
L ike it or not, tens of billions of lines
of Cobol code are still in use today.

Invented in 1959 by a group of com-
puter professionals, Cobol empowered
developers worldwide to program the
mainframe and create applications still
in existence today. Undoubtedly, Cobol
owes much of its success to its stan-
dardization, which started with the
American National Standard in 1968.

Yet these days, standards alone won’t
lead to success. With the invention of
the PC and emergence of the network,
we realized we also need new concepts
and capabilities to program networks
of computers. Standards such as TCP/IP
and IEEE 802 played a major role in
transforming the first computer net-
work concept (Arpanet) to the Internet
we know today. However, we also had
to invent new computing models such
as the client-server model, transactions,
distributed objects, Web services, dis-
connected operation, and computing
grids. Furthermore, we had to invent
various middleware to support these
emerging models, hiding the underly-
ing system’s complexity and presenting
a more programmable view to software
and application developers.

Today, with the advent of sensor net-
works and pinhead-size computers,
we’re moving much closer to realizing
the vision of ubiquitous and pervasive
computing. However, as we create per-
vasive spaces, we must think ahead to
consider how we’ll program them—just
as we successfully programmed the
mainframe and, later on, the Internet.

INTEGRATED ENVIRONMENTS
AND THEIR LIMITATIONS

Researchers have recently developed
various pervasive computing systems
and prototypes to demonstrate how this
new paradigm benefits specific applica-
tion domains (such as homeland secu-
rity, successful aging, entertainment, and
education). In most cases, the researchers
followed a system integration approach,
interconnecting various physical ele-
ments and devices including sensors,
actuators, microcontrollers, computers,
and appliances using several networks
and connectors. Unfortunately, many of
these systems and prototypes lack scala-
bility and are closed to third parties. Fur-
thermore, they have yet to demonstrate
their ability to evolve as new technolo-
gies emerge and as our understanding of
a specific application area matures.

Nonscalable integration
Any pervasive system is bound to con-

sist of numerous heterogeneous elements
that require integration. Unfortunately,
the system integration task itself, which
is mostly manual and ad hoc, usually
lacks scalability. There’s a learning curve
associated with every element in terms
of first understanding its characteristics
and operations and then determining
how best to configure and integrate it.
Also, every time you insert a new ele-
ment into the space, there’s the possibil-
ity of conflicts or uncertain behavior in
the overall system. Thus, tedious,
repeated testing is required, which fur-
ther slows the integration process.

Consider a temperature sensor that
needs to be connected to an embed-
ded Java program to periodically
report a refrigerated truck’s tempera-
ture. Say you have two boxes—one
from Hewlett-Packard containing an
iPAQ running Linux, and another
from Maxim containing a one-wire
temperature sensor. These will require
quite a bit of physical and hardware
interfacing. In addition, you’ll need to
write low-level software to interact
with the sensor. Even worse, change
the sensor, vendor, or PDA operating
system and you might have to com-
pletely rewrite the software.

Closed-world assumptions
Another problem is that an inte-

grated environment is a relatively closed
system—it’s not particularly open to
extensions or expansion, except per-
haps accidentally. It’s tightly coupled to
a combination of technologies that hap-
pened to be available at development
time. It’s thus difficult—if not impossi-
ble—to add new technologies, sensors,
and devices after system integration is
complete.

An integrated environment is also
closed and restricted to only a few par-
ticipants—the designers, system inte-
grators, and users. There’s no easy way
to let a third party participate. For
example, an energy- and utility-efficient
smart home developed in 2005 might
not be compatible with a utility-saving
sprinkler system developed in 2006 by
a third-party vendor.

Programming
Pervasive Spaces
Sumi Helal

84 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/05/$20.00 © 2005 IEEE

Editor: Sumi Helal ■ University of Florida ■ helal@cise.ufl.edu

Standards & Emerging Technologies

Fixed-point concepts
Also problematic is the fact that our

experience in building integrated envi-
ronments is limited by the set of con-
cepts we know at the time of devel-
opment. This might sound like an
always-true statement regardless of
whether we’re doing pervasive, mobile,
or distributed computing, but it’s espe-
cially troubling in pervasive computing.

