 

it as vpcc) is a source program with a “.c” extension, and the output is a set of files, only one of 

which is of interest to us, and that is the file with the same name as the source program, except 

with a “.inf” extension (the INF file). The INF file contains information about the maximum and 

the minimum number of loop iteration, and we are only interested in the maximum number of 

iteration in our research and that is because we do not want to under-estimate, we want to 

outsource with a high degree of certainty that a benefit will be gained from outsourcing. In figure 

5, we give a sample C program that can be compiled with vpcc, and by passing certain switches 

to it an INF file (Figure 6) will be generated. 

2) Loop Data and Iterations Acquisition 

The first stage of our technique is to recognize the maximal basic program blocks (most likely 

these blocks will be loops). These basic program blocks (loops) will constitute the opportunity 

for optimization (candidate code for outsource-ability). Once these basic program blocks are 

recognized at the high-level, then we collect all the data elements associated with them, and 
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main()
{

  int i, j;

  for(i = 0; i < 100 - j ; i = i + 3) {;}

}

 

Figure 5. Example of C program passed as input to vpcc 

 

-3

main

! loop 0 0 1 1 -1 -1 1 2 3 4 -1 4 -1

! loop 1 1 -4 r[10] 0 r[9] 3 s -2 (100-.1_j-2)/3 (100-.1_j-2)/3 -1 -1 3 -1 3 -1

! block 1 lines 5-5 preds -1 succs 2 4 -1

makes_unknown 3 -1

doms 1 -1

1 82 4 0 8 7 () 1024 7 (100) 8 4 (%o1)
1 90 4 0 8 4 (%o1) 8 4 (%o3) 8 4 (%o1)

1 90 7 1 1024 7 () 8 4 (%o1) 8 7 ()

1 62 4 2 2048 4 () 0 0 () 0 0 ()

1 82 4 0 8 7 () 1024 7 () 8 4 (%o2)

! block 2 lines 5-5 preds 1 -1 succs 3 -1

makes_unknown 3 -1

doms 1 2 -1

2 32 4 0 8 4 (%o2) 1024 7 (3) 8 4 (%o2)

! block 3 lines 5-5 preds 3 2 -1 succs 4 3 -1

doms 1 2 3 -1

3 90 4 1 8 4 (%o2) 8 4 (%o1) 8 7 ()

3 74 4 2 2048 4 () 0 0 () 0 0 ()

3 32 4 0 8 4 (%o2) 1024 7 (3) 8 4 (%o2)

! block 4 lines 5-5 preds 1 3 -1 succs -1

doms 1 4 -1

4 80 4 0 128 4 () 8 7 () 0 0 ()

4 15 4 0 0 0 () 0 0 () 0 0 ()

 

Figure 6. Resulting INF file for the program in Figure 5. The boldfaced expression represents the maximum 

number of loop iterations 

determine the beginning and end file positions of these loops. Additionally, we pass the relevant 

sections of the original source code to the program that calculates the number of iterations for 

each loop. 

The first part of this stage is to implement a parser-like module (we call it the pseudo-parser) to 

recognize basic program blocks, collect the data used within each loop, and identify what 

variables are R-valued (do not change), and what variables are L-valued (change). We did not 



 18 

need to implement a full parser here as the syntax has already been checked before entering this 

stage of the algorithm. In addition to acquiring the data elements involved in the calculation of 

each loop, we also determine which C library functions have been called to determine the 

contribution of their energy cost to the execution of the loop. Additionally, we determine if 

certain loops are not outsource-able. All loops that involve Input/Output (I/O) routines are 

designated as non-outsource-able. This holds true also for those loops that include nested loops 

with I/O functions. 

