
Reactive Programming Optimizations in Pervasive Computing
Chao Chen, Yi Xu, Kun Li and Sumi Helal
Mobile and Pervasive Computing Laboratory

Computer & Information Science & Engineering Department
University of Florida, Gainesville, FL 326011, USA

{cchen,yixu,kli,helal}@cise.ufl.edu
www.icta.ufl.edu

Abstract—Pervasive computing systems are begging for
programming models and methodologies specifically suited to
the particular cyber-physical nature of these systems. Reactive
(rule-based) programming is an attractive model to use due to
its built-in safety features and intuitive application
development style. Without careful optimization however,
reactive programming engines could turn into monstrous
power drains of the pervasive system and its sensor network.
In this paper we propose two optimizations for reactivity
engines. The first, which we prove to be optimal, assumes all
sensors in the space are equally important to the application.
The other, which is adaptive, employs and estimates a
probability for each sensor based on application usage. Both
optimizations use a mixed push/pull approach to achieve
optimal or near optimal energy efficiency. We present an
experimental evaluation of the two algorithms to quantify their
performance over a range of parameters.

Keywords-rule based processing; reactivity engines;
programming models in pervasive spaces; optimization;
perfromance

I. INTRODUCTION
Establishing new programming models especially suited

for pervasive spaces is crucial to the effectiveness and
robustness of the development process and the manageability
of the space through its entire life cycle. Such new
programming models are also needed to improve the
programmers’ productivity by defining the precise role and
scope of the programmer within other roles specified by the
model.

While many early research projects in pervasive
computing highlighted novel applications, they typically
required ad hoc programming efforts to create highly
customized software. Such efforts were merely system
integration efforts rendering rigid systems that are difficult to
change or re-program.

Recently, more researchers started to explore various
methodologies and concepts to enable and define more
usable programming models for pervasive spaces. For
example, [1] and [2] created a database abstraction for
pervasive spaces which allows programmers to access
physical objects and their attributes in a query-like syntax.
While query is a powerful tool for retrieving information
from sources such as sensor data streams, they lacked
actuation support. The work in [3] and [4] utilized a context-
based view of the pervasive space in which actions and
behaviors of a system are directly driven by contexts.
However, compared to query processing, the computational

burden of context inference and reasoning raises critical
implications of performance. Besides, neither model has
addressed the issue of interoperability.

A more recent breed of programming paradigm [17]
based on the Service-Oriented Architecture (SOA) has
enabled a new programming environment allowing semi-
automated integration and interaction among various system
components, which are represented as services. The service-
oriented device architecture (SODA) model focuses on the
services provided, rather than the sensor data streams or
active contexts of the environment. Services are stackable.
So simple services can be composed together and form into
more complex services.

We have developed a reference implementation of
SODA (Figure 1.), which features the Atlas sensor platform
– a platform similar to the Berkeley mote but different in its
explicit support to externalized programming through the
service oriented model. The reference implementation
consists of the Atlas sensor platform and a two-pronged
middleware known as the Atlas middleware. As such, our
implementation combines hardware nodes (sensor platforms)
and firmware running on the hardware, with a software
middleware running in the network to provide services and
an execution environment. Together these components allow
virtually any kind of sensor, actuator or other more complex
devices to be integrated as software services into a common
data/services bus. Since the Atlas middleware enables
service composition and gracefully handles situations when
services are updated, created and aborted, a programmer
simply needs to find the proper services and arrange the
service method calls to create an application.

We have applied the Atlas service-oriented programming
model in several research project developments including the
Gator Tech Smart House (GTSH) [16], which is a real-life
deployment of an ambient assisted living space. One lesson
we learnt from our deployment in the GTSH is that SODA is
a great model but has two critical limitations.
• First, SODA tends to overpromise the capabilities of

services by overlooking and hiding their inherent
limitations. While service interfaces abstract away
unneeded information on internal details of the service,
it also blinds the programmer from “seeing” critical
information such as the physical limitations of a device,
sensor or actuator. Therefore, the opacity of a service
interface creates risks for service misuse that could lead
to what we call “unsafe programming”.

• Second, SODA encourages a free and unrestricted style
of application composition over available device

services. While this is a powerful capability to the
programmer, it may lead to unpredictable behaviors in
the pervasive space when the applications are deployed.
In theory, a programmer can select any set of services
from the service pool and connect them to form an
application. Service methods can therefore be invoked in
any order. Clearly, such lack of constraints on service
composition may unintentionally but adversely cause
conflicts and contentions among the various services.
This could create a potentially enormous state space of
the system and opens up possibilities for states that are
undesirable, unpredictable or even impermissible. It is
therefore important to refine the SODA programming
model into a more controlled and constrained model that
does not compromise the overall system operation while
taking advantage of the benefits of service orientation. �

Based on the lessons learned and the SODA analysis

briefly described above, we have developed a rule-based
model extension to bring about control and intentional
restrictions. We refer to this model as event-driven SODA
programming model or E-SODA. In this model, application
logics are represented by a set of rules, each of which
follows a typical Event Condition Action (ECA) structure.
By constantly checking on sensor readings and updating rule
evaluations, the pervasive system listens to certain events in
the space and responds to them by taking specific prescribed
actions. Compared to pure SODA, this extension model
enables a streamlined and constrained way for program logic
formulation that is more stringent and less error-prone. In
addition, event composition creates a tighter programming
space than unrestricted service composition, reducing
possibilities of false, non-intentionally erroneous, or
impermissible executions in the pervasive space.
Furthermore, the rule-based nature of this extension model
encourages a centralized reasoning engine where conflicting
applications logics can be easily detected and resolved.

