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Abstract—Pervasive computing systems are begging for 
programming models and methodologies specifically suited to 
the particular cyber-physical nature of these systems. Reactive 
(rule-based) programming is an attractive model to use due to 
its built-in safety features and intuitive application 
development style. Without careful optimization however, 
reactive programming engines could turn into monstrous 
power drains of the pervasive system and its sensor network. 
In this paper we propose two optimizations for reactivity 
engines. The first, which we prove to be optimal, assumes all 
sensors in the space are equally important to the application. 
The other, which is adaptive, employs and estimates a 
probability for each sensor based on application usage. Both 
optimizations use a mixed push/pull approach to achieve 
optimal or near optimal energy efficiency. We present an 
experimental evaluation of the two algorithms to quantify their 
performance over a range of parameters.  

Keywords-rule based processing; reactivity engines; 
programming models in pervasive spaces; optimization; 
perfromance 

I. INTRODUCTION 
Establishing new programming models especially suited 

for pervasive spaces is crucial to the effectiveness and 
robustness of the development process and the manageability 
of the space through its entire life cycle.  Such new 
programming models are also needed to improve the 
programmers’ productivity by defining the precise role and 
scope of the programmer within other roles specified by the 
model.  

While many early research projects in pervasive 
computing highlighted novel applications, they typically 
required ad hoc programming efforts to create highly 
customized software. Such efforts were merely system 
integration efforts rendering rigid systems that are difficult to 
change or re-program.  

Recently, more researchers started to explore various 
methodologies and concepts to enable and define more 
usable programming models for pervasive spaces. For 
example, [1] and [2] created a database abstraction for 
pervasive spaces which allows programmers to access 
physical objects and their attributes in a query-like syntax. 
While query is a powerful tool for retrieving information 
from sources such as sensor data streams, they lacked 
actuation support. The work in [3] and [4] utilized a context-
based view of the pervasive space in which actions and 
behaviors of a system are directly driven by contexts. 
However, compared to query processing, the computational 

burden of context inference and reasoning raises critical 
implications of performance. Besides, neither model has 
addressed the issue of interoperability. 

A more recent breed of programming paradigm [17] 
based on the Service-Oriented Architecture (SOA) has 
enabled a new programming environment allowing semi-
automated integration and interaction among various system 
components, which are represented as services. The service-
oriented device architecture (SODA) model focuses on the 
services provided, rather than the sensor data streams or 
active contexts of the environment. Services are stackable. 
So simple services can be composed together and form into 
more complex services.   

We have developed a reference implementation of 
SODA (Figure 1. ), which features the Atlas sensor platform 
– a platform similar to the Berkeley mote but different in its 
explicit support to externalized programming through the 
service oriented model. The reference implementation 
consists of the Atlas sensor platform and a two-pronged 
middleware known as the Atlas middleware. As such, our 
implementation combines hardware nodes (sensor platforms) 
and firmware running on the hardware, with a software 
middleware running in the network to provide services and 
an execution environment. Together these components allow 
virtually any kind of sensor, actuator or other more complex 
devices to be integrated as software services into a common 
data/services bus. Since the Atlas middleware enables 
service composition and gracefully handles situations when 
services are updated, created and aborted, a programmer 
simply needs to find the proper services and arrange the 
service method calls to create an application.  

We have applied the Atlas service-oriented programming 
model in several research project developments including the 
Gator Tech Smart House (GTSH) [16], which is a real-life 
deployment of an ambient assisted living space. One lesson 
we learnt from our deployment in the GTSH is that SODA is 
a great model but has two critical limitations.  
• First, SODA tends to overpromise the capabilities of 

services by overlooking and hiding their inherent 
limitations. While service interfaces abstract away 
unneeded information on internal details of the service, 
it also blinds the programmer from “seeing” critical 
information such as the physical limitations of a device, 
sensor or actuator. Therefore, the opacity of a service 
interface creates risks for service misuse that could lead 
to what we call “unsafe programming”.   