The second part of this stage is to figure out the number of loop iterations and associate each 

number with each loop calculated by the pseudo-parser. The algorithm to do this is a very simple 

one. This algorithm is implemented using a very simple parser that parses only the lines that 

contain the minimum and maximum iterations for each loop in the INF file. Once it extracts the 

expression representing the maximum number of iterations, it cleans it up by removing any extra 

characters such as those in figure 6 where the expression is “(100-.1_j-2)/3”. This particular 

expression is unique also as it contains a ‘/’ which could be problematic as if everything used in 

the expression is an integer then at runtime, integer division might happen, and therefore after we 

remove the substring “.1_” from the expression and if we recognize the division operator, we 

insert the typecasting “(double)” right before it. Hence, the resulting expression is “(100 – j – 2) 

/ (double)3”. 

3) Calculating the Size of Loop Data 

The next stage is to calculate the data size for each loop. In this stage, we examine each 

variable involved in the loop, and based on the size of the variable in bytes (including arrays), we 

add the value to our sum to calculate the size in bytes. Additionally, if the variable is an L-value 

(changes), then we add the size of the variable to our sum for the L-valued variable. This is a 
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very important aspect of this algorithm, as if the data does not change, we only need to 

communicate it to the server, and we do not need it back, but if it changes, then we will expect it 

to be sent back to the mobile device. This way, we can minimize the amount of communication 

needed. Additionally, we check if the loop contains other loops, and if so, then we collect the 

variables of the nested loops only if these variables have not already been collected by a parent 

loop.  

At this point, we have the data size for each loop which when multiplied by the cost to 

send one byte of data gives us the total cost to send all the data within the loop added to the cost 

to receive all the L-valued data within the same loop. 

4) Identifying Loop Instructions and Total Loop Execution Cost 

Using the assembly code representation of the source program, we can recognize loops within the 

assembly code. The target architecture (Xscale) has a unique way of identifying loops. Loops can 

be identified by three consecutive instructions, the first of which is the compare instruction 

“cmp”, followed by a conditional branch “ble, blt, bge, bgt, bne, beq”, followed by an 

unconditional branch. “b”. The unconditional branch is quite useful in this regard as it sends the 

control outside of the loop, and all we have to do is to go to that branch location, and find the 

other unconditional branch that completes the loop and returns us back two instructions before 

the “cmp”. This way we are able to identify or rather delimit where the assembly code for each 

loop starts and where it end. However, when loops are nested, we need more information to be 

able to map loops at the assembly level with those at the high level. The additional information 

needed is available in the structure containing information about all the loops (we call it the 

“loopdata” data structure). The information needed here is which loop is nested with which loop, 

and that information was obtained via our pseudo-parser. 
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Once each loop was delimited, then it was just a matter of going through the instructions 

that constitute the loop, and adding their pre-measured energy cost. In addition to the cost of each 

instruction there is a cost for pipeline stalls. This cost was obtained experimentally using 

multiple instruction sequences once the cost per instruction was determined. Therefore, when we 

recognize that certain instructions precede others (e.g., str before an ldr), we add the measured 

pipeline stall energy cost. This calculation gave us the cost of a single execution of the loop. At 

this point, we have all what we need to be able to produce the resulting client and server. The 

total loop execution cost becomes a matter of multiplying the cost of a single execution by the 

formula representing the number of loop iterations calculated before.  

5) Insert Outsourcing Code 

The implementation of this code was very large, but it was not difficult. As our pseudo-

parser generated for us information of where each loop begins and where it ends. The location of 

where we need to generate the necessary C code to create a client/server based application 

becomes a matter of inserting the necessary include files, and variable declaration (we declared 

them globally). The outsourcing code is only inserted for those loops that are flagged outsource-

able. 

V. RUNTIME SUPPORT 

Here we present the two monitors used as runtime support for the outsourcing mechanism. The 

two monitors work together and they get executed based on the user preference and the battery 

condition. The attractive property of these two monitors can be summed in the fact that most of 

the time they are not consuming any energy. In fact, they consume very little energy when they 

are doing any work. The way these two monitors work depends on the user preference in the first 

place, and once that has been determined, the condition of the battery of the mobile device takes 
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control of the decision making process. These two monitors will run on the client mobile device. 