For the E-SODA model to work effectively in pervasive
spaces, its event processing must be optimized to take into
account the limitation on energy use by the sensor nodes and
the sensor network. If the model is applied without
optimizations, the constant evaluation of events and rules
would pose hefty computational burdens to the centralized
data sinks. Additionally, the continuous data sampling by the
sensor nodes and transmission through the network will
incur substantial energy cost to the entire sensor network. It
is therefore unthinkable to implement an event-driven model
such as E-SODA without a framework of relaxation that
provides meaningful opportunities for optimization to
minimize both energy and computational cost.

In this paper, we present the Atlas Reactivity Engine
(ARE), an implementation of the E-SODA event-driven
programming model within the Atlas architecture. We
briefly describe the Atlas architecture and show how the
engine extends the original service-oriented programming
model. Then we introduce two important components for
rule composition: the ECA grammar structure and a Time-
Frequency Modifier (TFM) operator that enables a per event
relaxation of rule evaluation. The relaxation is intended to be

specified by the programmer based on application and event
semantics. We describe the concept of optimal push-pull
envelope that guides our optimization approach, which
includes a static optimization algorithm (OPT-1) as a base
technique and an adaptive algorithm (OPT-2) that supports
dynamic sampling rate changes and exploits the opportunity
for short-cut evaluation. We prove the optimality of OPT-1
mathematically and show the performance gains of the OPT-
2 algorithm through an experimental evaluation study.

II. REACTIVE PROGRAMMING USING ARE

A. The Atlas Architecture
As Figure 1 shows, the Atlas reference architecture

[15][16][17] contains physical, sensor platform (node),
service and application layers. At the physical layer, a
variety of devices including sensors, actuators, and more
complex devices are deployed to monitor and control the
environment. All these devices are connected to the Atlas
Sensor Platform nodes in the sensor network. The service-
oriented Atlas sensor platform automatically integrates these
devices and represents them as service bundles in the service
layer. These bundles implement a uniform service interface
that abstracts away most of the physical details and helps
programmers to concentrate on the essential aspects of the
services that an object provides. At the application layer,
programmers can easily compose services and develop
applications using a SOA-based programming IDE (utilizing
the SODA model).

Figure 1. Atlas reference architecture featuring support for the SODA
programming model (through SOA-based programming IDE – top right

box) and for the E-SODA, event-driven extension model (through the Atlas
Reactivity Engine - top-left, highlighted).

This paper describes the Atlas Reactivity Engine (ARE),
which implements the E-SODA programming model. ARE’s
basic elements are rules defined over SODA services. By
specifying the events, conditions and actions, programmers
formulate rules that describe the desired/allowed behavior of
the space in various situations. To ensure the adherence to
these rules, the reactivity engine constantly checks sensor
data and evaluates the rules. When certain events happen and

!"#$%"$#&

!!"#

$%&'()*+,(#

!!"#

$%&'()*+,(#

!!"#

$%&'()*+,(#

-%.&,(&# /'+01+,(&#
2,3*4%5#

!%6)'%&#

/+41&#

7,$%#

-%.&,(#8%9# /'+01+,(#8%9# 2,3*4%5#!%6)'%#8%9#/+41&#

7,$%#

-%.&,(#8%9# /'+01+,(#8%9# 2,3*4%5#!%6)'%#8%9#
/+41&#

-%.&,(##

:41;,(3#

-%.&,(#8%9# /'+01+,(#8%9# 2,3*4%5#!%6)'%#8%9#

7%+<,(=#

>1.1?%(#
!!"#@0.$4%#

A%.%(1+,(#

@0.$4%#

8%*,&)+,(B#

/+41&#/:C#

!%6)'%#

-%(6)'%#

D+E%(#-%(6)'%#

D+E%(#-%(6)'%#

F%G#

C.+%(91'%#

H0%(B#:(,'%&&).?#
:E%.,3%.,.#!%+%'I,.#

J#K(1'=).?#
L)(+014#-%.&,(#

'(()*+,-."&

/,0$%&

1203*+,)&&

/,0$%&

4.5$&&

/,0$%&

D
-
A

)#
M
(1

3
%

<
,

(=
#

2,.N?0(1I,.#

>1.1?%(#

/+41&##

>)$$4%<1(%#

!%6)'%#

-%(6)'%#

2,.+%5+#

@0)4$%(#

-D/OG1&%$#:(,?(133).?#C!P##

!%6)'%#-%(6)'%#6$%7*+$3&/,0$%& D+E%(#-%(6)'%#

-%(6)'%#

2,3*,&%(#
-)3041+,(#

:1(&%(# D*I3)Q%(# 2,(%#P.?).%#

804%#2,3*,&)I,.#

C.+%(91'%#

/+41%1'I6)+B##

P.?).%#

a rule evaluates to true, corresponding actions (e.g. actuating
a device or invoking another service) will be taken to
respond to the event.