Take smart homes, for example.
Unlike Nokia phones, you can’t upgrade
and replace them every six months.
Once built for a specific goal (such as to
assist the elderly or handicapped, save
power, or support proactive health for
an entire family), the home will likely be
used for decades to come. That’s why we
need to ensure that our smart spaces will
be compatible with not-yet-developed
concepts. This might not be realistic, but
smart pervasive spaces are bound to out-
last any known set of pervasive com-
puting concepts. Service gateways and
context awareness are two examples of
recent concepts that have steeply influ-
enced how we think of pervasive com-
puting. Surely other new concepts are on
the horizon.

THE NEED FOR MIDDLEWARE
AND STANDARDS

Moving beyond integrated environ-
ments will require a middleware that
can automate integration tasks and
ensure the pervasive space’s openness
and extensibility. The middleware must
also enable programmers to develop
applications dynamically without hav-
ing to interact with the physical world
of sensors, actuators, and devices. In
other words, we need a middleware
that can decouple programming and
application development from physi-
cal-space construction and integration.

Self-integration
Universal Plug and Play and other

service discovery protocols are difficult
to ignore when considering a middle-
ware for pervasive computing. UPnP lets
home computer owners connect devices
to their PCs without having to manually

integrate them (that is, without having
to install drivers, for example). We sim-
ilarly need a middleware that lets ele-
ments in a pervasive space integrate
themselves automatically into that space.
Such self-integration would lead to scal-
able, economical, and open pervasive
computing—scalable and economical
because we’d no longer need human sys-
tem integrators (engineers or technicians
working hundreds of hours and charg-
ing thousands of dollars), and open
because third parties implementing sen-
sors or devices could participate at any
time in the pervasive space’s life cycle.

Self-integration, however, requires a
standard—which could be based on
UPnP, OSGi, or other existing or new
standards. The challenge is to find a
standard whose adoption is possible by
a broad category of vendors ranging
from appliances to consumer electron-
ics to electric and electronic boards and
components. It should be just as easy
for, say, a heat sensor manufacturer to
implement the standard as it would be
for a plasma display manufacturer. If
both the heat sensor and the plasma

display were equally able to advertise
their presence and register their serv-
ices once brought into a space, we’d be
much better off than we are now with
integrated environments.

In reality, however, many sensors and
other elements in a pervasive space
can’t participate in any standard or non-
standard protocols. A heat sensor, for
instance, doesn’t have any processing or
memory capabilities to engage in any
protocols. How can such a sensor be
self-integrated? It can’t, at least not with-
out a sensor platform—a hardware mid-
dleware that the (heat) sensor manufac-
turers supply. Sensor platforms don’t
have to be powerful computers. They
only need to carry on board their sen-
sors’ service definitions. For instance, a
sensor platform might only need an
embedded microcontroller and a small
EEPROM memory storing UPnP XML
data, or an OSGi Bundle or its URL.

Appliances are another challenge to
the concept of self-integration. How
can you integrate a floor lamp into a
space? Again, you can’t, unless you
have another piece of middleware.

JANUARY–MARCH 2005 PERVASIVEcomputing 85

Given that most appliances use power
plugs, perhaps we could invent a
“smart plug” hardware middleware
that could integrate floor lamps, irons,
microwaves, and the whole world of
appliances into smart spaces.

Unless the pervasive computing re-
search community pays more attention
to middleware and its value, we’ll con-
tinue to waste and duplicate our efforts.
Fortunately, Smart-Its is one prototyped
concept that’s a step in the right direc-
tion (for more information, see “Physi-
cal Prototyping with Smart-Its,” IEEE
Pervasive Computing, July–Sept. 2004,
pp. 74–82). Another strong contribution
to the middleware movement is Smart-
Plugs (see www.harris.cise.ufl.edu), which
the University of Florida is currently pro-
totyping. It’s also encouraging to see a
glimpse of such middleware available
today as commercial products: Phidgets
(or Physical Widgets) cater to a limited
extent to this middleware thinking (see
www.phidgetsusa.com).

