Beyond Telemedicine: Infrastructures for Intelligent Home Care Technology

The Pre-ICADI Workshop on Technology for Aging, Disability, and Independence The Royal Academy of Engineering, London, England Steve Warren, Ph.D. Kansas State University June 26-27, 2003

This material is based upon work supported by the National Science Foundation under grants BES–0093916, CCR/ITR–0205487, and EPS–9874732 (with matching support from the State of Kansas). Opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

Assess telemedicine system design Describe where home care is headed Characteristics - Getting there Research areas Infrastructure development Early work Component architectures Standards-based devices

2

Where Home Health Care is Headed

□ In-person visits \Rightarrow telemedicine \Rightarrow smart sensors

"Virtual" medical systems: distributed, networked devices

KOSTATE Kanses Grafe University

Telemedicine Technology Assessment

What is Telemedicine?

Telemedicine is a technology-rich alternative to a traditional, face-to-face, patient/physician consultation.

Hom Med

HomMed (http://www.hommed.com)

American Telecare (http://www.americantelecare.com)

- Audio/video interaction
- Data exchange: real-time / store-and-forward
- Multimedia electronic patient records (EPRs)
- Medical devices: blood pressure cuff, pulse oximeter, stethoscope, glucose meter, weight scale, temperature probe, electrocardiogram, ...

Typical Telemedicine Systems

The Tower of Babel Pieter Bruegel the Elder (about 1525 - 1569)

Point-to-point design Stovepipe systems (one vendor creates all) \Rightarrow expensive and inflexible Lack of standards for information exchange & plugand-play operation Minimal surety mechanisms Limited read/write access to electronic patient records

Response

Desirable point-of-care systems

- Plug-and-play interoperability
 - vendor competition
 - flexible design
- Surety (security++)
- Commodity, commercial-off-theshelf (COTS) components

Misconception:

"Telemedicine" \Leftrightarrow real-time communication with a care provider

Reduce Cost

Future Home Care Systems

Future Home Layout

Characteristics of Future Home Care Delivery

New Care Delivery Model

- High risk patients: continuous monitoring, trend analysis
- Health prediction
- Patients: greater care roles
- Closed-Loop System
 - <u>Non-traditional</u> consultations
 - Care providers in exceptional circumstances
 - Systems seek & assimilate knowledge to make care decisions
- Pervasive Monitoring
 - Sensor webs within patient environments
 - Surrogate health indicators
 - Medical/environmental/behavioral/lifestyle data \Rightarrow EPRs

Characteristics of Future Home Care Systems

Characteristics of Future Home Care Systems (cont.)

12

Secure, Reliable Exchange of Medical Information

13

Getting There: Infrastructure Development Approaches

Home Networking Standards & Initiatives

- HomeRF: Shared Wireless Access Protocol (disbanded January 2003)
- HomePNA (Home Phoneline Networking Association)
- Microsoft/3Com (and similar network adapters)
- Connected.Home (Intel)
- Home API (active thru 1999; status unknown)
- 802.11b
- Bluetooth
- X10
- IEEE 1394 (FireWire)

3Com HomeConnect Home Network Phoneline Adapter

Interoperability Technology

Architecture

- CORBA [OMG]
- Java (Java Beans, Jini, Enterprise Java) [Sun]
- .NET [Microsoft]
- Generic Web Services
- uPnP [Microsoft]
- Salutation

Context

- .NET My Services
- Liberty Alliance
- CCOW

System/Device Bus

- IP-based home LAN
- IEEE 1394 (FireWire)
- HAVi
- 802.11b
- Bluetooth*
- IrDA
- USB
- PCMCIA
- IEEE 1451 (Smart Sensors)

Patient Record Access

- Good European
 Health Record
- HL7 CDA
- OMG COAS, CIAS
- CEN ENV
- Medical Interoperability
 - DICOM
 - IEEE 1073 (MIB)*
 - Point of Care Test
 - TWAIN
 - PTP

Telemedicine Interoperability Architecture <u>http://telemedicine.sandia.gov</u> (2/2003, Chapter 3) Connecting for Health, Markle Foundation <u>http://www.connectingforhealth.org/resources/DSWG Report.pdf</u> (6/5/2003)

Component Confederacies

Devices: smart, aware
Collective Intelligence
Distributed
Dynamic
Secure

18 **Basic Component Interaction** Component \Leftrightarrow Object Mediator What it knows 🗸 **Attributes** Attributes What it can do 🗸 Methods Methods B Α

Beauty

- Public interfaces; Private implementations
- Standards: interaction
- Object: client or server
- Component-level security

- Distributed (C++/Java \Rightarrow CORBA/Jini/DCOM)
- Fractal: component = device, collection, etc.

Requirements for Smart Home Care Systems

Component Self-Awareness
 Component Interoperability
 Component-Level Security

Each component should know ... about itself ...