In addition to these two monitors, a server program will run on the surrogate device waiting for 

connections from the client. The battery monitor, network monitor, and the server will together 

establish the service detection within the wireless network. 

A. Battery Monitor 

The battery monitor gets executed either by the user or the operating system. This is also a 

decision to be configured by the user. The user chooses if he/she desires to run in energy-saving 

mode or in normal mode. If normal mode is selected, then nothing happens and the monitor exits. 

Otherwise, if energy-saving mode is selected, then the battery monitor will ask the user if the 

energy saving is to take place immediately, or it should wait until the battery gets below a certain 

limit. If energy saving is to take place immediately, then the battery monitor will immediately 

call the network monitor. Otherwise, the battery monitor will sleep (consuming a very negligible 

amount of energy) and periodically check the status of the battery by contacting the operating 

system. Contacting the operating system is a very trivial matter as it will only look at a file called 

“/proc/apm”, and extract the remaining percentage of the battery. Once it reaches the limit 

specified by the user, then will contact the network monitor that will complete the task of setting 

up the device in an energy-saving mode.  

B. Network Monitor and Surrogate Service Discovery Server 

Once the network monitor is called, it will send out a broadcast that will be only received by a 

network server that is providing any service for the client. This server will be running on the 

surrogate machine that is to service the client. Once the server receives the broadcast it then will 

establish a handshake with the client device and inform the device of its name, and that it is ready 
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for servicing the device and it supports outsourcing. At that point, the network monitor will 

create a configuration file that is to be opened by the application to determine if it would run in 

energy-saving mode, or normal mode. If any type of error occurs on the way to creating this file, 

the file will not be created, and hence there will be no energy-saving mode. 

At runtime the client application will start running and checks if the energy-saving file exists, 

and if so, then extract the information about the server from it, establish the connection, and 

execute in energy-saving mode, otherwise, execute in normal mode. 

VI. EXPERIMENTAL VALIDATION 

Our measurements, and experiments were done in two stages with our platform setup. The first 

stage was to estimate as accurately as possible the cost of each supported machine instruction 

(assembly instruction). Secondly, the second stage is to measure the cost of each benchmark, first 

without our optimization, and second with our optimization.  

A. Setup 

Our target architecture is an Intel Xscale which is an integral part of the Intel PCA. We chose 

the Sharp Zaurus SL-5600, which contains an Intel Xscale PXA-250 processor, and is running 

Linux, as our mobile device. Installed on the Zaurus, is a Socket’s low-power wireless LAN card. 

The outsourcing server is an Intel x86 machine running RedHat Linux 7.2.  

Developing applications on the Zaurus was achieved using Metrowerks Codewarrior for the 

Sharp Zaurus. This software comes with a packaged executable to run on the mobile device only 

during development to be able to debug and/or execute the application on the Zaurus from a 

Microsoft
 
Windows where Codewarrior is installed. The software is called MetroTRK (Target 

Resident Kernel). We use MetroTRK to transfer executables to the Zaurus via our wireless 
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network at the Harris Mobile Computing Laboratory at the University of Florida 

(http://www.harris.cise.ufl.edu). This Microsoft
 
Windows machine on which Codewarrior is 

installed also happened to be the same machine on which we record our measurements.  

For measuring the energy consumed, we used an Agilent 34401A multi-meter which was 

connected to a Microsoft
 
Windows 2000 desktop computer via an IEEE488.1 General Purpose 

Interface Bus (GPIB) cable. Installed on the desktop is Agilent’s Intuilink plugin which works 

with Microsoft Word and Excel. We used Excel because its plugin allows for multiple readings 

as opposed to Word’s single reading. The multi-meter has two J-hooks that were placed in series 

between the AC adapter and the Zaurus to place the multi-meter in series to measure the total 

current drawn by the Zaurus. The voltage coming from the AC adapter remained at a constant 5 

volts. Therefore, the only for as two factors in the energy equation are the current drawn and the 

time in seconds as energy is given by the equation: 

E = V * I * T 

Where E is the energy consumed, V is the voltage, I is the current, and T is the elapsed time. 

