
Short Paper—Write2Code: Pen-Based Educational Tool for Java

Write2Code: Pen-Based Educational Tool for Java

https://doi.org/10.3991/ijet.v16i03.17979

Pedro Guillermo Feijóo-García ()
University of Florida, Gainesville, FL, U.S.A

Universidad El Bosque, Bogotá D.C., Colombia

pfeijoogarcia@ufl.edu

Yu-Peng Chen, Shaghayegh Esmaeili, Yingbo Ma,

Christina Gardner-McCune
University of Florida, Gainesville, U.S.A

Abstract—Java instruction generally involves the use of Integrated Devel-

opment Environments (IDEs) to assist learners in understanding program struc-

ture and code syntax. However, the usage of IDEs can make learners’ under-

standing dependent on the computer, which makes it challenging for them to

transition to write their solutions by hand for programming assessments and

coding interviews. Research suggests that handwriting slows down learners’

thinking processes, helping them to better reflect on and engage in problem-

solving contexts. We developed Write2Code, a handwriting-recognition appli-

cation, to scaffold students’ learning of code syntax and logic by recognizing

Java input from their handwritten text. In this paper, we present the tool’s archi-

tecture, features, and third-party technologies. We also describe how our design

helps learners understand Java through an interface that promotes an unplugged

experience with feedback similar to an IDE.

Keywords—Computing education, handwritten recognition, visual languages,

instructional technologies, scaffolding

1 Introduction

The Computer Science (CS) community has been using the Java programming lan-

guage for decades as a medium to instruct programming to novice learners [1,2]. Java

instruction generally involves using Integrated Development Environments (IDEs)

[3]. IDEs provide learners and developers with tools to visualize program structure

and code syntax, assisting in the development of scripts and programs. Although the

common IDEs for Java involve scaffolding features used in learning and industrial

scenarios (e.g., views and controllers created from model classes; code created from

UML diagrams), the usage of these tools can make learners rely on the computer as a

medium of understanding [4].

Handwritten coding is an existing practice for CS interviews and CS assessments.

Prior research suggests that handwriting helps learners to understand and reflect on

concepts better than when they use typing as a modality [5,6,7]. However, there is

iJET ‒ Vol. 16, No. 03, 2021 307

https://doi.org/10.3991/ijet.v16i03.17979
mailto:almanzac@unbosque.edu.co

Short Paper—Write2Code: Pen-Based Educational Tool for Java

little research on the benefits of handwriting code as a strategy that helps learners

better reflect on their coding skills.

Research from the CSEd community on text-based coding as a strategy [4,8] and

findings on intelligent tutoring systems based on handwritten input for education

[9,10,11,12] motivate us to explore the following research questions:

• How can a handwriting-based intelligent tutoring system be designed to foster

learning of a programming language such as Java?

• What kind of scaffolds do learners need when handwriting code?

• How do learners perform when using a handwritten-based interface that provides

feedback as an IDE?

Grammar and syntax are important elements when learning a new programming

language, and they lead learners and educators to look for IDEs scaffolding. This

prevents learners from experiencing the cognitive advantages of handwriting their

own code. This paper describes the architecture, features, and the technologies used to

develop Write2Code, as an innovative CSEd tool that allows learners to handwrite

Java code as if they were writing on a piece of paper. The tool provides feedback to

learners on pre-compilation errors (e.g., syntax and logical errors). We designed this

tool to help learners understand the programming language independent from the

computer as a medium, with an interface that promotes a CS unplugged experience

with the benefits of feedback similar to an IDE.

2 Background

Introductory programming instruction generally involves the use of Integrated De-

velopment Environments (IDEs) to assist learners in understanding program structure

and code syntax. However, the usage of IDEs can make learners’ understanding de-

pendent on the computer, making it challenging for them to transfer their knowledge

to paper-based assessments. In this section, we review literature on

1. The advantages of handwriting against typewriting in learning contexts

2. CSEd studies addressing learners’ performance in programming paper-based, and

computer-based assessments

3. Handwriting-based tutoring systems.

Several studies from different disciplines have compared typing and handwriting to

evaluate their pros and cons on learning and reflection [5,6,7]. Mueller & Oppenhei-

mer [5] conducted research on note-taking in college classroom environments and

found that learners who used handwriting to take notes performed better when as-

sessed on conceptual questions than those who did not. Learners who handwrote their

notes engaged in more processing than learners who typed, by being more selective

about the information they wanted to keep and retrieve. Learners who typed their

notes tended to transcribe lectures verbatim because they could type faster than when

handwriting. This limited their reflection and cognitive processing of concepts. Simi-

larly, Dahlström & Boström [6] compared different writing modalities with elemen-