- What it can do
- Its limitations
- How to interpret its data
- How to assess its condition
- ... about its context ...
 - Who may use it and how it may be used
 - Roles/scenarios for valid data

20

Requirement: Component Interoperability

Standard, vendor-independent interfaces
 Lego-like construction of diverse systems "on the fly"

21

Components will negotiate secure transactions

Point-to-point systems: straightforward to secure

- Small user population
- Static network topologies
- Limited range of technologies
- Distributed systems: security is more important/ problematic
 - Mass-market communications
 - Less emphasis on private networks
 - Legacy and leading-edge technologies

Early Work

Telemedicine Interoperability Architecture

Goal: Create application-specific, distributed medical systems "on-the-fly"

Benefits:

- Flexible
- Cost-effective
- Secure

"Lego-like" Component Interactions

Telemedicine Interoperability Architecture: <u>http://telemedicine.sandia.gov</u> The Role of Technology in Reducing Health Care Costs: <u>http://www.sandia.gov/CIS/6200/Telemedicine/</u>

Smaller-Scale Systems

Personal Status Monitor

User Interface Medical Devices Backplane

Ophthalmoscope/Otoscope

Thermometer

G-HER G

nemeneter

Typical Point-to-Point Telemedicine System

Communication Link

Distributed Telemedicine System

Build 1 Patient Station

USB Hub: Weight Heart Rate Blood O₂ Sat Temperature Blood Pressure ECG Stethoscope

Telemedicine Interoperability Architecture: <u>http://telemedicine.sandia.gov</u> The Role of Technology in Reducing Health Care Costs: <u>http://www.sandia.gov/CIS/6200/Telemedicine/;</u> http://www.sandia.gov/CIS/6200/Telemedicine/index_tra.htm

Build 1 Architecture

29

Medical Component Design Laboratory

Research Goals

- Point-of-care system design
- Plug-and-play component infrastructure
- Medical devices $\Leftrightarrow EPR's$
- Wearable light-based sensors
- State of health assessment/prediction

Education Goals

- Project design space
- New curriculum and web resources
- Community outreach

Support

- National Science Foundation
- Kansas EPSCoR Program
- Sandia National Laboratories

Beyond Telemedicine

8 Bluetooth

http://www.bluetooth.com/

http://www.ieee1073.org/

Technology Layout

KSTATE Kanse Statu University

Wearable Monitoring System

Beyond Telemedicine

Ambulatory ECG & Pulse Oximeter; Data Logger in a 'Fanny Pack'

Nested Master/Slave Configurations Bluetooth – Telemetry; Device discovery MIB – Device Association; Nomenclature; Data exchange

Monitoring System Hardware

Electrocardiogram

Data Logger

Bluetooth Telemetry – Brightcom Callisto II

Pulse Oximeter

Light-Based Sensors

- Heart rate
- Oxygen saturation
- Respiration
- Motion (activity)
- Vessel hemodynamics
- Relative blood pressure
- Wearer identity
- Hemoglobin derivatives
- Hematocrit

Components in Education

Lecture

Beyond Telemedicine

0

Community Outreach

Girls Researching Our World

GROW Workshop: Electric Signals from Our Bodies June 19, 2002 Kansas State University

Application: Animal Monitoring

- Goal: Continuously assess and predict cattle state of health
- Impact: Improve the ability of the livestock industry to react to and predict disease onset and spread

Mechanisms:

- Wearable/remote biomedical sensors, environmental sensors, and global positioning devices
- Bluetooth-enabled monitoring stations
- Regional information infrastructure

Prototype System

Ear Tags \Rightarrow Light-Based Sensors

Mobile Monitoring Components

Frequency (Hz)

Concluding Remarks

Key Messages

Home health care

- Reactive/episodic \Rightarrow preventative/predictive
- Closed-loop systems: beyond "telemedicine"
- Novel sensing technology & pervasive infrastructures
- Medical systems: Component confederacies
 - Ability: Smart, decision-enabled, and capable
 - Layout: Distributed and dynamic
 - Practicality: Cost-effective & high-surety

Interoperable & Secure $\Rightarrow \begin{array}{c} \text{Vendor Competition} \\ \text{\& Economy of Scale} \end{array} \xrightarrow{} \begin{array}{c} \text{Cost } \Downarrow \end{array}$

Standards

- Require consensus from entities with competing goals
- Difficult to define given quickly changing technology

Surety & Regulation

- Closed loop, high reliability systems constructed on-the-fly
- Read/write access to secure information

- Rules of engagement for role-based devices
- Control of systems with nebulous boundaries
- Unintended component interactions ("model checking")
- Systems that incorporate non-medical devices
- Inexperienced users

Contact Information

Steve Warren, Ph.D. Associate Professor **Department** of Electrical & Computer Engineering Kansas State University 2061 Rathbone Hall Manhattan, KS 66506 USA Phone: (785) 532-4644 Fax: (785) 532-1188 Email: swarren@ksu.edu http://www.eece.ksu.edu

42