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Evaluating Graphical Perception of Visual
Motion for Quantitative Data Encoding

Shaghayegh Esmaeili, Samia Kabir, Anthony M. Colas, Rhema P. Linder, and Eric D. Ragan

Abstract—Information visualization uses various types of representations to encode data into graphical formats. Prior work on
visualization techniques has evaluated the accuracy of perceived numerical data values from visual data encodings such as graphical
position, length, orientation, size, and color. Our work aims to extend the research of graphical perception to the use of motion as data
encodings for quantitative values. We present two experiments implementing multiple fundamental aspects of motion such as type,
speed, and synchronicity that can be used for numerical value encoding as well as comparing motion to static visual encodings in
terms of user perception and accuracy. We studied how well users can assess the differences between several types of motion and
static visual encodings and present an updated ranking of accuracy for quantitative judgments. Our results indicate that
non-synchronized motion can be interpreted more quickly and more accurately than synchronized motion. Moreover, our ranking of
static and motion visual representations shows that motion, especially expansion and translational types, has great potential as a data
encoding technique for quantitative value. Finally, we discuss the implications for the use of animation and motion for numerical
representations in data visualization.

Index Terms—Information visualization, animation and motion-related techniques, empirical study, graphical perception, evaluation.
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1 INTRODUCTION

Mapping data values to appropriate corresponding vi-
sual representations is a fundamental necessity in making
information visualization effective and understandable. For
example, when looking at a bar graph, the length of the
bars is used to represent different values. Other examples
of visual encodings include: use of position in scatter plots;
color in heat maps; and use of angle and area in pie charts.
An appropriate choice for visual encoding is important
to help users more accurately interpret values, perform
comparative tasks more efficiently, or improve success in
various other data inspection tasks. Different types of visual
representations are perceived and interpreted differently by
viewers. Knowledge of graphical perception of visual encod-
ings’ properties refers to the visual decoding of information
encoded on graphs [1] and is essential in allowing visu-
alization designers to effectively communicate data. Prior
research has studied the effectiveness and rankings of per-
ceptual accuracy of such encodings through empirical stud-
ies [1], [2], [3], [4]. For example, the use of position and length
encodings are known to be highly effective for quantitative
values while supporting high accuracy in human interpre-
tation, whereas some forms of visual representations (e.g.,
color, texture, volume) have limitations for enabling accurate
human judgement of numerical values.

Our research seeks to advance the foundational knowl-
edge of graphical perception of visual representations
through research of the use of motion for data encodings.
While motion and animation are commonly employed in
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digital visualizations for transitions in information visual-
ization (e.g., [5], [6], [7], [8], [9]), representing movement in
maps and scientific visualization (e.g., [10], [11], [12]), and
to show temporal change (e.g., [13], [14], [15]), empirical
research of motion representing numerical values is limited
in visualization literature. Yet several qualities of motion
perception could prove advantageous for data encoding
and potentially broaden the design space for visualization.
For instance, human vision is adept in quickly detecting
movement and can also distinguish different types, patterns,
and states of motion [16]. Perceptually, motion can also
quickly grab viewers’ attention [17]. People have a stronger
ability to perceive motion in their lateral view than any other
graphical elements [16], which could lead to benefits in large
control-panel visualizations or peripheral displays. While
prior research has explored the utility of different motions
to represent categories or groups [17], [18], the addition of
novel research of human judgment of motion encodings for
numerical data can enable new design options for a wide
range of visualization applications.

In this work, we investigate the graphical perception of
quantitative data encoding using motion. The primary goal
of this paper is to answer the following research questions:

• How do different types and attributes of motion en-
coding for quantitative data affect accuracy of human
graphical perception?

• How do different types of motion visualization com-
pare to conventional static encodings in terms of graph-
ical perception accuracy?

To address our research questions, we conducted two
controlled experiments to measure user graphical percep-
tion accuracy of different motion encodings of numerical
data. The first experiment tested the perception accuracy of
different variations of motion encoding in terms of type,
speed, and synchronicity. We then used the findings from
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experiment 1 to refine our different motion encodings tech-
niques for further study in a second experiment. In exper-
iment 2, we compare a refined set of motion encodings to
static encoding methods. We present the results with rank-
ing of accuracy for the graphical perception of quantitative
values to account for both static and motion encodings.

The results are promising for the use of motion for nu-
merical visualization, and the contributed empirical knowl-
edge from our studies can translate to important implica-
tions for visualization design. Prior work has only focused
on investigating visual motion for animated transitions,
categorical value encoding, and representing movements.
However, our work contributes to the foundational knowl-
edge of graphical perception of visual representations by
providing a thorough empirical study investigating the role
of dynamic visual channels for quantitative data encoding
compared to traditional static visual channels.

2 RELATED WORK

Our research of motion for data encoding is related to
existing research in graphical perception and the use of
animations in visualization.