308 http://www.i-jet.org

Short Paper—Write2Code: Pen-Based Educational Tool for Java

tary school learners. They argue that the slower process of writing by hand allows for

more thought in writing, meaning there are potential links between hand, brain, motor

embodiment, and memory. We can relate that argument with Kongsgården &

Krumsvik’s work [7], who found that learners perceived to learn better when writing

longhand versus typing.

When it comes to CSEd and programming as a context, Grissom et al. [8] found

that learners assessed on the computer with an IDE performed better when compared

to those who were assessed on paper. Nevertheless, regardless of the existing IDE

scaffolds and documentation, learners assessed on the computer still exhibited persis-

tent errors such as incorrect calculations and base cases. On the other hand, Corley et

al. [4] found no difference in the performance between learners using an IDE format

exam or a paper one. However, the authors reported significant differences when

referring to syntax errors: learners assessed with the IDE format exam demonstrated

fewer syntax errors because they had access to scaffolds, whereas those assessed on

paper did not. The access to scaffolds appears to be the main difference between using

an IDE or a piece of paper when assessing a CS learner.

As we have presented, handwriting can be used to foster learning and the percep-

tion of learning. However, how can a piece of paper compete with scaffolded IDEs

that commonly feature typing-based input modalities?

Referring to handwriting as a modality on interactive surfaces such as tablets and

hybrid laptops, Anthony, Yang & Koedinger [9] found that handwriting input on

interactive surfaces can be useful to foster learning. Their work suggests that hand-

write-input intelligent tutoring systems can especially help in problem-solving activi-

ties, e.g., algebra in K-12. Similar results can be seen in the work by Kang,

Kulshreshth & LaViola Jr [10], which features handwritten recognition for math prob-

lems involving algebraic and geometric representations. Work similar to Le & Nak-

agawa’s research [11], which introduces a system that recognizes online handwritten

mathematical expressions (MEs) to assist on K-12. De Silva et al. [12] also found

tutoring systems useful in contexts such as circuits calculi on Kirchhoff laws.

Tutoring systems built upon handwriting input can be used for problem-based con-

texts to foster learning. Programming is problem-based, and the language of Java

features a grammatically structured context. Thus, a tool such as Write2Code can be

useful to foster CSEd.

3 Write2Code: Features and Design

Write2Code has three main features that allow students to solve programming

questions using hand-written input:

1. A main canvas for hand-written code

2. Two visual boxes to illustrate the digitalization of code and its corresponding com-

piled output

3. A button-set featuring actions on code edition and display (see Figure 1).

iJET ‒ Vol. 16, No. 03, 2021 309

Short Paper—Write2Code: Pen-Based Educational Tool for Java

Fig. 1. Write2Code: Graphical User Interface

Fig. 2. Write2Code: GUI Button Menu

The button menu offered to the user features the following actions for editing the

written code (see Figure 2):

1. Undo: This button allows the user to step back to previous versions of the written

code. This feature serves to track back inputs in order to fix errors recognized by

the user or by the system.

2. Redo: Opposite to Undo, this button allows the user to step forward to the most re-

cent versions of the written code. In other words, this function serves as a way to

ignore a previous undoing.

3. Clear: This button lets the user clear the input canvas, and the two boxes featured

(i.e., digitalized input and compiled output).

4. Recognize: This feature updates the state of the system by asking it to recognize

the input currently existing on the canvas.

5. Digitalize: This button transforms the handwritten text into digital text. The button

allows users to 1) visualize their input as it will be interpreted by the inner checker,

and 2) to edit in an easier way the handwritten input by having a better control of

spaces and recognized characters.

6. Check: This feature takes the recognized code from the user’s handwritten input

and sends it to the inner checker of the system. The outcome of this action is dis-

played in the box entitled “Compiled Output” box.