• Second, SODA encourages a free and unrestricted style 
of application composition over available device 



services. While this is a powerful capability to the 
programmer, it may lead to unpredictable behaviors in 
the pervasive space when the applications are deployed. 
In theory, a programmer can select any set of services 
from the service pool and connect them to form an 
application. Service methods can therefore be invoked in 
any order. Clearly, such lack of constraints on service 
composition may unintentionally but adversely cause 
conflicts and contentions among the various services. 
This could create a potentially enormous state space of 
the system and opens up possibilities for states that are 
undesirable, unpredictable or even impermissible. It is 
therefore important to refine the SODA programming 
model into a more controlled and constrained model that 
does not compromise the overall system operation while 
taking advantage of the benefits of service orientation. �

 
Based on the lessons learned and the SODA analysis 

briefly described above, we have developed a rule-based 
model extension to bring about control and intentional 
restrictions. We refer to this model as event-driven SODA 
programming model or E-SODA. In this model, application 
logics are represented by a set of rules, each of which 
follows a typical Event Condition Action (ECA) structure. 
By constantly checking on sensor readings and updating rule 
evaluations, the pervasive system listens to certain events in 
the space and responds to them by taking specific prescribed 
actions. Compared to pure SODA, this extension model 
enables a streamlined and constrained way for program logic 
formulation that is more stringent and less error-prone. In 
addition, event composition creates a tighter programming 
space than unrestricted service composition, reducing 
possibilities of false, non-intentionally erroneous, or 
impermissible executions in the pervasive space. 
Furthermore, the rule-based nature of this extension model 
encourages a centralized reasoning engine where conflicting 
applications logics can be easily detected and resolved.  

For the E-SODA model to work effectively in pervasive 
spaces, its event processing must be optimized to take into 
account the limitation on energy use by the sensor nodes and 
the sensor network. If the model is applied without 
optimizations, the constant evaluation of events and rules 
would pose hefty computational burdens to the centralized 
data sinks. Additionally, the continuous data sampling by the 
sensor nodes and transmission through the network will 
incur substantial energy cost to the entire sensor network. It 
is therefore unthinkable to implement an event-driven model 
such as E-SODA without a framework of relaxation that 
provides meaningful opportunities for optimization to 
minimize both energy and computational cost.    

In this paper, we present the Atlas Reactivity Engine 
(ARE), an implementation of the E-SODA event-driven 
programming model within the Atlas architecture. We 
briefly describe the Atlas architecture and show how the 
engine extends the original service-oriented programming 
model. Then we introduce two important components for 
rule composition: the ECA grammar structure and a Time-
Frequency Modifier (TFM) operator that enables a per event 
relaxation of rule evaluation. The relaxation is intended to be 

specified by the programmer based on application and event 
semantics. We describe the concept of optimal push-pull 
envelope that guides our optimization approach, which 
includes a static optimization algorithm (OPT-1) as a base 
technique and an adaptive algorithm (OPT-2) that supports 
dynamic sampling rate changes and exploits the opportunity 
for short-cut evaluation. We prove the optimality of OPT-1 
mathematically and show the performance gains of the OPT-
2 algorithm through an experimental evaluation study.   

II. REACTIVE PROGRAMMING USING ARE 

A. The Atlas Architecture 
As Figure 1 shows, the Atlas reference architecture 

[15][16][17] contains physical, sensor platform (node), 
service and application layers. At the physical layer, a 
variety of devices including sensors, actuators, and more 
complex devices are deployed to monitor and control the 
environment. All these devices are connected to the Atlas 
Sensor Platform nodes in the sensor network. The service-
oriented Atlas sensor platform automatically integrates these 
devices and represents them as service bundles in the service 
layer. These bundles implement a uniform service interface 
that abstracts away most of the physical details and helps 
programmers to concentrate on the essential aspects of the 
services that an object provides. At the application layer, 
programmers can easily compose services and develop 
applications using a SOA-based programming IDE (utilizing 
the SODA model). 

  

 
Figure 1.  Atlas reference architecture featuring support for the SODA 
programming model (through SOA-based programming IDE – top right 

box) and for the E-SODA, event-driven extension model (through the Atlas 
Reactivity Engine - top-left, highlighted). 