Self-integration in pervasive comput-
ing thus seems feasible and within
reach. We just need to find a sensible
framework to define it and then select
a widely accepted standard. Anyone
volunteering to take on these tasks?

Semantic exploitation
Any middleware we use should also

extend self-integration to include serv-
ice semantics in addition to the service
definition so that a joining entity could
explore and fully participate in the
space. For example, the temperature
sensor (via its sensor platform) could
offer information about its domain val-
ues (such as whether it measures in Cel-
sius or Fahrenheit). It could also sug-
gest other aggregated services that it
could offer if and when other services
become available in the space (such as
a climate sensor if a humidity sensor is
added). Exploiting semantics will let the
pervasive space’s functionality and
behavior develop and evolve.

Space-specific ontologies will enable
such exploitation of knowledge and
semantics in pervasive computing. This

again seems feasible and within reach.
Ontologies for smart homes have started
to emerge, so it shouldn’t be too difficult
to define other important ontologies
such as for a classroom, coffee shop, bus
station, bus, train, or airport terminal,
to mention just a few.

PROGRAMMABILITY
A critical goal for middleware is to

present application developers with a
programmable environment. In other
words, the middleware should create
and activate the functionality of an oth-
erwise self-integrated yet application-
less pervasive environment. If the mid-
dleware fulfills this role, it’ll create a
new paradigm in which the process of
creating and integrating the physical
world is separate from the process of
designing and “engineering” the spe-
cific desired applications. By compari-
son, an integrated environment has the
applications integrated and bundled
with everything else.

The middleware should let pro-
grammers perceive the smart space as a
runtime environment and as a space-
specific software library for use within
a high-level language. For example, it
should present all sensors and actuators
in a form ready for use—perhaps as a
service. With special support to browse
and learn such a dynamic library of
services, a programmer should be able
to immediately use the space sensors
and actuators from within the applica-
tion. Service composition would then
be a natural model for developing
applications on top of this middleware.

Having a service view of every sensor
and actuator will enable rapid prototyp-
ing and a much faster development life
cycle. For example, suppose you want
an application that can control ambient
light when the TV is on. A programmer
quickly browses the space and identifies
a room-light sensor service, a window-
blind sensor service, and a TV actuator
service. The programmer could then eas-
ily develop logic that uses all these serv-
ices to determine a possible action, which
could in turn use additional services. So,

an action might use the light-dimming
actuator service and possibly the motor-
ized-blind actuator service to bring light
to ambient conditions.

The middleware’s programmability
aspect will not only empower applica-
tion development but also support the
notion of context-aware application
development. Assuming a simple defini-
tion of context—“a particular combi-
nation of sensor states”—it should be
straightforward for programmers to
define contexts as special-service com-
positions of relevant sensor services. Pro-
grammers could vary context sensors’
properties to allow a variety of context
production and consumption models.

Who should program a pervasive
space?

It shouldn’t be surprising if computer
and IT professionals act as pervasive
computing programmers. Using mid-
dleware and standards, they should be
productive and focus on the applica-
tion’s goals. It should be easy to train
such programmers and thus to create a
whole developer community. However,
we can’t gain the benefits of pervasive
computing without involving domain
experts in application development. A
psychiatrist, for instance, would be the
best individual to program an at-home
application to detect if insomnia is an
experimental treatment’s side effect.
Similarly, a gastroenterologist would be
the most appropriate person to test,
nonintrusively, if an elderly patient’s
peptic ulcer is the result of an H. pylori
bacteria caused by insufficient hygiene.
Envisioning such scenarios helps reveal
the need to change our programmer
model to accommodate domain experts
as well as computer professionals.