In addition to these features, the main canvas recognizes MyScript predefined

strokes [13] (see Section 5), allowing the user actions such as deleting a character or

310 http://www.i-jet.org

Short Paper—Write2Code: Pen-Based Educational Tool for Java

word by scratching it, or adding a space between letters or words by painting a verti-

cal line between them. Write2Code promotes the best of an IDE with an interface that

emulates a piece of paper and a pen (https://write2codejavarecognizer.

firebaseapp.com). See Figure 3.

Fig. 3. Write2Code: Proposed Interface

4 System’s Architecture

Write2Code is a system created to work as a web application on touch-based client

devices (e.g., tablets, touchscreen laptops). As the user interacts with the system

through the client device, a sequence of actions is triggered. The flow goes from

handwritten text recognition to Java code compilation and syntax-semantic checking.

It ends with presenting visual feedback to the user (see Figure 4).

Fig. 4. Architecture: Context Diagram

As shown in Figure 5, our system is built using a 3-tier software architecture, con-

stituted by two main layers. The first one is the Presentation Layer, which gathers

those components built for the GUI and front-end features corresponding to the Java

Handwritten code recognition. This layer was built using web technologies, was dis-

iJET ‒ Vol. 16, No. 03, 2021 311

Short Paper—Write2Code: Pen-Based Educational Tool for Java

tributed in two tiers, and reunites the external development dependencies used for this

project: Polymer-CLI and MyScript (see Section 5).

Fig. 5. Architecture: Deployment Diagram

The second layer is the Services Layer, in charge of the Java code compilation and

checking tasks. The layer is constituted by two components distributed in two pack-

ages. It features a REST API that receives the requests from the Presentation Layer’s

components and responds with the compilation errors of Java code input by the user.

The communication between layers happens using HTTPS-POST requests/responses

with the REST API on the Services Layer, and AJAX on the Presentation Layer (see

Section 5).

5 Third-Party Components and Technologies

To recognize the handwritten code on a tablet in real-time, we used MyScript API

[13], which allows us to perform on-line handwriting recognition with 2D-point se-

quence as input. Specifically, we used the web component library myscript-text-web

from MyScript Interactive Ink SDK [14], which is a development toolkit provided by

MyScript. The library provided us with methods that enable desirable handwritten-

312 http://www.i-jet.org

Short Paper—Write2Code: Pen-Based Educational Tool for Java

recognition functions. The handwriting recognition service is provided by MyScript

Cloud [15] as a platform-based service. We accessed the MyScript recognition engine

using the server API available in the platform. We also used Polymer-CLI [16] to

create custom elements used as standard DOM elements for the GUI web page. Poly-

mer-CLI was used based on implementation recommendations given by the MyScript

documentation. SaaS Cloud Platforms were used to deploy and host both the Recog-

nizer and the Checker, connected through the HTTPS protocol and the JavaScript

library AJAX [17]. The Recognizer was deployed using Firebase Host Service [18].

The Checker was deployed using Heroku [19].

6 Synthesis, Discussion, and Future Work

In this paper, we have introduced Write2Code as an educational tool that allows

novice programmers to learn Java on an interface for handwritten input, providing

feedback on pre-compilation errors similar to an IDE. We have also discussed about

the potential pedagogical benefit of this design concept based on existing literature on

writing modalities, interactive tutoring tools featuring handwriting input, and IDE-

based assessments in CSEd. As we presented in Section 2, tutoring systems built upon

handwriting input can be used for problem-based contexts to foster learning. Pro-

gramming is problem-based, and Java as a language features a grammatically struc-

tured context. Thus, a tool such as Write2Code can be useful to foster CSEd.

Future work will involve the evaluation of the tool from HCI and CSEd perspec-

tives, addressing the research questions posed in Section 1. We expect to be able to

evaluate the tool once the COVID-19 crisis is over, so that we can recruit human

participants to interact with our solution.

7 Acknowledgement

The authors would like to express their gratitude to Dr. Jaime Ruiz, Ph.D. for the

Natural User Interaction (NUI) course he instructed in Spring 2020 at the University

of Florida, U.S.A. Thanks to it, we were able to brainstorm, design, and develop the

project that led to this paper.