2.1 Graphical Perception of Data Encodings

The study of perceptual judgments of different visual rep-
resentations of data values is foundational to information
visualization. Numerous studies have directly evaluated the
accuracy of judgments (sometimes called graphical percep-
tion) of quantitative encodings. Perhaps the best known of
such studies, Cleveland and McGill [1], compared primary
graphical encodings such as position, length, direction, an-
gle, and color to provide a ranking in terms of perceptual
accuracy for distinguishing differences. Their findings show
that graphical perception of numerical values encoded by
position and lengths are highly accurate, whereas the values
that texture or shading represent are less accurate in terms
of graphical perception. More recently, Heer and Bostock
[4] recreated McGill and Cleveland’s work by incorporating
crowdsourcing into their perception test methodology. They
included new graphical components in their study but
ultimately arrived at a similar ranking as Cleveland and
McGill [1]. In a related study, Saket et al. [19] also evaluated
perceptual tasks with visual encodings of numerical values,
but they focused on interactive visualizations allowing man-
ual adjustment of visual representations. In their study, in-
stead of asking participants to detect the difference between
encoded values, they asked their users to change different
graphical components to match a target value. Taking a
different approach, Chung et al. [20] assessed Bertin’s retinal
variables in terms of perceptual orderability, i.e., how well
different visual encodings can support the interpretation of
numerical order. Similar to Heer and Bostock’s work [4],
Chung et al. incorporated crowdsourcing into their studies
and provided findings on which variables are orderable and
how they affect the performance of min and max judgments.

Our work also evaluates perceptual judgments but fo-
cuses on motion as a visual encoding for data. Ultimately,
it would be valuable to consider how motion compares to
other encodings for numerical judgments. However, many

different variations of motion are possible for data represen-
tation. Thus, our work provides foundational studies about
different types of motion encodings for quantitative values.

2.2 Motion in Visualization

Prior research has incorporated motion into visualizations
for a variety of different purposes. Motion and animation
are commonly employed in digital visualizations for tran-
sitions in information visualization (e.g., [5], [6], [7], [8],
[9], [21]), representing movement in maps and scientific
visualization (e.g., [10], [11], [12]), and to show temporal
change (e.g., [13], [14], [15]). In a broad sense, animation
covers a variety of ways for showing visual change over
time, and different visualizations have incorporated differ-
ent types of animations and motions. Motion is becoming
more popular in mainstream online publications, charts,
maps, and applications [22]. The New York Times, for ex-
ample, published an interactive motion graph that depicts
income mobility [23]. In another instance, Bartram and Ware
investigated the salient features of motion that can be used
meaningfully in animation and video creation [24]. They
explored different motion features and identified features
that can express particular emotions.

Focusing on perceptual capabilities and attention to mo-
tion, Bartram et al. [18] incorporated motion in graphs for
grouping and filtering in visual searches. They explored
several pre-attentive features of motion to discover how
it might be used for visual search. They incorporated per-
ceptual tests of motion encodings. In particular, they tested
angular differences and direction.

Huber and Healey also used motion to encode categor-
ical data in visualizations [17]. Their work explored three
perceptual dimensions of motion: flicker, direction, and
velocity. They suggest minimum values that are required to
distinguish between different values of motion properties.
We draw our design of motion encoding development from
their guidelines. Their work showed that, like color and
texture, motion could be used to encode categorical data
representation. They recommended these features could
replace color and size for categorical data representation.
Also, similar to our work, their study considered whether
flickering animations were synchronized coherently such
that cycles started together, and they found synchronized
flicker to be more quickly and easily distinguishable than
asynchronous animation.

Bartram and Ware [18] discuss the advantages of us-
ing motion for encoding categorical data and clusters of
related data. They showed even small coherent motions
could highlight and establish a perceptual grouping be-
tween otherwise dissimilar visual objects. Therefore, they
suggest that motion properties can be used for pre-attentive
search and filtering groups of data, specifically focusing on
motion as a perceptually efficient display dimension and its
grouping effect. Similar to our presented study, this work
has studied different types of motion, such as translational
motion and size changes. However, previous studies focus
on categorical data rather than quantitative data encodings.

In the pre-attentive process of acquiring an overview
from visualizations, we take advantage of detectable fea-
tures of graphical components (such as grouping and color
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coding) [25]. Thus, when using motion for any pre-attentive
processing, prior research has focused on investigating pa-
rameters and types of motion which can be distinguished
with little conscious effort [26].

Animation can also be used in graphs or visualization to
make it more purposeful or attractive. For instance, Archam-
bault et al. [27] developed animation in dynamic graphs to
help create mind maps more successfully. In a recent work,
Romat et al. [28] studied different types of animation in the
edges of node-link diagrams to show relationships between
nodes. This work considered different patterns, frequencies,
and speeds in animated edge textures used in the connecting
lines in network graphs to show distinct categories of links.