Programming models
Object discovery, reflection, and bro-

kerage, all of which can deal with
dynamic environments, have been use-
ful mechanisms in object-oriented pro-
gramming. Yet service discovery and
lookup services have proven to be even
more effective in such environments. We

STANDARDS & EMERGING TECHNOLOGIES

S T A N D A R D S & E M E R G I N G T E C H N O L O G I E S

86 PERVASIVEcomputing www.computer.org/pervasive

STANDARDS & EMERGING TECHNOLOGIES

JANUARY–MARCH 2005 PERVASIVEcomputing 87

need similar concepts to effectively pro-
gram pervasive spaces. Space reflection
will be essential in providing applica-
tion developers with a programming
scope. As pointed out earlier, self-
integration could provide all the informa-
tion needed for space reflection in the
simple form of service advertisements.
Therefore, service-oriented program-
ming seems more appropriate than the
object model for pervasive computing.
Service-oriented programming is also a
much simpler model, which increases
the chances of success in broadening the
programmer model. Of course, there’s
lots of room for debate on this issue.

Indeed, we need a programming model
that can deliver simple but powerful
abstractions for a broad category of
programmers. Some context-aware pro-
gramming toolkits appear to fill this
need.1 A programmer presented with a
context/condition/action model (simi-
lar to the event/condition/action model
followed in active databases and other
systems) might quickly develop better
applications, but we need to further
investigate this.

To achieve dependability and cope
with behavior uncertainty, we need some
“global” programming. Such program-
ming won’t be application-specific and
could be equivalent to administrative
programming of distributed system tools
and monitors. Any proposed program-
ming model should address this need.

Integrated Development
Environments?

IDEs have revolutionized program-
mers’ productivity and promoted the
adoption of good software engineering
practices. There’s an even greater need
for IDEs in pervasive computing.
(Don’t confuse IDE with IE—integrated
environments or, as I call them, first-
generation pervasive computing sys-
tems). Visual Studio, Forte, and Eclipse
are great examples of IDEs.

Imagine a smart space being repre-
sented as an Eclipse-like project show-
ing tabs for existing sensors, actuators,
and contexts as well as service and con-

text composition tools. Such an IDE
would be initialized by pointing it to a
space URL instead of to a user work-
space file directory. The IDE would use
space reflection to initialize and to pro-
vide the programmer with the view and
scope necessary for application devel-
opment and debugging. The IDE could
even be a graphical development envi-
ronment in which services, context, and
applications are represented or created
graphically using a LabView-style build-
ing-block interface (see www.ni.com/
labview). Developed applications might
be committed back to the space as reg-
istered services. Without expanding on
the range of capabilities these IDEs
should offer, it should be obvious that
such IDEs will contribute significantly
to programming pervasive spaces. We
need to get busy prototyping this con-
cept and validating its impact.

M y goal here wasn’t to suggest any
specific directions or endorse any

specific standard but rather to stimu-
late a discussion on the development of
pervasive spaces. I welcome your input
and invite experts working in this area
to share their work and views with this
column’s readers.

REFERENCE

1. A. Dey, D. Salber, and G. Abowd, “A Con-
ceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-
Aware Applications,” Human Computer
Interaction J., vol. 16, 2001, pp. 97–166.

Sumi Helal is a professor at the University of

Florida and is the director of its Harris Mobile and

Pervasive Computing Laboratory. He is also pres-

ident and CEO of Phoneomena, Inc. Contact him

at helal@cise.ufl.edu.

How to Reach Us

Writers
For detailed information on submitting
articles, write for our Editorial Guidelines
(pervasive@computer.org) or access
www.computer.org/pervasive/author.htm.

Letters to the Editor
Send letters to

Shani Murray, Lead Editor
IEEE Pervasive Computing
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
pervasive@computer.org

Please provide an email address or
daytime phone number with your letter.

On the Web
Access www.computer.org/pervasive or
http://dsonline.computer.org for informa-
tion about IEEE Pervasive Computing.

Subscription Change of Address
Send change-of-address requests for
magazine subscriptions to address.change@
ieee.org. Be sure to specify IEEE Pervasive
Computing.

Membership Change of Address
Send change-of-address requests for
the membership directory to directory.
updates@computer.org.

Missing or Damaged Copies
If you are missing an issue or you
received a damaged copy, contact
membership@computer.org.

Reprints of Articles
For price information or to order reprints,
send email to pervasive@computer.org or
fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact William Hagen, IEEE Copyrights and
Trademarks Manager, at copyrights@ieee.org.

MOBILE AND UBIQUITOUS SYSTEMS