8 References

[1] Simon, Mason, R., Crick, T., Davenport, J. H., & Murphy, E. (2018). Language Choice in

Introductory Programming Courses at Australasian and UK Universities. Proceedings of

the 49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18). https

://doi.org/10.1145/3159450.3159547

[2] Becker, B.A., & Quille, K. (2019). 50 Years of CS1 at SIGCSE: A Review of the Evolu-

tion of Introductory Programming Education Research. Proceedings of the 50th ACM

Technical Symposium on Computer Science Education (SIGCSE ’19). https://doi.org/10.

1145/3287324.3287432

iJET ‒ Vol. 16, No. 03, 2021 313

https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/3287324.3287432

Short Paper—Write2Code: Pen-Based Educational Tool for Java

[3] Luxton-Reilly, A., Simon, Albluwi, I., Becker, B.A., Giannakos, M, Kumar, A.N., Ott, L.,

Paterson, J., Scott, M.J., Sheard, J., & Szabo, C. (2018). Introductory programming: a sys-

tematic literature review. Proceedings Companion of the 23rd Annual ACM Conference on

Innovation and Technology in Computer Science Education (ITiCSE 2018 Companion).

https://doi.org/10.1145/3293881.3295779

[4] Corley, J., Stanescu, A., Baumstark, L., & Orsega, M. C. (2020). Paper Or IDE?: The Im-

pact of Exam Format on Student Performance in a CS1 Course. Proceedings of the 51st

ACM Technical Symposium on Computer Science Education. https://doi.org/10.1145/33

28778.3366857

[5] Mueller, P. A., & Oppenheimer, D. M. (2014). The Pen Is Mightier Than the Keyboard:

Advantages of Longhand Over Laptop Note Taking. Psychological Science, 25(6), 1159–

1168. https://doi.org/10.1177/0956797614524581

[6] Dahlström, D., & Boström, B. (2017). Pros and Cons: Handwriting Versus Digital Writing.

Nordic Journal of Digital Literacy, 12(04), 143-161. https://doi.org/10.18261/issn.1891-

943x-2017-04-04

[7] Kongsgården, P. & Krumsvik, R. J. (2016). Use of tablets in primary and secondary

school-a case study. Nordic Journal of Digital Literacy. 2016(04), 248–270. https://doi.org/

10.18261/issn.1891-943x-2016-04-03

[8] Grissom, S., Murphy, L., Mccauley, R., & Fitzgerald, S. (2016). Paper vs. Computer-

based: A study of Errors in Recursive Binary Tree Algorithms. Exams. Proceedings of the

47th ACM Technical Symposium on Computing Science Education - SIGCSE '16. https://

doi.org/10.1145/2839509.2844587

[9] Anthony, L., Yang, J., & Koedinger, K. R. (2012). A paradigm for handwriting-based in-

telligent tutors. International Journal of Human-Computer Studies, 70(11), 866-887. https

://doi.org/10.1016/j.ijhcs.2012.04.003

[10] Kang, B., Kulshreshth, A., & Laviola, J. J. (2016). AnalyticalInk: An Interactive Learning

Environment for Math Word Problem Solving. Proceedings of the 21st International Con-

ference on Intelligent User Interfaces - IUI '16. https://doi.org/10.1145/2856767.2856789

[11] Le, A.D., Nakagawa, M. A system for recognizing online handwritten mathematical ex-

pressions by using improved structural analysis. IJDAR 19, 305–319 (2016). https://doi.

org/10.1007/s10032-016-0272-4

[12] De Silva, R., Bischel, D. T., Lee, W., Peterson, E. J., Calfee, R. C., & Stahovich, T. F.

(2007). Kirchhoff's Pen: a pen-based circuit analysis tutor. Proceedings of the 4th Eu-

rographics Workshop on Sketch-based Interfaces and Modeling - SBIM '07. https://doi.