B. ECA: Grammar for Rule Composition
ARE follows an Event/Condition/Action paradigm in

which a set of rules are defined by the programmer,
registered, maintained and appropriately triggered as the
sensor data changes. ARE implements Events, Conditions,
Actions, Rules and Commands, as follows:

1) EVENT: An event is a logical expression over sensor

values. Formally, an event, E, is defined in equation (1). The
event defined in the first line represents an atomic event,
with value indicating the desired value of Sensor or [a, b]
indicating a desired range of Sensor values. The event
defined in the next line represents a composite event. The
operator + is intended as logical OR. The operator *, which
has higher precedence than +, is intended as logical AND.
The operator *seconds* is a modified AND operator in
which the concurrence requirement is relaxed. The right
operand event is allowed to take place up to “seconds”
number of seconds after the left operand event has occurred
(is evaluated to true).

E = Sensor(value) | Sensor[a,b]
E = E + E | E * E | E * seconds * E

 (1)

2) CONDITION: Conditions are intended as logical
expressions of variables local to the ARE. A condition, C, is
defined as (2). The same condition may participate in more
than one rule. Conditions are useful in debugging and are an
added trigger guard which adds safety to the coding process.

 C = {True | False} (2)

3) ACTION: An action is an invocation of one or more
methods belonging to one or several application or device
service bundles. An action, A, is defined as:

A = Service.method;
A = (A; A)

 (3)

4) RULE: A rule is a specific configuration of a
predefined event E, condition C, and action A, and is
therefore defined as (4), which means if Event E happens,
while condition C is true, Action A should be triggered.

 RULE = \ \ E,C, A \ \ (4)

C. TFM: a Time-domain Relaxation Operator
Since the working mechanism of ARE is rule-based, the

rate at which rules are evaluated determines the traffic of
sensor data within the sensor network. By default, each rule

gets evaluated continually and constantly. Although, this
default strategy guarantees responsiveness of the ARE
engine, as mentioned before, it is obviously unpractical due
to the heavy network traffic and sensor sampling.

Fortunately, application and event semantics offer good
opportunities for optimization and partial evaluations.
Semantically, some events are tolerant to time fidelity in
that they do not require frequent evaluation at all times. For
example, when monitoring room temperature, an air
conditioning system does not need to get temperature
reading at a very high frequency, since the rate of change of
room temperature is slow. In addition, an air conditioning
system may not need to monitor room temperature during
spring and fall.

Considering the above scenarios, we introduce the notion
of time/frequency modifier (TFM), a relaxation operator
intended to assist the programmer in specifying time
constraints or time relaxations in connections with EVENT.
The TFM is specified as follows:

 (5)

Where W is a time window in which the affected event
needs to be evaluated with frequency Fe. To incorporate
TFM into EVENT, the following modifier definition should
be added to EVENT:

 (6)

The significance of TFM is that it introduces a per event
time relaxation of event evaluation into ARE, which gives
us the opportunity to optimize the engine to achieve energy
efficiency.

D. Implementation
The overall architecture of ARE is shown in Figure 2.

An ARE command interpreter facilitates input of commands
from the programmer and output of confirmations and rule
trigger notifications to the programmers. The ARE engine is
a service bundle that registers new rules and their
components. It also serves as a trigger mechanism for actions
of “applicable” rules. It communicates with the Atlas
middleware services on one hand and the command line
interface service on the other hand. The ARE optimizer is at
the heart of the engine, constantly guiding its decisions and
operation. The “Rule Set” database contains all the rules
defined by the programmer. At startup, a rule execution
schedule table is generated by the engine. The actual
execution is governed by the initially generated table, current
state of the engine, and of course the optimizer and its
algorithms.

TFM W F

W

F

e

e

= < >

=

=

!

" "

#

$%& '()*+)%,*-'()*+)%,*)%,*-)%,*

./ 0*1.$'00 2*)3**$)3. 0411*00%5* *5(&4()%.$0

'()* 6 77+88+99

)%,* 6 :::;,,;00

�
Figure 2. Overall architecture of ARE.

III. OPTIMIZING THE REACTIVITY ENGINE

A. The Push-pull envelope concept
To acquire fresh sensor readings for rule evaluation, ARE

employs two alternative ways to communicate with the
sensor network: push and pull. The push mechanism allows
the engine to subscribe to a particular sensor for continuous
readings at a constant rate, while the pull mechanism enables
an on-demand style of data query to acquire readings one at
time. Each mechanism could be advantageous or
disadvantageous, based on the specific set of rules being
executed by the engine. When sensor data are needed at a
constant rate, pushing requires much less downlink traffic
since the engine subscribes only once, while pulling pays the
round-trip penalty for each data query. However, pushing
loses its edge when handling sporadic data needs, as a
subscribed sensor has to sample and transmit data even when
they are not needed by the engine, leading to a substantial
waste of energy in the sensor network.