Motion has been incorporated into different visualiza-
tions to aid search and processing. Nakayama and Silver-
man [29] used motion for the experimentation of serial
and parallel conjunctive search (i.e., when looking for an
object with two or more relevant features which may not be
distinct [30]) in visual displays. In their visual search exper-
iments, they have used multiple color television monitors to
see how the human visual system can search via serial or
parallel processing on conjunctive dimensions. They used
motion as a stimulus dimension of display systems along
with other dimensions such as color. Their findings showed
how serial processing is better for the conjunctive search
since, compared to a simple search, participants were unable
to perform a parallel search for the anomalous motion over
a given color, and their reaction time was also significantly
higher. Motion has also been used to facilitate search tech-
niques in visual queries [31]. They showed that spatial
grouping among stimuli in a visual search dramatically
affects search time performance. They show that motion
may not be a unitary dimension and also provided evidence
for separate processing of speed and the direction in stimuli.

Taking a different approach, Kerlic [32] used indepen-
dent moving objects to depict large multidimensional data.
His “boids” implemented animated geometric objects of dif-
ferent shapes and interactive views for further investigation.
Instead of encoding every dimension of data points, he
showed that we can save rendering time and simplify the
visualization by visualizing only essential features. Van [33]
used motion to visualize multiple features, such as speed
and direction of flow patterns in fluid dynamics. Fluid
dynamics have a more direct metaphor for representing
animation. Our research looks at how abstract scalar values
can be encoded via motion.

Etemadpour and Forbes investigated different types of
motion to identify clusters in multidimensional data [34].
They investigated the minimum difference in terms of speed
that is perceivable by participants. They found that more
similar movements were more difficult for participants to
distinguish. In another example, Chen et al. [35] demon-
strated flickering animation to represent point overdraw in
scatter plots in multi-class matrix views. In their work, more
flickering in a region of a scatter plot could be perceived as
point density, but their work did not explore the encoding
of quantitative values.

As another interesting use of motion in visual interfaces,
Velloso et al. [36] studied interaction techniques that allow
users to simulate motion for target selection in an interactive
way. While not directly related to numerical data encoding,

this work relates to the human ability to categorically dis-
tinguish and produce distinct types of motions.

Overall, previous research has successfully demon-
strated the use of motion to signify different properties in vi-
sual systems. The ability to use motion to represent categor-
ical information is fairly well established, although specific
empirical studies and guidelines on effectively using motion
encodings are still limited. To our knowledge, markedly
little work has directly evaluated the use of motion for
quantitative scalar values. Our research examines motion
encoding for quantitative data using different variations
of motion attributes, such as type, speed, synchronicity,
and how accurate these encodings are regarding graphical
perception. Our work provides empirical data to ground
future research of using motion for numerical encoding in
information visualization.

3 EXPERIMENT 1: DIFFERENT TYPES OF MOTION

This paper presents two controlled experiments to study
graphical perception of motion encodings for quantitative
data. First, experiment 1 evaluates the feasibility of different
types of motions for data encoding through an experiment
studying variations of motion encodings in terms of the type
of motion, speed, and synchronicity. The primary purpose of
this experiment is to investigate considerations for the use
of motion encodings for scalar values regarding different
motion properties. The results of this experiment provide
preliminary insights about encoding quantitative data with
motion, and establish a basis for refining speed and syn-
chronization of different motion encodings to compare with
static ones in experiment 2.

3.1 Goals

Previous research has established the encoding of quanti-
tative data values into graph using different static elements
(e.g., length of bars in bar charts, position of points in scatter
plots, and area or angle in pie charts.) In this experiment,
we aim to explore the encoding of numerical values using
different motion parameters and investigate how successful
people are in precisely perceiving the numerical differences.
Therefore, as the first step, we aim to study various data
encoding visualization designs comparing different motion
properties. The results of this experiment would give us a
better understanding on which of the motion parameters
and values are more suitable for encoding quantitative
values.

3.2 Motion Variations

To answer our first research question, it is important to test
different motion parameters in a controlled experiment to
better understand what forms of motion might work best
to represent quantitative values. We decided to explore data
encoding using three major features of motion: motion type,
speed, and synchronization. In the following paragraphs,
we discuss each one of these features in more detail.
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Fig. 1. Motion types: (a) vertical motion (b) expansion motion (c) flicker-
ing motion. Arrows show the movement direction.

3.2.1 Motion Type

For the purposes of our experiment, we use the term motion
type to describe how visual objects change position, shape,
or appearances over time. We decided to study three basic
types of motions to cover a range of glyph animations:
vertical linear motion, flickering motion, and expansion mo-
tion, where objects expand and contract. These motion types
are of high importance as established in prior works to be
useful for data encoding [17], [37]. These motion types are
illustrated in Figure 1.