This paper describes the Atlas Reactivity Engine (ARE), 
which implements the E-SODA programming model. ARE’s 
basic elements are rules defined over SODA services. By 
specifying the events, conditions and actions, programmers 
formulate rules that describe the desired/allowed behavior of 
the space in various situations. To ensure the adherence to 
these rules, the reactivity engine constantly checks sensor 
data and evaluates the rules. When certain events happen and 
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a rule evaluates to true, corresponding actions (e.g. actuating 
a device or invoking another service) will be taken to 
respond to the event.  

B. ECA:  Grammar for Rule Composition 
ARE follows an Event/Condition/Action paradigm in 

which a set of rules are defined by the programmer, 
registered, maintained and appropriately triggered as the 
sensor data changes. ARE implements Events, Conditions, 
Actions, Rules and Commands, as follows: 

 
1) EVENT: An event is a logical expression over sensor 

values. Formally, an event, E, is defined in equation (1). The 
event defined in the first line represents an atomic event, 
with value indicating the desired value of Sensor or [a, b] 
indicating a desired range of Sensor values. The event 
defined in the next line represents a composite event. The 
operator + is intended as logical OR. The operator *, which 
has higher precedence than +, is intended as logical AND.  
The operator *seconds* is a modified AND operator in 
which the concurrence requirement is relaxed.  The right 
operand event is allowed to take place up to “seconds” 
number of seconds after the left operand event has occurred 
(is evaluated to true). 

 
E = Sensor(value) | Sensor[a,b]
E = E + E | E * E | E * seconds * E

 (1) 

2) CONDITION: Conditions are intended as logical 
expressions of variables local to the ARE. A condition, C, is 
defined as (2). The same condition may participate in more 
than one rule. Conditions are useful in debugging and are an 
added trigger guard which adds safety to the coding process.  

 C = {True | False}  (2) 

3) ACTION: An action is an invocation of one or more 
methods belonging to one or several application or device 
service bundles. An action, A, is defined as:  

 
A = Service.method;
A = (A; A)

 (3) 

4) RULE: A rule is a specific configuration of a 
predefined event E, condition C, and action A, and is 
therefore defined as (4), which means if Event E happens, 
while condition C is true, Action A should be triggered. 

 RULE = \ \ E,C, A \ \  (4) 

C. TFM: a Time-domain Relaxation Operator 
Since the working mechanism of ARE is rule-based, the 

rate at which rules are evaluated determines the traffic of 
sensor data within the sensor network. By default, each rule 

gets evaluated continually and constantly. Although, this 
default strategy guarantees responsiveness of the ARE 
engine, as mentioned before, it is obviously unpractical due 
to the heavy network traffic and sensor sampling.  

Fortunately, application and event semantics offer good 
opportunities for optimization and partial evaluations.  
Semantically, some events are tolerant to time fidelity in 
that they do not require frequent evaluation at all times. For 
example, when monitoring room temperature, an air 
conditioning system does not need to get temperature 
reading at a very high frequency, since the rate of change of 
room temperature is slow. In addition, an air conditioning 
system may not need to monitor room temperature during 
spring and fall.  

Considering the above scenarios, we introduce the notion 
of time/frequency modifier (TFM), a relaxation operator 
intended to assist the programmer in specifying time 
constraints or time relaxations in connections with EVENT. 
The TFM is specified as follows:  

  (5) 

Where W is a time window in which the affected event 
needs to be evaluated with frequency Fe. To incorporate 
TFM into EVENT, the following modifier definition should 
be added to EVENT:  

  (6) 

The significance of TFM is that it introduces a per event 
time relaxation of event evaluation into ARE, which gives 
us the opportunity to optimize the engine to achieve energy 
efficiency. 