To balance the tradeoffs between pushing and pulling, we
propose a hybrid approach to achieve a near-optimal energy
cost. We describe the core idea of this approach using the
push-pull envelope concept (Figure 3.). A push-pull
envelope is an optimal configuration of hybrid push/pull
proportions for each sensor over the lifetime of execution of
a group of rules. It effectively describes an engine execution
whose combined cost of push and pulls is minimal. More
specifically, we employ a strategy, which, by analyzing and
predicting the patterns of sensor data required by the engine,
could separate those constant and dominant data demands
from the sporadic, transient ones. For each sensor, the push-
pull envelope establishes an optimal base push rate to meet
those dominant demands, and supplements it with reactive
pulls to satisfy the rest of the demands. The combination of
push and pull will reduce network traffic and the cost of
sensor sampling (reading), and hence the overall energy
consumption in the sensor network.

Figure 3. A push-pull envelope strikes the balance between pushing and

pulling to reduce energy cost in the sensor network.

B. The base push alogrithm
This section describes a static algorithm that finds a

constant base push rate that is optimal, denoted by f *, for a
single sensor. We observe that the minimal sampling rate
required by the engine usually changes with time, depending
on the different states of the pervasive system. To meet this
varying requirement, the engine adjusts the rate of
supplemental pulls to affect an overall (base + supplement)
rate change. Therefore, finding the optimal f * that minimizes
the total energy cost is key to the success of the algorithm.

We assume all atomic events are equally probable to
occur (i.e. evaluated to true), so the algorithm treats them
fairly to compute f *. The TFM operator partitions an event
into various phases, each requiring a different sampling rate
on the corresponding sensor. This partition goes further
when the evaluation of multiple rules overlap, provided that
these rules involve the same sensor. We define this partition
as follows.

Definition 1: Let a sensor’s timeline L be the length of the
execution time of the engine. A partition P(L) divides L into
n time windows, each window i is of length li (1 < i ! n) ,
and has a requirement of the minimal sampling rate fi which
is defined as:

 fi = max{ fi
k , k "K}. (7)

K is the set of all events associated with the sensor at
time window i and fi

k is the min sampling rate required by an
event k.

The optimization problem is as follows. For a partition
P(L), find the optimal base frequency f

* such that the
objective function C(f

*) is minimal. We construct the
objective function by modeling the energy cost on a sensor
node. In the cost model, we consider both transmission and
sampling [5] as major factors contributing to the overall
energy consumption, and define two energy cost coefficients
accordingly. First coefficient is ! which is the energy
consumption factor for one time transmission (either sending
or receiving a packet), while second coefficient is " which
represents the energy cost for one sensor sampling (reading).
Therefore, the cost of a pull operation is 2! + " (receiving

!"##$%&'(%)*+,+*)*+

-).$/'''01&&.*2$+*

-3)4$)"+

5#4.$)"+

6*%/"+

5#4.$)"+

7,)1#18*+

-95'

94%:)1#*'

5%;1+"%<

94.*'5=*34)1"%'63>*&4.*'?$@.*94.*6*)

!"#$%&'($)"*+*",

-./*.(

!"#$

!"%%
!"&'(!"#$

!"&'(!"%%

#')#*&

+!!%,-./,*) 0.1'&

+/%.#(2'.-/,3,/1 4)5,)'

!! #')#*&#')#*&#')#*&

6!/,7.%(!"#$8!"%%(
')3'%*!

query + sending data + sampling), and a push costs ! + "
(not including the one time subscription). The objective
function is defined as:

 (8)

The proposed algorithm can be summarized as follows:

OPT-1: Base Push Algorithm for Finding Optimal f *

Input: for a sensor s, the partition P(L) and the min
sampling rate fi for each time window i .
Output: the base push rate f *.
Algorithm:
1. Sort all time windows in the increasing order of fi .
2. for k = 1, …, n,
3. compute
4. if | g(k) | ! | g(k+1) |
5. return fk as the optimal f*
6. else
7. goto 3.

The complexity of the algorithm is bounded by the sorting
procedure in step 1, which is O(nlogn). To prove the
correctness this algorithm, we first show that after step 1, the
cost function can be rewritten as:

 (9)

We compute the first derivative of C(f *), which is a
discrete function of k:

 (10)

C(f *) reaches its minimum point when | g(k) | is closest
to 0. We can show that g(k) is monotonically increasing, and
we are bound to find a k among [1, … n] such that | g(k) | is
closest to 0. Therefore the algorithm will always return an f *
that minimizes the cost function C(f *).

In this method, optimization is based on the assumption
that, sub-events of a composite event have equal probability
of occurrence. Therefore, all the sub-events are treated fairly
when designing the algorithm of OPT-1to find the optimal f *.

However, for a composite event, the probabilities of its
sub-events are most likely to be different in most situations.
In the next section, we propose a short cut approach, which
takes advantage of the uneven distribution of probability of
events, allowing rule evaluation to focus on a smaller set of
sub-events, which, while not optimal, achieves a great deal
of energy saving.

C. Adaptive Short Cut Approach
Consider the event grammar where a composite event takes

the form: E=E1+E2+…+En. Obviously E evaluates to true if

any one of its sub-events (e.g. E1) is true. So there is no need
to evaluate sub-events when one has already evaluated to
true. Similarly, no need to evaluate sub-events when one has
evaluated to false in * composite events (E=E1*E2*…*En).
This inspires what we call the short cut optimization, a new
technique, similar to what can be found in compiler
expression optimization, applied in the reactivity engine to
reduce the number of events to be evaluated, and hence the
overall power consumption of the sensor network.