In the vertical linear motion, a glyph (in a shape of a
circle) oscillates up and down vertically along a straight
line with a speed associated with the encoded value. We
chose this motion type to represent animations involving
translational movement of visual objects in the screen space.
For flickering motions, the object flicker (i.e., disappear and
reappear) at regular intervals based on the given speed. This
type of motion was chosen to represent animations where
visual objects remain at the same location and do not change
in size. In expansion motion, the visual object animates to
change size with a particular speed. Objects continuously
expand to a larger size and then compress back to a smaller
size in subsequent intervals. This type of motion was chosen
to represent animations where location is constant; however,
they change in size. We included these three motion types
in the first experiment to examine their influence on the
perceived accuracy of numerical values.

3.2.2 Motion Speed

The speed of a moving object can be measured in different
ways [38]. Examples of different methods for measuring mo-
tion include: frequency (i.e., cycles per second), cycle time
(i.e., time for a single cycle), or movement rate (i.e., distance
per second.) For our purposes of comparing different types
of motion, we use cycles per second (f in Hertz) and cycle
time (T in seconds) to quantify animation speed. Cycle time
T is inversely proportional to the cycles per second (f = 1

T ),
i.e., as frequency increases, cycle time shortens.

We designed the study to test a range of motion speeds.
Based on perceptual research suggesting it can take between
f = 0.2 and 0.3 Hertz at the minimum to detect velocity
changes [39], [40], we decided on f = 0.2 Hz as the
minimum bound for speed in our study. The maximum
speed of f = 3 Hz was chosen based on our informal
testing to avoid extreme speeds that may not be reasonable
to distinguish, but also cover a sufficient range of speed that
might be used in different applications (we note that, for
digital presentations, perceptual thresholds may depend on
a display’s update capabilities, and formalizing the bounds

TABLE 1
Ratio values in experiment 1. The first column, Ratio, is the scalar

value encoded by the ratio of the third and second column.

Ratio Circle 1 Speed
(Cycles per Second)

Circle 2 Speed
(Cycle per Second)

1.125 1.6 1.8
1.786 1.4 2.5
1.8 0.2 0.36

3 (pair 1) 0.2 0.6
3 (pair 2) 1.0 3.0

5 0.4 2.0
7 0.4 2.8
10 0.3 3.0

12.5 0.2 2.5
15 0.2 3.0

of motion detection is outside the scope of our presented
research).

We decided to use two moving circles with different
speed values in our experiment with the goal of measuring
human perception of the numerical speed difference of the
second circle compared to the first one. This decision was
inspired by the prior studies in the graphical perception of
static data encodings, such as Cleveland and McGill’s [1],
but translated it for investigating dynamic data encodings
with motion. Participants were asked to quantify the ratio of
the speed difference between the two moving circles. For the
task in our study design, we used relative comparisons of
motions, where each value of ratio can be encoded with two
objects moving with different speed values. Larger ratios
would display one circle moving faster than another one.
On the other hand, if the numerical value of the ratio is
small, circles would move with speed values close to each
other.

To explore the effect of different ratios on the perceived
accuracy, we decided to test a large range for ratio values
considering the minimum and maximum speed bound. To
test the possible ratios with different motion encodings, we
first started at 0.2 Hz and 3 Hz for the speed of circle 1
and 2, respectively, to have the highest ratio (i.e., 15), and
continued decreasing that for the rest of the ratios. Due to
the practical limitations regarding the study duration, it was
not feasible to test for all possible values of ratios between
1 and 15 (including both whole number and decimal point
values). Therefore, we decided to pick ten different ratio
values considering that they: (a) cover the entire chosen
range, (b) consist of both whole number and decimal point
values for ratio, and (c) cover the values of speed in the
minimum and maximum speed bound (i.e., between 0.2 and
3 Hz). Table 1 shows the ratios used in experiment 1. The
encoded ratio with value of 3 has two pairs. In this case,
we included both a fast-speed value pair and a slow-speed
value pair.

3.2.3 Synchronization
For a given motion type, synchronization can also be mod-
ified and affect the graphical perception of encoded values.
In our study, synchronization refers to whether the move-
ment of two or more things happens at the same time or
rate whilst each moving object would have a different speed
value. In the context of our experiment, we defined the
absence of synchronicity when one of the moving objects is
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continuously moving without any interruption and depen-
dence to the other object. It is important to investigate how
users would respond to the presence and absence of any
synchronization between the movements of two objects.