D. Implementation 
The overall architecture of ARE is shown in Figure 2.  

An ARE command interpreter facilitates input of commands 
from the programmer and output of confirmations and rule 
trigger notifications to the programmers. The ARE engine is 
a service bundle that registers new rules and their 
components. It also serves as a trigger mechanism for actions 
of “applicable” rules. It communicates with the Atlas 
middleware services on one hand and the command line 
interface service on the other hand. The ARE optimizer is at 
the heart of the engine, constantly guiding its decisions and 
operation. The “Rule Set” database contains all the rules 
defined by the programmer. At startup, a rule execution 
schedule table is generated by the engine. The actual 
execution is governed by the initially generated table, current 
state of the engine, and of course the optimizer and its 
algorithms.  
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�
Figure 2.  Overall architecture of ARE. 

III. OPTIMIZING THE REACTIVITY ENGINE 

A. The Push-pull envelope concept 
To acquire fresh sensor readings for rule evaluation, ARE 

employs two alternative ways to communicate with the 
sensor network: push and pull. The push mechanism allows 
the engine to subscribe to a particular sensor for continuous 
readings at a constant rate, while the pull mechanism enables 
an on-demand style of data query to acquire readings one at 
time. Each mechanism could be advantageous or 
disadvantageous, based on the specific set of rules being 
executed by the engine. When sensor data are needed at a 
constant rate, pushing requires much less downlink traffic 
since the engine subscribes only once, while pulling pays the 
round-trip penalty for each data query. However, pushing 
loses its edge when handling sporadic data needs, as a 
subscribed sensor has to sample and transmit data even when 
they are not needed by the engine, leading to a substantial 
waste of energy in the sensor network.   

To balance the tradeoffs between pushing and pulling, we 
propose a hybrid approach to achieve a near-optimal energy 
cost. We describe the core idea of this approach using the 
push-pull envelope concept (Figure 3. ). A push-pull 
envelope is an optimal configuration of hybrid push/pull 
proportions for each sensor over the lifetime of execution of 
a group of rules. It effectively describes an engine execution 
whose combined cost of push and pulls is minimal. More 
specifically, we employ a strategy, which, by analyzing and 
predicting the patterns of sensor data required by the engine, 
could separate those constant and dominant data demands 
from the sporadic, transient ones. For each sensor, the push-
pull envelope establishes an optimal base push rate to meet 
those dominant demands, and supplements it with reactive 
pulls to satisfy the rest of the demands. The combination of 
push and pull will reduce network traffic and the cost of 
sensor sampling (reading), and hence the overall energy 
consumption in the sensor network.  

 
Figure 3.  A push-pull envelope strikes the balance between pushing and 

pulling to reduce energy cost in the sensor network. 

B. The base push alogrithm  
This section describes a static algorithm that finds a 

constant base push rate that is optimal, denoted by f *, for a 
single sensor. We observe that the minimal sampling rate 
required by the engine usually changes with time, depending 
on the different states of the pervasive system. To meet this 
varying requirement, the engine adjusts the rate of 
supplemental pulls to affect an overall (base + supplement) 
rate change. Therefore, finding the optimal f * that minimizes 
the total energy cost is key to the success of the algorithm.  

We assume all atomic events are equally probable to 
occur (i.e. evaluated to true), so the algorithm treats them 
fairly to compute f *. The TFM operator partitions an event 
into various phases, each requiring a different sampling rate 
on the corresponding sensor. This partition goes further 
when the evaluation of multiple rules overlap, provided that 
these rules involve the same sensor. We define this partition 
as follows.   

 
Definition 1: Let a sensor’s timeline L be the length of the 
execution time of the engine. A partition P(L) divides L into 
n time windows, each window i is of length li (1 < i ! n) , 
and has a requirement of the minimal sampling rate fi  which 
is defined as: 

 fi = max{ fi
k , k "K}. (7) 

K is the set of all events associated with the sensor at 
time window i and fi

k is the min sampling rate required by an 
event k.   