We assume that a composite event is composed of sub-
events with different probability of occurrences. As we
mentioned before, some of these sub-events may have
significantly higher probability of occurrence than others
which makes tham a dominant factor in determining the
value of the composite event to which they belong. We call
such sub-events dominant sub-events. Apparently, if we first
evaluate the dominant sub-events of a complex event, it is
highly probable that we may short cut further evaluations of
other sub-events.

 Motivated by this idea, we propose a probability-based
approach, which takes advantage of the nature of dominant
events and the benefit brought by short cut evaluation. We
first find the dominant sub-events set S*. Whenever an event
needs to be evaluated, sub-events in S* get the highest
prorioty. Herein, push mechanism is adopted to supply
sensor data for event evaluation given that push incurs less
energy cost than pull mechanism does knowing that the
engine does require the pushed data. Other sub-events will
get evaluated only when S* fails to determine the value of
the event. Because this could only be determined during
execution time, ARE will pull data from the sensor if
additional sensor readings are needed to complete the event
evaluation. Consequenly, finding the set of S* will help
reduce the number of events to be evaluated. However, if S*
is not suitable, ARE may pay penalty for large number of
supplemenantal pulls which is more costly in terms of
energy consumption and ultimately may bring down the
overall performance and energy efficiency. To sum up, our
goal is to find the proper set S* that leads to the minimized
energy cost.

To implement the idea of short cut, we look into two
problems.

First, finding S* depends on our knowledge of probability
of event. Thus, one thing we have to do a priori is to find or
estimate the probability of all the events. Let pe represent
the probability of event e. In our model, we estimate pe as
the proportion of times event e is evaluated to be true. As
shown in equation (10), oce denotes the number of times
event e occurs (i.e. event e is evaluated to be true) and eve
represents the number of times event e is evaluated. In
addition, oce and eve are repeatedly observed throughout the
entire execution period.

 (11)

The second problem that we need to solve to enable the

short cut idea is to capture the variability in the probability of

C(f
*

) = C
push

(f
*

) + C
pull

(f
*

)

 = [(! + ") * f
*

+ (2! + ") *Q
i
(f

*

)] * l
ii

,

where Q
i
(f

*

) =
f
i
$ f

*

, if f
i
> f

*

,

0, otherwise.

%
&
'

('

g(k) = (! + ") l
i
(2! + ")

1

k

$ l
ik

n

$

C '(f
*

) = g(k) = (! + ") l
i1

k

$ (2! + ") l
ik +1

n

#

C(f
*

) = (! + ") f
*

l
i1

k

+ (2! + ")(f
i
$ f

*

)l
ik +1

n

#

events over time. That is, S* that satisfies one rule evaluation
requirement may not be suitable for subsequent evaluations.
An adaptive approach should therefore be provided to adjust
sensor’s push and pull rate to adapt to this change. This also
requires that the sampling rate of the physical sensors be
dynamically reconfigured during execution time, which is
the case in Atlas. Thus, finding a suitable algorithm for
adaptation is needed.

Before describing our algorithm, we first define the cost
function that helps identify the set of S* leading to the
optimal solution. Suppose we have a set of rules R, a set of
sub-events S, which is composed of all the sub-events that
appear in R and a set Si which is composed of sub-events that
appear in Ri.

 (12)

Assuming that probability of each event in S is already
known. Then the expectation of the total energy consumption
is a function of S* as shown below: �

 (13)

In this function, fe denotes the minimal frequency of
evaluation that is required by event e. Ci denotes the total
energy cost by evaluating rule Ri. Ci includes two parts: Ci

push
which represents the energy cost because of the usage of
push mechanism and Ci

pull which represents the energy cost
due to the usage of supplemental pulls. (!+") is the average
energy cost of pushing a sensor reading to ARE, whereas !,
" have already been defined in OPT-1. (2!+") is the average
energy cost of pulling data from a sensor by ARE. qi denotes
the probability that pull mechanism is adopted for evaluating
rule Ri (i.e. the sub-events in S* fail to determine the value of
the composite event). qi is calculated as following:

 (14)

Our goal now is to find the optimal S* that minimizes the
total energy consumption cost C(S*). A brut force approach
is to try all possible combinations of events in S and find the
combination, which yields the lowest energy cost. However,
such enumeration is obviously exponential with complexity
O(2n). In addition to exponential enumeration, S* needs to
be modulated repeatedly throughout the whole evaluation

phase due to the dynamic nature by which event
probabilities are estimated. To tame this complexity we
propose a greedy algorithm to help find a near-optimal set
S* which confines the complexity within O(n2).
�
OPT-2: Greedy Algorithm for Finding S*
Input: Rule set R, sub-event set S, probability of each sub-
event in S
Output: S*, minimal energy cost c
Algorithm:
1. S*=#; c=C (S*)
2. for ei � (S - S*),

3. compute ci � C (S* ��{ ei }) .
4. Find the event ej that yields the minimal cost cj;
5. if cj < c,
6. S* = S* ��{ ej }, c = cj, goto 2.
7. else return S* and c

As has been stated before, the energy cost may degrade

over time as the probability of event pe changes. To adapt to
this change, we adopt a tolerance threshold $ that represents
the largest deviation between current cost and expected cost
the algorithm could bear. S* is recalculated whenever current
cost is out of the range [c*(1-$), c*(1+$)], where c is the
minimal cost returned by the algorithm of OPT-2.