Two moving objects can be synchronized both in terms of
time or number of cycles. For the time-based synchroniza-
tion, given the same time period, all objects will complete
different numbers of cycles depending on how fast or slow
they are. In the later version of synchronization (i.e., number
of cycles), all objects complete a given number of cycles in
different periods depending on their speeds. We conducted
a pilot study to test both synchronization methods. All pilot
study participants found the time-based synchronization
very confusing as the circles can stop suddenly in the middle
of completing a cycle. One way to reduce this issue is to use
only whole numbers for data encoding. However, it would
cause a constraint on the overall criteria of quantitative
encoding. Therefore, we decided to implement synchro-
nization based on a given number of cycles. On the other
hand, for non-synchronized motion, the objects will move
continuously without any interruptions. We hypothesized
that aligned cycles would support easier comparison since
the time it takes for the two circles to align could be an
indicator of quantifying the speed difference.

3.3 Experimental Design
Experiment 1 followed a within-subjects design, and each
participant completed all conditions using our web-based
application. Our goal was to investigate which motion en-
coding scheme could prompt participants to provide the
most accurate estimate of the underlying scalar value. We
had three independent variables:

• Motion type with 3 levels (flicker, vertical, and expan-
sion).

• Synchronization with 2 levels (synchronized, not-
synchronized).

• Ratio (ratio between values of encoded pairs) with 10
levels: 1.125, 1.786, 1.8, 3 (pair: 0.2 and 0.6), 3 (pair: 1
and 3), 5, 7, 10, 12.5, 15.

In total, each participant completed 60 trials (3 types
of motion × 10 ratios × 2 sessions for the presence or
absence of synchronization). We counterbalanced the order
of synchronization sessions across all participants, and the
ordering of the trials within these sessions was randomized
for each participant.

3.4 Study Task and Measures
The study had participants complete a series of perceptual
judgments testing various configurations of motion encod-
ings. In each trial, participants would look at a specific type
of motion visualization, including two circles with different
speeds. Their task was to estimate the difference between
the speed of paired motion encoded numbers by answering
a question in the form of: “How many times faster is circle
2 compared to circle 1?”.

We decided to use a slider control in our study ap-
plication for selecting the response value since providing
dynamic feedback on the slider handle, especially in the
tasks that require precision, would reduce over or underesti-
mation bias [41]. Additionally, the slider length was decided

to be almost three times longer than needed to prevent any
bias or steering toward specific values during the selection
period.

This task provided us a baseline to investigate the per-
ceptual error given different configurations of motion en-
codings. We logged participant’s answers (their perception
of the scalar difference between circles) and the response
time (from the time they see a new trial to the time they hit
the submit button) to further evaluate the precision of users’
perception.

3.5 Procedure

The study was approved by our associated Institutional
Review Board (IRB). Participation was voluntary, and extra
credit was offered as compensation for approved courses.
We conducted the study as a laboratory study, with all
participants completing the study using the same computer
labs. All participants completed the study on computers
with 23-inch monitors and 1440×900 resolution. After com-
pleting the consent process, participants were randomly
assigned to a group dictating the order of synchronized
or non-synchronized trials. Afterward, participants were
instructed by the experimenter about the study structure,
their tasks, and the application environment. Then, they per-
formed three sessions with optional breaks of 3-5 minutes
between each.

The first session was a practice session for participants
to get familiar with the application and graphs; no data was
analyzed from the practice session. We collected data for the
second and third sessions, where participants only viewed
non-synchronized motion trials in one session; in the other
session, all trials were synchronized. The participant could
proceed to the next trial only after finishing the current
trial. After completing all trials, participants were asked to
fill out a brief online questionnaire including demographic
and interview questions about their opinion and experience
during the study. Each participant took approximately 30
minutes to complete the study.

3.6 Participants

Experiment 1 was completed by 92 participants. All were
university students aged between 19 and 54 years (median:
21 years), with 68 who identified as male and 24 as female.
In terms of experience with visualization, 80 reported hav-
ing frequent or regular experience with data graphs, charts,
and information visualization. The other 12 participants
reported a minimal level of experience with information
visualization.

4 EXPERIMENT 1 RESULTS

This section describes the analysis and results from experi-
ment 1. We measured both: 1. the error rate (as a percentage)
of perceived accuracy, and 2. response time for each trial. We
calculated the error rate as:

Error rate =
|judged ratio − true ratio|

true ratio
× 100 (1)

The participant’s answer (i.e., judged ratio) would indicate
their judgment of the difference ratio between speed of two

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3193756

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 11,2023 at 14:25:50 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF IEEE TRANSACTION ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, - - 6

circles in each trial. Response time was the logged time
in seconds, i.e., from the time the participant was shown
each trial to the time they submitted their answer. In total,
we started our data analysis with 5520 data points (92
participants × 60 trials) for both dependent variables: error
rate and response time.

4.1 Data Analysis: Error Rate and Response Time

To address our research questions, we needed to test how
different parameters of motion affected the response time
and accuracy of the perceived difference between graphs.