The optimization problem is as follows. For a partition 
P(L), find the optimal base frequency f 

* such that the 
objective function C(f 

*) is minimal. We construct the 
objective function by modeling the energy cost on a sensor 
node. In the cost model, we consider both transmission and 
sampling [5] as major factors contributing to the overall 
energy consumption, and define two energy cost coefficients 
accordingly. First coefficient is ! which is the energy 
consumption factor for one time transmission (either sending 
or receiving a packet), while second coefficient is " which 
represents the energy cost for one sensor sampling (reading). 
Therefore, the cost of a pull operation is 2! + " (receiving 
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query + sending data + sampling), and a push costs ! + " 
(not including the one time subscription). The objective 
function is defined as: 

  (8) 

The proposed algorithm can be summarized as follows:  
 
OPT-1: Base Push Algorithm for Finding Optimal f * 

Input: for a sensor s, the partition P(L) and the min 
sampling rate fi for each time window i . 
Output:  the base push rate f *. 
Algorithm:  
1.  Sort all time windows in the increasing order of fi . 
2.  for k = 1, …, n,  
3.      compute  
4.      if  | g(k) | ! | g(k+1) |  
5.      return fk as the optimal f* 
6.      else  
7. goto 3. 
 

The complexity of the algorithm is bounded by the sorting 
procedure in step 1, which is O(nlogn). To prove the 
correctness this algorithm, we first show that after step 1, the 
cost function can be rewritten as: 

  (9) 

We compute the first derivative of C(f *), which is a 
discrete function of k: 

  (10) 

C(f *) reaches its minimum point when | g(k) | is closest 
to 0. We can show that g(k) is monotonically increasing, and 
we are bound to find a k among [1, … n] such that | g(k) | is 
closest to 0. Therefore the algorithm will always return an f * 
that minimizes the cost function C(f *).   

In this method, optimization is based on the assumption 
that, sub-events of a composite event have equal probability 
of occurrence. Therefore, all the sub-events are treated fairly 
when designing the algorithm of OPT-1to find the optimal f *.  

However, for a composite event, the probabilities of its 
sub-events are most likely to be different in most situations. 
In the next section, we propose a short cut approach, which 
takes advantage of the uneven distribution of probability of 
events, allowing rule evaluation to focus on a smaller set of 
sub-events, which, while not optimal, achieves a great deal 
of energy saving. 

C. Adaptive Short Cut Approach 
Consider the event grammar where a composite event takes 

the form: E=E1+E2+…+En. Obviously E evaluates to true if 

any one of its sub-events (e.g. E1) is true. So there is no need 
to evaluate sub-events when one has already evaluated to 
true. Similarly, no need to evaluate sub-events when one has 
evaluated to false in * composite events (E=E1*E2*…*En ). 
This inspires what we call the short cut optimization, a new 
technique, similar to what can be found in compiler 
expression optimization, applied in the reactivity engine to 
reduce the number of events to be evaluated, and hence the 
overall power consumption of the sensor network.  

We assume that a composite event is composed of sub-
events with different probability of occurrences. As we 
mentioned before, some of these sub-events may have 
significantly higher probability of occurrence than others 
which makes tham a dominant factor in determining the 
value of the composite event to which they belong. We call 
such sub-events dominant sub-events. Apparently, if we first 
evaluate the dominant sub-events of a complex event, it is 
highly probable that we may short cut further evaluations of 
other sub-events. 

 Motivated by this idea, we propose a probability-based 
approach, which takes advantage of the nature of dominant 
events and the benefit brought by short cut evaluation. We 
first find the dominant sub-events set S*. Whenever an event 
needs to be evaluated, sub-events in S* get the highest 
prorioty. Herein, push mechanism is adopted to supply 
sensor data for event evaluation given that push incurs less 
energy cost than pull mechanism does knowing that the  
engine does require the pushed data. Other sub-events will 
get evaluated only when S* fails to determine the value of 
the event. Because this could only be determined during 
execution time, ARE will pull data from the sensor if 
additional sensor readings are needed to complete the event 
evaluation. Consequenly, finding the set of S* will help 
reduce the number of events to be evaluated. However, if S* 
is not suitable, ARE may pay penalty for large number of 
supplemenantal pulls which is more costly in terms of 
energy consumption and ultimately may bring down the 
overall performance and energy efficiency. To sum up, our 
goal is to find the proper set S* that leads to the minimized 
energy cost.  