To measure the energy consumed by either a running process on the Zaurus, or by data 

communication, we calculate the difference between the current drawn when the Zaurus is idle, 

and when the Zaurus is either running a process or sending/receiving data. To make this as 

accurate as possible, the only application that we ran on the Zaurus was the Linux Terminal. We 

also turned off the light of the Zaurus LCD. These measures that we took, and as our experiments 

show, resulted in a constant current drawn by the Zaurus while idle, which gave us the ability to 

get good measurement with as little sampling noise as possible. The multi-meter only allowed us 

to take samples at one tenth of a second. Therefore, we had to execute code that consumes 

enough time to allow accurate a measurement as can be obtained. 
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B. Instruction-Level Energy Cost Estimation 

Before applying our optimization to source code, and besides knowing what machine 

instructions were used, we had to know the energy cost for each machine instruction involved. 

Our work targeted only a subset of instructions from the Xscale architecture, which was 

sufficient to testing our benchmarks, and by no means is that a limitation of our approach. 

We used a methodology similar to that described by Tiwari et al. [35] to estimate the cost of 

each instruction. The methodology suggested executing several instances of a single machine 

instruction within a loop and average the energy consumed to obtain the per instruction cost. 

Figure 7 shows a small C programs which when executed gives a good estimate of the energy 

consumed by an empty for loop. Figure 8 shows a second C program that gives a good estimate 

for the load instruction (LDR), which loads a memory location into a register. Notice, to 

minimize the affect of the instructions that execute the loop header (as the loop body is the 

several occurrences of the load instruction) we used a register loop control variable. The ability 

to declare register variable in a language like C made it very possible for us to be able to isolate 

single instructions which enhanced the accuracy of our estimation. 

In order to minimize the effects of the cache, and to better estimate inter-instruction energy 

consumption, we developed additional benchmarks that include multiple instances of a series of 

different instructions (e.g. ldr followed by str) and we observed their behavior, and recording the 

amount of additional energy consumption recorded, and used these metrics in our code to update 

the instruction-level energy consumption values calculated before. In addition to minimizing the 

effect of caching the instructions, our benchmarking of each instruction, also, estimated the effect 

of the pipeline data hazards involved in the execution of each instruction. 
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C. Measuring Communication Cost 

To measure communication cost per byte, we wrote small UNIX socket programs that sent 

data back and forth to a server, and our results confirmed the card statistics that were mentioned 

on the datasheet of our wireless LAN card. The data sheet suggests that this card is active 90% of 

the time transmitting at 265 mA and receiving at 170 mA. 

main()
{

  register int i;

  for(i = 0; i < 100000000; i++)
  { ;}

}

 

Figure 7. The C program used to estimate energy cost of an empty for loop (executing 100M times) 

 

main()
{

  register int i;
  registerint x;
  int a, b, c, d, e, f, g, h, m, n;

  for(i = 0; i < 100000000; i++)
  { 
    // repeat 10 time the following 10 statement
    // each line represents an ldr instruction

    x = a;       x = f;
    x = b;       x = g;
    x = c;       x = h;
    x = d;       x = m;
    x = e;       x = n;

  }
}

 

Figure 8. The C program used to estimate the energy cost for the ldr instruction 

D. Simple Experimental Validation 

To test the effect of our approach on energy, we implemented three different simple 

benchmarks that span three different formations of data and execution complexity. The first of 
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which was the Fibonacci loop, which contains constant data, but it executes in O(n) time. In other 

words, the size of the data remains constant, while the execution changes with n, where n is the 

number to which we are trying to calculate the Fibonacci number. Due to the sampling limitation 

of our multi-meter, we had to test this 3 times using 3 large numbers to get more accurate results 

of our measurements. We performed the testing using the numbers, 100000, 200000, and 