To analyze the differences between the various motion
encodings, we used a data analysis approach similar to
previous studies of graphical perception [1], [4] to establish
a foundation on how accurately people perceive encoded
quantitative data in regards to different parameters of mo-
tion. Similar to as done by Cleveland & McGill [1], we apply
a log transformation (log2) to account for inflated measures
for judgements of larger value differences.

Before hypothesis testing, we performed outlier han-
dling based on the 1.5×IQR rule, where a data point is
considered an outlier if it was more than 1.5 times the
interquartile range beyond the first or third quartiles. We
applied outlier removal on our log-transformed data for
each combination of independent variables separately, i.e.,
based on each motion type and whether they are synchro-
nized or not. Overall, we excluded 0.44% of collected data
for error rate and 5.60% for response times. We further in-
vestigated outliers for any possible issues related to specific
participants or conditions, but we did not find any patterns
in the distribution of outliers. We completed the rest of the
data analysis steps with log-transformed data, excluding the
outliers.

We analyzed error and response times using two-way
repeated-measures factorial ANOVAs to test for effects of
the different motion types and synchronicity variations.
When checking assumptions for parametric testing of both
log error rate and response time,the normality assumption
was met, but we found sphericity assumption was an issue
for some metrics; in such cases, we report the test results
with Greenhouse-Geisser (GG) correction. ANOVA test ef-
fect sizes are provided by generalized eta-squared (η2G).
Reported tests use a significance level of α = 0.05.

4.2 Results: Error Rate and Response Time

In this section, we present the results of the statistical tests
on error rate and response time.

4.2.1 Error Rate
Figure 2 shows the error rate results across all conditions.
The ANOVA test found a significant main effect of type
with F (1.78, 80.99) = 18.41, p < 0.001 with GG estimate
of ε < 0.89 and η2G = 0.03. A Bonferroni-corrected posthoc
analysis found the vertical motion type to have significantly
lower error than flicker (p < 0.001) as well as expansion
(p < 0.01). It also showed a significant difference between
expansion and flicker (p < 0.01). Overall, vertical had the
highest accuracy (i.e, least error), and flicker had the least
accuracy.

Fig. 2. Average log error rate for different variations of the motion
encodings from Experiment 1. Statistical significance at p < 0.01 and
p < 0.001 are denoted by (**) and (***), respectively.

Fig. 3. Average response time for different variations of the motion
encodings from Experiment 1. Statistical significance at p < 0.001 is
denoted by (***).

Additionally, the ANOVA test found a significant main
effect of synchronization on log error rate with F (1, 91) =
81, 36, p < 0.001. Error was significantly lower for non-
synchronized motion compared to synchronized motions.

We also detected a significant interaction effect be-
tween synchronization and motion type with F (2, 182) =
3.12, p < 0.001. Figure 4 shows the interaction plot of
motion type and synchronicity. This interaction effect in-
dicates that the differences among the types of motion are
greater for the nonsynchronous motion design than for the
synchronous version.

4.2.2 Response Time

Figure 3 shows the response time results across all condi-
tions. The ANOVA test found a significant main effect of
motion type on response time with F (2, 182) = 12.99, p <
0.001. A Bonferroni-corrected posthoc analysis found the
Expansion motion type to have significantly lower response
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Fig. 4. Interaction plot displaying fitted values of the dependent variable
(error rate) on the y-axis while the x-axis shows the values of the
first independent variable (motion type). The lines represent values
of the second independent variable (synchronicity) with a significant
interaction effect seen by the different line slopes. Error bars represent
standard error.

time than both Vertical motion (p < 0.001) and flicker
(p < 0.001).

The ANOVA test also found a significant main effect
of synchronization with F (1, 91) = 26.47 and p < 0.001.
Response time was significantly lower for non-synchronized
motion compared to synchronized motions.

No interaction effect was detected between synchroniza-
tion and motion type on response time.

5 EXPERIMENT 2: COMPARISON OF STATIC AND
MOTION GRAPHICAL ENCODINGS

Continuing the work from experiment 1, we conducted
a within-subjects user study comparing motion encodings
with static data encodings. We designed our second study
of motion encodings based on the results of experiment 1.
This section presents the goals, experimental design, and
detailed explanation of experiment 2.

5.1 Goals

In this experiment, we aim to compare different types of
motion encoding to static encodings, and investigate how
motion encodings would rank similar to the Cleveland &
McGill’s ranking of graphical perception accuracy of static
data encodings [1].

To address our second research question, we evaluated
different visualizations encodings by conducting a con-
trolled experiment including quantitative evaluation meth-
ods. For our experimental study, we created a web-based
application (similar to experiment 1) to test user percep-
tion of different visualizations. Our goal was to investigate
which visualization encoding could prompt participants to
provide the most accurate estimate of the underlying scalar
value and rank motion encodings compared to the other
conventional visualization methods. In this experiment, the
participant’s task was to estimate the difference between
two quantitative encoded values shown with various types
of encodings. This task provided us with a baseline to
investigate the perceptual accuracy given different configu-
rations of motion encoding compared to conventional static
visualizations.