Although this greedy algorithm cannot ensure optimal
solution, we do guarantee that each time when we increase
the size of S* by one extra event, we can always have a
lower energy cost.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
We evaluate the performance of the Atlas reactivity engine

(ARE) under OPT-1 and OPT-2 algorithms, by comparing
their performance with that of ARE under pure push and
pure pull mechanisms. We use an emulation approach where
actual Atlas middleware and ARE are used, but in which
Atlas hardware nodes are replaced by software emulators.
The Atlas middleware and ARE have both been developed in
Java and runs under the Knopflerfish OSGi, version 1.3.4.

We used 50 Atlas device emulators, each representing
either a sensor or an actuator. In the case of sensors, each
emulator generates a sensor reading every 2 seconds. The
readings are randomly generated using a Gaussian
distribution function whose mean changes with time at a step
length of 8. We have designed several test cases (or rule
sets), which were randomly generated using a fixed rule
structure. Each rule in a rule set included one complex event
with a fixed length of 5 sub-events. Each event is tagged
with a TFM relaxation of a randomly generated frequency
and time window. To create rule sets of variable size, we
generated a large pool of rules and carefully constructed the
desired rule sets from this pool. We observed that ARE starts
to thrash at 50 rules which seems to be the engine’s current
maximum capacity. Hence we generated rule sets of size {5,
10, 15, 20, 25, 30, 35, 40, 45, and 50}. We emulated the
effect of three sets of sensor platforms (Table 1) by

normalizing their energy consumption coefficients. We
conduct experiments on each set of coefficients to quantify
the platform’s receptiveness to our optimizations.

TABLE I. NORMALIZED ENERGY COEFFICIENTS FOR TRANSMISSION
AND SAMPLING ON THREE DIFFERENT SENSOR PLATFORMS.

Sensor platform !! (transmission) "" (sampling)
S1 0.63 0.37
S2 0.03 0.97
S3 0.56 0.44

S1: MICA2 sensor platform with Sensirion Humidity sensor, ChipCon CC1000 Radio [20].
S2: Atlas sensor platoform with Interlink Pressure Sensor, Atmel ZLink Radio [5].

S3: MicroLEAP with ECG sensor, class-2 Bluetooth 2.0 radio [22].

B. Evaluation Metrics
The main performance metric, which is measured

throughout all experiments, is the total energy consumption
of the entire engine. Other metrics not reported in this paper
is startup overhead (time) and runtime overhead (time) of the
ARE engine. The actual total energy cost measured in all
experiments is given by (15).

 n
push
(! + ") + n

pull
(2! + ") (15)

C. Performance Comparison Results
We compared the performance of OPT-1, OPT-2, pure

push and pure pull for the three sensor platforms shown in
Table 1 above. Energy cost was measured for a varying
workload of rules (from 5 to 50 rules). Figure 4. shows the
energy cost of S1 (MICA 2) under the four algorithms.

Results in Figure 4. show pure push to be the worst
performer as expected. Both OPT-1 and OPT-2 outperform
pure pull. With 50 rules running, OPT-1 saves 17% of the
energy cost compared to pure pull, while OPT-2 achieves an
additional 20% savings. Figure 5. shows the push-pull
envelope generated by each optimization. In OPT-1, push
makes the most part of the envelope. With the adaptive
short-cut technique enabled, the number of push has
significantly reduced, which results in a more balanced
envelope between push and pull in OPT-2.

Figure 4. Energy cost for four algorithms on the MICA 2 sensor platform

(Test Set A).

Figure 5. The push-pull envelope on various sensor platforms (S1-S3).

D. Platform Receptiveness to Optimizations
We emulate the effects of optimization on three sets of

sensor platforms and compare the results in Figure 6. . We
calculate the relative energy efficiency by comparing the
optimized results with the cost of pure push (which is
normalized to 1). While all three platforms receive
substantial energy reduction, the Atlas sensor platform (S2)
sees the most energy savings because of its low transmission
co-efficient #. The optimization encourages pull on this
platform due to the minimal communication overhead, and
as a result, develops an envelope with a larger proportion of
pulls (Figure 5. Opt2-S2).

�
Figure 6. Energy efficiency for two optimization algorithms on three sets

of sensor platforms.

E. Effect of the TFM Relaxation
To examine the effect of TFM relaxations on our

algorithms, we compared the results of two test sets -Test Set
A shown in Figure 4. and Test Set B shown in Figure 7. ,
each featuring a different average Fe in TFM. We designed
set A with a measured mean Fe of 4.67 per second, drawn
from a uniform distribution over [2.00-8.00] to model the

! "# "! $# $! %# %! &# &! !#
#

#'!

"

"'!