300000. Another benchmark that we used was a rectangular version of the bubble-sort loop 

which executes in O(n
2
) and the data size is linear. So, as the data size grows so will the 

computation complexity. We sorted 10000, 20000, and 30000 integers. The last benchmark that 

we used was a square matrix multiplication loop, which runs in O(n
3
) where n is the number or 

rows and the number of columns of each matrix. For matrix multiplication we used a 200x200, a 

300x300, and 400x400 matrices. 

Each one of the benchmarks was executed on the Zaurus before our optimization and after 

our optimization. We estimated the energy saving for the Fibonacci calculation and the matrix 

multiplication to be between 60% and 88%. However, one interesting observation in our testing 

was the bubble-sort loop. The smallest energy saving was 98% for sorting 10,000 integers. This 

result is well expected due to the fact that compared to the amount of computation involved in 

bubble-sort, the size of the data is very negligible.  

E. Large-Scale Benchmark Validation 

To show the benefits of our approach, a more realistic benchmark had to be developed to show 

that this approach has more meaningful and potentially industry-utilizable benefits. Some of the 

most computationally intensive computations are those involved in generating an image 

representing a 3-D graphics scene. To generate a 3-D graphics scene, the input and output of the 

program are extremely non-expensive processes, as even more complex scenes can be described 
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with a virtually small amount of data. Also, the output is always a 2-D Image. But to get from a 

3-D description of the scene to a 2-D Image depicting the scene, a huge amount of calculation 

has to be done. In this benchmark, the size of the data is O(n
2
) and the order of the computation 

is also O(n
2
). However, the amount of constant calculation within each iteration, is huge when 

compared to the amount of communicating each unit of data involved in the computation. Our 

experimental results show a significant amount of energy saving for generating a scene by ray-

tracing 3 spheres of different sizes and colors in space to generate 3 different images of 50x50, 

100x100, and 200x200. Figure 9, shows the input data passed to the ray-tracing process and 

figure 10 shows the image produced. 

The input to the ray tracing application is quite a simple input composed of a few floating 

point numbers. These numbers represent the description of the world composed of: the observer, 

the light source, and the parameters describing three spheres in space.  

200 200

.1

200 200

4 4 4

.8 .8 .8

4 4 4

0 0 0

1 1000

5 5

3

0.1 0.1 0.1 0.3

.5 .4 .3

1 .8 1 10

0.5 0.5 0.8 0.2

.3 .4 .2

1 .8 1 10

0.2 0.8 0.5 0.1

.4 .3 .5

1 .8 1 10

 

Figure 9. Input file for the ray tracing application. 
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Figure 10. The 2-D image representing the 3-D scene generated by the ray tracing application for a 200x200 

image. 

We did our experiments on various sizes of data and we generated a 50x50 image, a 

100x100 image, and a 200x200 image for the same scene. The amount of computation was so 

large that in all three cases, the computation was outsourced. Figure 11 shows the results of 

comparing local execution vs. remote execution for the 200x200 image. 

VII. RELATED WORK 

Prolonging battery life (often called energy management) has long been the focus of research. 

This problem has many facets, which can be faced by addressing the various components of a 

mobile computer system. In [1] we authored a book chapter on power-management techniques. 

These techniques include reducing energy at the system-architecture level, by targeting 

(reducing) various components of the power equations (P=CV
2
f), where P is power, C is 

capacitance load, V is supply voltage, and f is switching frequency. Other techniques targeted the 

operating system by saving energy involved in communication, by caching, by process 

scheduling, and by having an energy manager.  Additionally, we presented software techniques 

grouped into two categories: specific application techniques, and compiler-based techniques. 