To implement the idea of short cut, we look into two 
problems.  

First, finding S* depends on our knowledge of probability 
of event. Thus, one thing we have to do a priori is to find or 
estimate the probability of all the events. Let pe represent 
the probability of event e. In our model, we estimate pe as 
the proportion of times event e is evaluated to be true.  As 
shown in equation (10), oce denotes the number of times 
event e occurs (i.e. event e is evaluated to be true) and eve 
represents the number of times event e is evaluated. In 
addition, oce and eve are repeatedly observed throughout the 
entire execution period. 

 
                                                                            (11) 
 

 
The second problem that we need to solve to enable the 

short cut idea is to capture the variability in the probability of 
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events over time. That is, S* that satisfies one rule evaluation 
requirement may not be suitable for subsequent evaluations. 
An adaptive approach should therefore be provided to adjust 
sensor’s push and pull rate to adapt to this change. This also 
requires that the sampling rate of the physical sensors be 
dynamically reconfigured during execution time, which is 
the case in Atlas. Thus, finding a suitable algorithm for 
adaptation is needed.  

Before describing our algorithm, we first define the cost 
function that helps identify the set of S* leading to the 
optimal solution. Suppose we have a set of rules R, a set of 
sub-events S, which is composed of all the sub-events that 
appear in R and a set Si which is composed of sub-events that 
appear in Ri. 

  (12) 

Assuming that probability of each event in S is already 
known. Then the expectation of the total energy consumption 
is a function of S* as shown below:  �

  (13) 

In this function, fe denotes the minimal frequency of 
evaluation that is required by event e. Ci denotes the total 
energy cost by evaluating rule Ri. Ci includes two parts: Ci

push 
which represents the energy cost because of the usage of 
push mechanism and Ci

pull which represents the energy cost 
due to the usage of supplemental pulls. (!+") is the average 
energy cost of pushing a sensor reading to ARE, whereas !, 
" have already been defined in OPT-1. (2!+") is the average 
energy cost of pulling data from a sensor by ARE. qi denotes 
the probability that pull mechanism is adopted for evaluating 
rule Ri (i.e. the sub-events in S* fail to determine the value of 
the composite event). qi is calculated as following: 

  (14) 

Our goal now is to find the optimal S* that minimizes the 
total energy consumption cost C(S*). A brut force approach 
is to try all possible combinations of events in S and find the 
combination, which yields the lowest energy cost. However, 
such enumeration is obviously exponential with complexity 
O(2n). In addition to exponential enumeration, S* needs to 
be modulated repeatedly throughout the whole evaluation 

phase due to the dynamic nature by which event 
probabilities are estimated. To tame this complexity we 
propose a greedy algorithm to help find a near-optimal set 
S* which confines the complexity within O(n2). 
�
OPT-2: Greedy Algorithm for Finding S* 
Input: Rule set R, sub-event set S, probability of each sub-
event in S 
Output:  S*, minimal energy cost c 
Algorithm: 
1. S*=#; c=C (S*) 
2. for ei � (S - S*),  

3.       compute ci � C (S* ��{ ei } ) . 
4. Find the event ej that yields the minimal cost cj; 
5. if cj < c, 
6.      S*  = S* ��{ ej }, c = cj,  goto 2. 
7. else return S* and c 

  
As has been stated before, the energy cost may degrade 

over time as the probability of event pe changes. To adapt to 
this change, we adopt a tolerance threshold $ that represents 
the largest deviation between current cost and expected cost 
the algorithm could bear. S* is recalculated whenever current 
cost is out of the range [c*(1-$), c*(1+$)], where c is the 
minimal cost returned by the algorithm of OPT-2. 

Although this greedy algorithm cannot ensure optimal 
solution, we do guarantee that each time when we increase 
the size of S* by one extra event, we can always have a 
lower energy cost. 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Setup 
We evaluate the performance of the Atlas reactivity engine 

(ARE) under OPT-1 and OPT-2 algorithms, by comparing 
their performance with that of ARE under pure push and 
pure pull mechanisms. We use an emulation approach where 
actual Atlas middleware and ARE are used, but in which 
Atlas hardware nodes are replaced by software emulators. 
The Atlas middleware and ARE have both been developed in 
Java and runs under the Knopflerfish OSGi, version 1.3.4.  