5.2 Experimental Design
Our controlled study followed a within-subject design, and
each participant completed all the trials for different visu-
alization using our web-based application. The application
consists of a series of perceptual judgments testing various
configurations of encoding.

We had two independent variables:
• Visualization Type with 9 levels: length, position,

color, angle, area, vertical (motion), expansion (motion),
flicker (motion), and vibration (motion)

• Ratio (ratio between values of encoded pairs) with 6
levels: 1.5, 2, 2.5, 3, 3.5, 4

We decided on the different static visualizations types
similar to the encodings in Cleveland and McGill’s study [1].
We restricted ourselves to the static encodings of length,
position, angle, area, and color due to the study duration
limitation. However, we made sure to cover the complete
ranking of static encodings. We chose length and position
since they are the highest-ranked by Cleveland & McGill
and color since it was one of the lowest-ranked. Area and
angle serve as two midpoints. Expansion can also be seen
as an extension of the area encoding, i.e., a natural aug-
mentation of area changing at different speeds over time;
hence, examining the static area encoding would prove to
be useful. For the motion encodings, we used similar mo-
tion encodings as experiment 1: vertical motion, flicker, and
expansion. We also added vibration as a proxy for sinusoidal
motion as mentioned in Ware et al.’s work [42].

To decide on the ratios between the encoded values of
two graphs, we used ratio values similar to those from the
study performed by Saket et al. [19]. In their study, the target
value was either 25%, 50%, 75%, 125%, 150%, 175%, 200% of
the original value. However, in our study, we always made
the second visualization (on the right-hand side) larger than
the left. Therefore, we changed our ratios to 1.5, 2, 2.5, 3,
3.5, 4, while still matching those ratios used in Saket et
al.’s study [19]. Figure 5 shows our visualization design for
different types of encodings.

In total, each participant completed 108 trials: 9 visual-
izations × 6 ratios × 2 repeats. The ordering of these trials
were randomized for each participant to avoid an order bias
in the data analysis.

5.3 Study Task and Measures
In each trial, a participant would look at a specific type
of visualization with two graphs that have encoded two
pairs of values with a particular ratio. The participant’s
task was to answer a question in the form of: “How
many times [farther/larger/faster/darker] is the [posi-
tion/area/speed/color] of [circle/bar/angle] 2 compared to
[circle/bar/angle] 1?”. The exact wording of the question
in our application depended on the specific condition and
visual encoding.

For each trial, we logged participant answers for the
scalar difference between graphs and the response time to
use as measures for our data analysis.

5.4 Procedure
The study was approved by our associated Institutional
Review Board (IRB). Participation was voluntary, and extra
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Fig. 5. Encoding types: static (up) and motion (bottom). The arrows
show the direction of movement, and the length of the arrows indicate
the speed of movement, i.e., longer arrows show faster motion. See
supplementary materials for more clear visualizations design, especially
for motion-related ones.

credit was offered as compensation for approved courses.
Initially, we had plans to conduct the study as a laboratory
study with participants completing the procedure using one
lab computer. However, due to the COVID-19 pandemic,
we had to adjust our procedure to an online format. The
study was administered as a “live” monitored online study
with a custom web application. We developed the study
application with HTML, CSS, JavaScript, and the D3.js li-
brary [43]. All studies were conducted through synchronous
Zoom sessions where participants received the user study
link and shared their screen with the experimenter for
observation purposes. After obtaining the informed consent,
participants were instructed by the experimenter about the
study structure, their tasks, and the application environ-
ment. Afterward, the participant performed the study in
three parts with optional breaks of 1 to 2 minutes.

The first part was a practice round for participants to
get familiar with the web-based application, and the task;
no data was logged during the practice session. During the
practice, each participant completed one random static trial
and one random motion trial. The purpose of the practice
round was to help explain the task and make sure the par-
ticipant understood the types of comparison. In the second
part, each participant performed 108 randomly assigned
trials of perceptual tasks. The participant could proceed to
the subsequent trial only after finishing the current trial.
In the third part, participants would fill out a brief online
questionnaire including background (such as demographic,
education, data visualization expertise) and free-response
questions about their opinions and experience during the
study. Each participant took approximately 30 minutes to
complete the study.

5.5 Participants
In Experiment 2, we had 41 participants of different occupa-
tions, such as graduate and undergrad students, software,
and mechanical engineer. Sixteen participants self-reported
as female, and 25 reported as males. Ages ranged from 20
to 40 years, with a median age of 27 years. When asked to
rate their experience with information visualization, 68.30%
of the participants rated themselves 3 and 4 (Average and
Advanced, respectively) on a 1–5 scale. There was no report
of colorblindness.