org/10.1145/1384429.1384445

[13] MyScript. (n.d.). Retrieved from https://www.myscript.com/

[14] Interactive Ink SDK (iink) for web-based platform. (n.d.). Retrieved from https://develo

per.myscript.com/docs/interactive-ink/1.3/web/overview/introduction/

[15] MyScript Cloud. (n.d.). Retrieved from http://doc.myscript.com/MyScriptCloud/2.3.0/

index.html

[16] Polymer-CLI. Retrieved from https://polymer-library.polymer-prject.org/3.0/docs/tools/pol

ymer-cli

[17] Ajax. (n.d.). Retrieved from https://api.jquery.com/jquery.ajax/

[18] Firebase. (n.d.). Retrieved from https://firebase.google.com/

[19] Heroku. (n.d.). Retrieved from https://www.heroku.com/

314 http://www.i-jet.org

https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3328778.3366857
https://doi.org/10.1145/3328778.3366857
https://doi.org/10.1177/0956797614524581
https://doi.org/10.18261/issn.1891-943x-2017-04-04
https://doi.org/10.18261/issn.1891-943x-2017-04-04
https://doi.org/10.18261/issn.1891-943x-2016-04-03
https://doi.org/10.18261/issn.1891-943x-2016-04-03
https://doi.org/10.1145/2839509.2844587
https://doi.org/10.1145/2839509.2844587
https://doi.org/10.1016/j.ijhcs.2012.04.003
https://doi.org/10.1016/j.ijhcs.2012.04.003
https://doi.org/10.1145/2856767.2856789
https://doi.org/10.1007/s10032-016-0272-4
https://doi.org/10.1007/s10032-016-0272-4
https://doi.org/10.1145/1384429.1384445
https://doi.org/10.1145/1384429.1384445
https://www.myscript.com/
https://developer.myscript.com/docs/interactive-ink/1.3/web/overview/introduction/
https://developer.myscript.com/docs/interactive-ink/1.3/web/overview/introduction/
http://doc.myscript.com/MyScriptCloud/2.3.0/index.html
http://doc.myscript.com/MyScriptCloud/2.3.0/index.html
https://polymer-library.polymer-prject.org/3.0/docs/tools/polymer-cli
https://polymer-library.polymer-prject.org/3.0/docs/tools/polymer-cli
https://api.jquery.com/jquery.ajax/
https://firebase.google.com/
https://www.heroku.com/

Short Paper—Write2Code: Pen-Based Educational Tool for Java

9 Authors

Pedro Guillermo Feijóo-García is a Fulbright Scholar and Ph.D. student of the

Human-Centered Computing doctoral program. He works in the Virtual Experiences

Research Group under the supervision of Dr. Benjamin Lok, Ph.D. He is affiliated to

the Computer & Information Science & Engineering Department at University of

Florida, Gainesville, FL, U.S.A. He is a Core-Faculty Assistant Professor of the Sys-

tems Engineering Program at Universidad El Bosque, Bogotá D.C., Colombia. (e-

mail: pfeijoogarcia@ufl.edu).

Yu-Peng Chen is a Ph.D. student of the Computer Science doctoral program. He

works in the INIT Lab under the supervision of Dr. Lisa Anthony, Ph.D. He is affili-

ated to the Computer & Information Science & Engineering Department at University

of Florida, Gainesville, FL, U.S.A. (e-mail: yupengchen@ufl.edu).

Shaghayegh Esmaeili is a Ph.D. student of the Human-Centered Computing doc-

toral program. She works in the INDIE Lab under the supervision of Dr. Eric Ragan,

Ph.D. She is affiliated to the Computer & Information Science & Engineering De-

partment at University of Florida, Gainesville, FL, U.S.A. (e-mail: esmaeili@ufl.edu).

Yingbo Ma is a Ph.D. student of the Computer Science doctoral program. He

works in the LearnDialogue Lab under the supervision of Dr. Kristy E. Boyer, Ph.D.

He is affiliated to the Computer & Information Science & Engineering Department at

University of Florida, Gainesville, FL, U.S.A. (e-mail: yingbo.ma@ufl.edu).

Christina Gardner-McCune is an Associate Professor and the Director of the En-

gaging Learning Lab. She is affiliated to the Computer & Information Science &

Engineering Department at University of Florida, Gainesville, FL, U.S.A. (e-mail:

gmccune@ufl.edu).

Article submitted 2020-08-22. Resubmitted 2020-10-05. Final acceptance 2020-10-06. Final version
published as submitted by the authors.

iJET ‒ Vol. 16, No. 03, 2021 315

mailto:pfeijoogarcia@ufl.edu
mailto:yupengchen@ufl.edu
mailto:esmaeili@ufl.edu
mailto:yingbo.ma@ufl.edu
mailto:gmccune@ufl.edu