We used 50 Atlas device emulators, each representing 
either a sensor or an actuator. In the case of sensors, each 
emulator generates a sensor reading every 2 seconds. The 
readings are randomly generated using a Gaussian 
distribution function whose mean changes with time at a step 
length of 8. We have designed several test cases (or rule 
sets), which were randomly generated using a fixed rule 
structure. Each rule in a rule set included one complex event 
with a fixed length of 5 sub-events. Each event is tagged 
with a TFM relaxation of a randomly generated frequency 
and time window. To create rule sets of variable size, we 
generated a large pool of rules and carefully constructed the 
desired rule sets from this pool. We observed that ARE starts 
to thrash at 50 rules which seems to be the engine’s current 
maximum capacity. Hence we generated rule sets of size {5, 
10, 15, 20, 25, 30, 35, 40, 45, and 50}. We emulated the 
effect of three sets of sensor platforms (Table 1) by 



normalizing their energy consumption coefficients. We 
conduct experiments on each set of coefficients to quantify 
the platform’s receptiveness to our optimizations. 

TABLE I.  NORMALIZED ENERGY COEFFICIENTS FOR TRANSMISSION 
AND SAMPLING ON THREE DIFFERENT SENSOR PLATFORMS. 

Sensor platform !!  (transmission) ""  (sampling) 
S1  0.63 0.37 
S2 0.03 0.97 
S3 0.56 0.44 

S1: MICA2 sensor platform with Sensirion Humidity sensor, ChipCon CC1000 Radio [20]. 
S2: Atlas sensor platoform with Interlink Pressure Sensor, Atmel ZLink Radio [5].  

S3: MicroLEAP with ECG sensor, class-2 Bluetooth 2.0 radio [22]. 

B. Evaluation Metrics 
The main performance metric, which is measured 

throughout all experiments, is the total energy consumption 
of the entire engine. Other metrics not reported in this paper 
is startup overhead (time) and runtime overhead (time) of the 
ARE engine. The actual total energy cost measured in all 
experiments is given by (15).   

 n
push
(! + " ) + n

pull
(2! + " )  (15) 

C. Performance Comparison Results  
We compared the performance of OPT-1, OPT-2, pure 

push and pure pull for the three sensor platforms shown in 
Table 1 above. Energy cost was measured for a varying 
workload of rules (from 5 to 50 rules). Figure 4. shows the 
energy cost of S1 (MICA 2) under the four algorithms.  

Results in Figure 4. show pure push to be the worst 
performer as expected. Both OPT-1 and OPT-2 outperform 
pure pull. With 50 rules running, OPT-1 saves 17% of the 
energy cost compared to pure pull, while OPT-2 achieves an 
additional 20% savings. Figure 5. shows the push-pull 
envelope generated by each optimization. In OPT-1, push 
makes the most part of the envelope. With the adaptive 
short-cut technique enabled, the number of push has 
significantly reduced, which results in a more balanced 
envelope between push and pull in OPT-2. 

 
Figure 4.  Energy cost for four algorithms on the MICA 2 sensor platform 

(Test Set A). 

 
Figure 5.  The push-pull envelope on various sensor platforms (S1-S3). 

D. Platform Receptiveness to Optimizations 
We emulate the effects of optimization on three sets of 

sensor platforms and compare the results in Figure 6. .  We 
calculate the relative energy efficiency by comparing the 
optimized results with the cost of pure push (which is 
normalized to 1). While all three platforms receive 
substantial energy reduction, the Atlas sensor platform (S2) 
sees the most energy savings because of its low transmission 
co-efficient #. The optimization encourages pull on this 
platform due to the minimal communication overhead, and 
as a result, develops an envelope with a larger proportion of 
pulls (Figure 5. Opt2-S2).  