$

$'!
()"#

&

*+,-./)01)2+3.4

5
6
.
/7
8
)9
0
4
:

;+4<

;+33

0;:!"

0;:!$

!"#$!%$!"#$!%& !"#$!%' !"#&!%$!"#&!%& !"#&!%'
(

$(((

&(((

'(((

)(((

*(((

+(((

,(((

-(((

%./0123456#71280!!"#89:6#91/3;.<=/9>?.0

4
?
0
=
!
4
?
553
@
/
A
.
51
"
.
3B
#=
.
3/
?
8
C
.
23
1
73
1
"
.
26
#9
1
/
0
D

"?!"

"?##

!" !# !$
%

%&%'

%&"

%&"'

%&#

%&#'

%&$

%&$'

%&(

%&('

)*+,,-!,./-01-!,2/0+-345.10+6/

7
2
,
+8
9
-7
11
:;
:,
2
;
9
-<
=
0
6
>
5
+,
?
-@
:.
*
-3
A
+,
-3
A
/
*
B

0>.!"

0>.!#

case of drastic change of sampling requirement. Set B,
however, was designed with a measured mean Fe of 14.67
per second, representing a more moderate change of
sampling requirement. The observed and measured effect of
TFM can be summarized as follows. The total energy cost
decreases in general for all four algorithms when a moderate
change of sampling rate was used (Test Set B). Also, the
difference between pure push and pure pull becomes less
significant at moderate change rate. Also, unlike Test Set A
(drastic sampling change rate), which encourages pull more
than push, Test Set B strikes a better balance between push
and pull. As a result, both push-based OPT algorithms
performed better (as compared to pure pull). Finally, we
observe that when frequencies decrease, OPT-2 shows
difficulty in learning the probability at run time since there
may not be enough samples at a moderate rate of change.
This affects the algorithm's adaptability. Therefore, OPT-2
did not perform significantly better than OPT-1, as in Test
Set A.

V. RELATED WORK
Event-driven programming is becoming a popular

paradigm of choice in system development for various
application domains including healthcare [6], civil
engineering [7] and security surveillance [8]. Extensions and
modifications to the original event-driven model mainly
focus on two areas: event formulation and event detection. A
natural extension [18] to the event formulation structure is to
support composite events. Two different mechanisms were
proposed in [12] and [19] to manage the complexity caused
by composite events in large-scale distributed systems.
However, these approaches did not take into consideration
any time relaxations that the events and the applications may
be tolerant to. In our work presented in this paper, we
introduce, justify, and take advantage of such time relaxation
(the Time/Frequency Modifier relaxation). Furthermore, our
approach takes advantage of short cut type of evaluation to
further reduce the workload of the reactivity engine.

Figure 7. Energy cost for four algorithms on the MICA 2 sensor platform

(Test Set B).

Another related research is event detection primarily
focused on data acquisition techniques, especially in sensor
networks. A typical scheme is polling [11], in which
application sequentially polls its underlying sensors for new
data. In contrast, a bottom-up sensor-driven model [12] has
also been proposed, assuming that sensors are capable of
pushing data to applications when event occurs. To improve
the efficiency of data delivery and enable data sharing,
messaging paradigms such as publish/subscribe [9] and
push-pull [10] are widely adopted in sensor data acquisition.
To improve the efficiency of event detection, a detection
protocol over the publish/subscribe paradigm [20] has been
proposed. Optimization techniques to balance push and pull
have been extensively discussed in [10][13][14]. However,
all of the above approaches focus on the network topology
and routing algorithm, ignoring the optimization opportunity
provided by the event structure and its time-frequency
relaxations.

VI. CONCLUSION
We presented the Atlas Reactivity Engine, an optimized

implementation of E-SODA – the event-driven programming
model over the service-oriented Atlas middleware. We
introduced a time-frequency relaxation of event execution
creates (TFM), which we have shown to offer a rich
opportunity for optimization. We presented the static power-
aware base push algorithm (OPT-1) utilizing the concept of
optimal push-pull envelope and proved its optimality. Based
on OPT-1, we developed OPT-2, a predictive-corrective
algorithm that adaptively modulates the push-pull envelope
at runtime based on changing event probabilities as well as
optimization opportunities exploited by TFM and the
structure of the events. We conducted an emulation based
evaluation study and quantified the significant energy
savings due to OPT-1 and OPT-2, and compared the
achieved savings with the pure push and pure pull cases.

REFERENCES

[1] D. Massaguer, S Mehrotra, N. Venkatasubramanian. “A Semantic
Approach for Building Pervasive Spaces”. Proceedings of the 6th
Middleware Doctoral Symposium (MDS’09). November 2009.

[2] W. Xue and Q. Luo. “Action-Oriented Query Processing for
Pervasive Computing”. Proceedings of the Second Biennial
Conference on Innovative Data Systems Research (CIDR’05), 2005.

[3] T. Gu, H. K. Pung, J. K. Yao. “Towards a Flexible Service
Discovery”. Elsevier Journal of Network and Computer Applications
(JNCA). Vol. 28, Issue 3, pp. 233-248, May 2005.

[4] H. Yang, J. King, A. Helal and E. Jansen, “A Context-Driven
Programming Model for Pervasive Spaces,” Proceedings of the 5th
International Conference on Smart Homes and Health Telematics
(ICOST), Nara, Japan, 21-23 June, 2007.