These software techniques (like those targeting the operating system) are considered higher-level 
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power-management techniques. Solutions that target energy management usually involve some 

kind of a tradeoff.  
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Figure 11. Local vs. remote execution for the ray tracing application of a 200x200 image. A) Histogram for 

current drawn during local execution. B) Histogram for current drawn during remote execution. 

As far as energy management is concerned at the hardware and architecture levels is 

concerned, a few developments have been introduced. Smart battery systems were introduced to 

perform intelligent power drainage (http://www.sbs-forum.org/specs/index.html). In addition to 

batteries, energy-aware processors were also introduced. Various companies introduced their 
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solutions to in the form of energy-aware processors. Intel introduced the Xscale processor 

(http://www.intel.com/design/intelxscale), and earlier they shipped their Pentium III with the 

SpeedStep technology (http://www.intel.com/support/processors/mobile/pentiumiii/ss.htm). 

Transmeta Corporation has the Crusoe family of processors 

(http://www.transmeta.com/crusoe/index.html). Additionally, the ARM family of processors is 

widely popular, and is geared toward reducing power consumption while maintaining a high 

level of performance (http://www.arm.com).  

Reducing any of the variables involved in the power equation will reduce the energy and power 

consumed. Capacitance load, frequency, and voltage can be managed at the hardware and 

architectural level. Voltage and frequency scaling have been targeted in [19]. However Smit and 

Havinga [31] argued that reducing voltage indicates reducing performance, therefore additional 

hardware is needed to balance it out. Capacitance load reduction was also targettedin [14], and 

[33]. Hardware solutions augmented by compiler support was also done in [4], and [37] by 

adding additional caches. 

As for operating system solutions, advanced power management (APM), an more recently 

advanced configuration and power interface (API) have been quite useful in energy management. 

Additionally, secondary storage (disk) access is very expensive. Therefore, the lower the 

frequency of disk access is the better it is for energy. Therefore, making fewer incorrect file 

predictions is a good methodology to save energy [38]. Also, energy saving communication 

techniques are getting increasingly important. Managing communication devise was done in [21]. 

In [24] a solution was provided for application-level energy management that can be easily 

utilized also at the operating system level. Energy-aware scheduling via monitors was also 

introduced in [5].  
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The case for higher-level energy management was made by Ellis in [8]. Therefore addressing 

energy management at the high level is quite an attractive solution. The solutions for higher-level 

energy management include both application-based solutions, and compiler-based solutions. 

Research and experiments have shown that, with the exception of loop unrolling, and function 

inlining, compiling for performance does not imply compiling for energy [36]. In [34] a few 

techniques for energy management were introduced. These techniques were proposed to target 

reduction in frequency of logical state transitions, reordering instructions by utilizing a power 

metric as opposed to the performance metric suggested in [3], and in [13]. Other compiler-based 

techniques were introduced in [25], and [29]. Also the work done in [27] migrates the 

compilation process to a server to save energy. In [22], the work that is closely related to our 

work was presented, where they perform remote task execution based on the cost of 

communicating the data. However the work targets specific tasks based on checkpoints that 

delimit the tasks. 

Flinn and Satyanarayanan [10], demonstrated a collaborative relationship between operating 

systems and applications to meet user-specified goals for battery life. They used PowerScope 

[11] to validate the measurements of energy consumption for accurate estimation.  

As far as the applications are concerned, Haid et al. [16] developed an excellent application 

with energy awareness in mind. This work presents designing an energy-aware MP3 player. 

Additionally, Yuan et al. [39] investigated another multimedia application with respect to power-

awareness. They present a middleware framework for coordinating the adaptation of multimedia 

application to the hardware resources.  

In addition to previously mentioned Powerscope [11], other research has been done to estimate 

energy for certain applications, systems, and devices. Cignetti et al. [7] described an energy 



 32 

model for the Palm.  