 

�
Figure 6.  Energy efficiency for two optimization algorithms on three sets 

of sensor platforms. 

E. Effect of the TFM Relaxation 
To examine the effect of TFM relaxations on our 

algorithms, we compared the results of two test sets -Test Set 
A shown in Figure 4. and Test Set B shown in Figure 7. , 
each featuring a different average Fe in TFM. We designed 
set A with a measured mean Fe of 4.67 per second, drawn 
from a uniform distribution over [2.00-8.00] to model the 
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case of drastic change of sampling requirement. Set B, 
however, was designed with a measured mean Fe of 14.67 
per second, representing a more moderate change of 
sampling requirement. The observed and measured effect of 
TFM can be summarized as follows.  The total energy cost 
decreases in general for all four algorithms when a moderate 
change of sampling rate was used (Test Set B). Also, the 
difference between pure push and pure pull becomes less 
significant at moderate change rate. Also, unlike Test Set A 
(drastic sampling change rate), which encourages pull more 
than push, Test Set B strikes a better balance between push 
and pull. As a result, both push-based OPT algorithms 
performed better (as compared to pure pull). Finally, we 
observe that when frequencies decrease, OPT-2 shows 
difficulty in learning the probability at run time since there 
may not be enough samples at a moderate rate of change. 
This affects the algorithm's adaptability.  Therefore, OPT-2 
did not perform significantly better than OPT-1, as in Test 
Set A. 

V. RELATED WORK 
Event-driven programming is becoming a popular 

paradigm of choice in system development for various 
application domains including healthcare [6], civil 
engineering [7] and security surveillance [8]. Extensions and 
modifications to the original event-driven model mainly 
focus on two areas: event formulation and event detection. A 
natural extension [18] to the event formulation structure is to 
support composite events. Two different mechanisms were 
proposed in [12] and [19] to manage the complexity caused 
by composite events in large-scale distributed systems. 
However, these approaches did not take into consideration 
any time relaxations that the events and the applications may 
be tolerant to. In our work presented in this paper, we 
introduce, justify, and take advantage of such time relaxation 
(the Time/Frequency Modifier relaxation). Furthermore, our 
approach takes advantage of short cut type of evaluation to 
further reduce the workload of the reactivity engine. 

 
Figure 7.  Energy cost for four algorithms on the MICA 2 sensor platform 

(Test Set B). 

Another related research is event detection primarily 
focused on data acquisition techniques, especially in sensor 
networks. A typical scheme is polling [11], in which 
application sequentially polls its underlying sensors for new 
data. In contrast, a bottom-up sensor-driven model [12] has 
also been proposed, assuming that sensors are capable of 
pushing data to applications when event occurs.  To improve 
the efficiency of data delivery and enable data sharing, 
messaging paradigms such as publish/subscribe [9] and 
push-pull [10] are widely adopted in sensor data acquisition. 
To improve the efficiency of event detection, a detection 
protocol over the publish/subscribe paradigm [20] has been 
proposed. Optimization techniques to balance push and pull 
have been extensively discussed in [10][13][14]. However, 
all of the above approaches focus on the network topology 
and routing algorithm, ignoring the optimization opportunity 
provided by the event structure and its time-frequency 
relaxations.   

VI. CONCLUSION 
We presented the Atlas Reactivity Engine, an optimized 

implementation of E-SODA – the event-driven programming 
model over the service-oriented Atlas middleware. We 
introduced a time-frequency relaxation of event execution 
creates (TFM), which we have shown to offer a rich 
opportunity for optimization. We presented the static power-
aware base push algorithm (OPT-1) utilizing the concept of 
optimal push-pull envelope and proved its optimality. Based 
on OPT-1, we developed OPT-2, a predictive-corrective 
algorithm that adaptively modulates the push-pull envelope 
at runtime based on changing event probabilities as well as 
optimization opportunities exploited by TFM and the 
structure of the events. We conducted an emulation based 
evaluation study and quantified the significant energy 
savings due to OPT-1 and OPT-2, and compared the 
achieved savings with the pure push and pure pull cases. 
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