[5] R. Bose and A. Helal, "Sensor-aware Adaptive Push-Pull Query
Processing in Wireless Sensor Networks," Submitted to the 6th
International Conference on Intelligent Environments - IE'10, Kuala
Lumpur, Malaysia, July 19-22, 2010.

[6] R. Fitterer, B. de Witte. “Enabling Pervasive Healthcare by Means of
Event-Driven Service-Oriented Architectures - The Case of Bed
Management in Mid-Sized to Large-Sized Hospitals”. Pervasive
Health 2009.

! "# "! $# $! %# %! &# &! !#
#

!##

"###

"!##

$###

$!##

%###

%!##

&###

&!##

!###

'()*+,-./-0(1+2

3
4
+
,5
6
-7
.
2
8

9(2:

9(11

.98!"

.98!$

[7] S. Jevtic, M. Kotowsky, R. P. Dick, P. A. Dinda, C. Dowding. “Lucid
dreaming: reliable analog event detection for energy-constrained
applications”. IPSN '07: Proceedings of the 6th international
conference on Information processing in sensor networks, April,
2007.

[8] A. Boukerche, R. W. N. Pazzi, R. B. Araujo. "A fast and reliable
protocol for wireless sensor networks in critical conditions
monitoring applications". MSWiM '04: Proceedings of the 7th ACM
international symposium on Modeling, analysis and simulation of
wireless and mobile systems. October 2004.

[9] N. Rosa, C.Ferraz, J. Kelner, E. Souto, G. Guimarães, G.
Vasconcelos, M. Vieira. "Mires: a publish/subscribe middleware for
sensor networks". Personal and Ubiquitous Computing , Volume 10
Issue 1, December 2005. Springer-Verlag.

[10] X. Liu, Q. Huang, Y. Zhang. "Balancing Push and Pull for Efficient
Information Discovery in Large-Scale Sensor Networks". IEEE
Transactions on Mobile Computing, Volume 6, Issue 3, March
2007 Page(s):241 – 251.

[11] Z. Zhang, M. Ma, Y. Yang. "Energy Efficient Multi-Hop Polling in
Clusters of Two-Layered Heterogeneous Sensor Networks".IPDPS
'05: Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS'05), April 2005.

[12] S. Reilly and M. Haahr. “Extending the Event-based programming
model to support Sensor-Driven Ubiquitous Computing
Applications”. Proceedings of the 2009 IEEE International
Conference on Pervasive Computing and Communications
(Percom’09).

[13] Z. Tao, Z. Gong, Z. OuYang, J. Xu. "Two New Push-Pull Balanced
Data Dissemination Algorithms for Any-Type Queries in Large-Scale
Wireless Sensor Networks". International Symposium on Parallel
Architectures, Algorithms, and Networks, 2008. 7-9 May 2008 pp:
111 – 117.

[14] S. A. Hashish, A. Karmouch. "Topology-based on-board data
dissemination approach for sensor network." Proceedings of the 5th

ACM international workshop on Mobility management and wireless
access. Chania, Crete Island, Greece, 2007. pp. 33 – 41.

[15] J. King, R. Bose, H. Yang, S. Pickles and A. Helal, “Atlas – A
Service-Oriented Sensor Platform,” Proceedings of the first IEEE
International Workshop on Practical Issues in Building Sensor
Network Applications (SenseApp 2006). Tampa, Florida, November
2006.

[16] A. Helal, W. Mann, H. Elzabadani, J. King, Y. Kaddourah and E.
Jansen, "Gator Tech Smart House: A Programmable Pervasive
Space", IEEE Computer magazine, March 2005, pp 64-74.

[17] C. Chen and A. Helal, "Device Integration in SODA using the Device
Description Language," Proceedings of the IEEE/IPSJ Symposium on
Applications and the Internet, July 2009, Seattle, Washington, USA.

[18] P. Pietzuch, B. Shand and J. Bacon, "Composite Event Detection as a
Generic Middleware Extension," Network, IEEE, vol. 18, pp. 44-55,
Jan/Feb 2004.

[19] G. Starovic, V. Cahill, and B. Tangney, “An event based object
model for distributed programming,” in Proceedings of the 1995
International Conference on Object Oriented Information Systems (J.
Murphy and B. Stone, eds.), pp. 72–86, Springer-Verlag, December
1995.

[20] S. Lai, J. Cao, Y. Zheng, “PSWare: a Publish/Subscribe Middleware
Supporting Composite Event in Wireless Sensor Network,”. IEEE
International Conference on Pervasive Computing and
Communications, 2009. pp.1-6.

[21] SR. Madden, MJ. Franklin, JM. Hellerstein, and W. Hong. “TinyDB:
An acquisitional query processing system for sensor networks”. ACM
Transactions on Database Systems, 30(1): 122-173, 2005.

[22] L.K. Au, W.H. Wu, M.A. Batalin, D.H. McIntire and W.J. Kaiser,
“MicroLEAP: Energy-awareWirelessSensor Platformfor Biomedical
SensingApplications”. IEEE BIOCAS2007. November 2007. pp.158-
162.