VIII. CONCLUSION AND FUTURE WORK 

Our experimental evaluations showed that computation outsourcing within a pervasive 

computing smart space has a great potential in energy management. By exporting CPU 

processing into the network, the mobile device was able to deliver the expected functionality 

while consuming less energy and lasting for a longer period of time. Therefore, communication 

should not be viewed as a drain on the battery, but as an opportunity to save energy.  

We found that the research done in the domain of real-time systems is quite useful as its aim is 

always knowing as much as possible about an application before runtime (e.g., compile-time). 

The reason for that in real-time systems is to execute programs to finish within a deadline. 

However we believe that the limitations of the utilized methodology which are represented in the 

inability to handle non-counter-based loops, such as those loops that are pointer-based, logical-

expression based, and some non-rectangular nested loops, raise the need to investigate other 

computer science disciplines, specifically automated software verification. 

While the work done in the area of automated verification for loop invariant generation is not 

quite mature enough, it has a great promise to be combined with the utilized real-time systems 

methodology to generate accurate estimates for the number of loop iterations. We will investigate 

the research done in this area to determine the extent of its applicability in our work. Specifically, 

we will look at the work done by Pasareanu and Visser [28]. We believe that, when combined 

with the methodology we utilized for determining the loop iterations, the area of loop invariant 

generation will be quite beneficial to our research.  

As part of our future work, we will continue the implementation of the client/server version 
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that we have already started. However, this implementation will contain additional support for 

dynamic memory allocation and subroutine-level computation outsourcing. In addition, work 

needs to be done to evaluate a more accurate communication cost. This part will be an ongoing 

part of the research as we utilize additional outsourcing techniques. In addition, we will continue 

to identify specific applications that will benefit from our approach which will be a refinement of 

defining categories of application areas that we believe will benefit from this approach. 

To handle multiple platforms, targeting languages such as Java and C++ will be necessary. 

This will require porting a compiler to handle both languages while augmenting with the code 

that we obtained to calculate the number of loop iterations. Additionally, as we will support 

additional types of basic program blocks we will build the compiler support that will handle 

estimating total execution cost of these basic program blocks such as additional types of loops 

than those supported so far, recursive functions (inherently these are loops), library linked 

functions whose energy consumption is predefined, and functions defined within the code. 

Additionally, we will investigate in the case of non-Java languages, the possibility to be able to 

cross-compile them for the most popular mobile devices. 

In this research, we assumed that if a basic program block (loop) contained an I/O operation, it 

is determined as non-outsource-able. However, in our future work we will be looking at 

opportunities where I/O operations may be performed elsewhere. For input operations that 

involve files, if the file exists elsewhere, then it could be energy-beneficial to read the file on a 

remote machine, and utilize its contents remotely. Similarly, if producing the output elsewhere 

and basically all we are interested in is a display of this output which maybe cheaper than 

displaying the output locally, then that is another opportunity that needs to be investigated.  

Identification of the applications, which contain the computationally expensive basic program 
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blocks, is an essential part of this research. We will investigate and research the different types of 

basic program blocks that fall into this category and test them and provide them as benchmarks 

for our research. In addition, we will build the support for other useful applications that will 

benefit from our approach. 

Java remote method invocation (RMI), and remote procedure call (RPC) based systems will 

also be applicable in our research where we will let the system make the necessary data 

communication according to its policies and that will benefit our approach especially at the level 

of outsourcing specific functions, and subroutines. These two systems are utilized in grid 

computing environments. 

We will weigh the benefits of every outsourcing mechanism with each type of basic program 

block we investigate, and investigate which mechanism allows us to save more energy with a 

basic program block. This will lead to a hybrid approach where a single application may contain 

one, two, or three outsourcing mechanisms. 

Also, as far as service discovery is concerned, we will investigate a lighter version of some of 

the well-know service discovery systems like UPnP (http://www.upnp.org), and Jini 

(http://www.sun.com/software/jini). We believe that these systems can be utilized without 

spending a large amount of energy as the inclusion of the intelligence in the modified program. 
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