6 EXPERIMENT 2 RESULTS

In this section, we first describe the methods used to analyze
the collected data from experiment 2. We then provide an
overview of our results. More detailed quantitative results
have been listed in Figure 6.

We collected data from 41 participants where each par-
ticipant had 108 trials (6 ratios × 9 encoding types × 2 trials
each.) We measured both: 1. the error rate (as a percentage)
of perceived accuracy, and 2. response time for each trial.
We calculated the error rate similar to experiment 1 (see
equation 1). In total, we started our data analysis with 4428
data points (41 participants × 108 trials) for both dependent
variables: error rate and response time.

6.1 Data Analysis: Error Rate and Response Time
We tested how different types of encodings affected re-
sponse time and accuracy of the perceived difference be-
tween graphs and where motion-related encodings stand
compared to other static encodings. Therefore, we used
the same data analysis approach as Experiment 1 (see
section 4.1), but to compare motion to conventional static
methods. We removed outliers based on the 1.5×IQR rule
for each encoding type separately. Overall, we excluded
1.13% of collected data for error rate and 3.86% for response
times. By further investigating the outliers, we did not find
any patterns or issues in the distribution of outliers.

To investigate whether there are any statistically signif-
icant differences between the nine independent encoding
types regarding error rate and response time, we conducted
a one-way repeated-measures ANOVA. Before testing, we
checked that both log error rate and response time data met
the assumptions of the one-way ANOVA test. The normality
assumption was met for parametric testing, but Mauchly’s
Test of Sphericity indicated that the assumption of sphericity
had been violated for both log error rate and response time.
To address this issue, we report test results with corrected
degrees of freedom using Greenhouse-Geisser (GG) esti-
mates (ε < 0.73 for error rate and ε < 0.68 for response
time). ANOVA test effect sizes are provided by generalized
eta-squared (η2G), and reported tests use a significance level
of α = 0.05.

6.2 Results: Error Rate and Response Time
In this section, we present the results of the statistical tests
on error rate and response time. We found a significant main
effect of encoding type for both error rate and response
time. We followed with Bonferroni-corrected posthoc com-
parisons to identify specific encoding types with significant
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differences. Figure 6 shows the detailed results of our statis-
tical tests for both error rate and response time.

6.2.1 Error Rate or Accuracy
Figure 6a shows average error rate by different encoding
types. Our results indicate that length has the lowest and
vibration has the highest error rate across all encoding types.
In motion-related encoding types, expansion has the lowest,
and vibration has the highest error rate. For static encoding
types, length has the highest accuracy, and color has the
least. Accuracy of position and length is significantly better
than all other encoding types, which is consistent with the
results from Cleveland & McGill [1]. Pairwise comparison
did not detect any significant differences between expansion,
angle, flicker, and vertical motion, which can be interpreted as
a group of encoding types with similar accuracy. We also
detected no significant differences between area and color.
The last encoding type in our accuracy ranking is vibration
which is significantly less accurate than all other encodings.
Vibration being error-prone could be caused by the intrinsic
higher frequency (compared to a vertical motion), since
participants reported eye strain which made it more difficult
for them to judge the difference of speed.

6.2.2 Response Time
Figure 6c shows average response time by different encod-
ing types. Our results indicate that color has the fastest and
expansion has the slowest response time across all encoding
types. For static encodings, color has the fastest response
time, and area has the least. Additionally, we compared
our response time results to similar static encoding types
in Saket et al. study [19]. Our response time results for
length, position, and area are consistent with their study
in regards to their rankings (fast to slow); however, our
results show faster response times for color and angle. This
inconsistency might be due to the difference in study design
approaches since interactivity was an essential factor in their
encodings design. On the other hand, the fast response
time of color encoding is consistent with similar empirical
studies of graphical perception done by Nowell et al. [44]
and Cleveland and McGill’s [1]. In motion-related encoding
types, vibration has the fastest, and expansion has the slowest
response time. These results indicate that participants spent
less time on vibration encodings, but they have the least
accuracy in regarding visual perception. On the other hand,
participants have spent the longest time on expansion, which
has the highest accuracy among motion encodings.

Based on our statistical test results, we ranked encoding
types based on both accuracy and response time. Table
2 shows our ranking as well as Cleveland and McGill’s
ranking of accuracy. Our ranking of static encodings in
regards to accuracy is highly consistent with Cleveland and
McGill’s. Considering both static and motion encodings,
position, length, and expansion are among the best, and area,
color, and vibration are the worst in terms of accuracy.
However, our ranking in regards to response time is dif-
ferent from accuracy. Overall, static encoding has a faster
response time compared to motion encodings. To some
extent, we expected this outcome for response time since
participants would probably spend more time observing
cycles of motion encodings to decide on the perceived

difference. However, it is still valuable to empirically have
a relative comparison of response time between different
encoding types. In summary, our results of accuracy show
that human perception of motion encoding is relatively
accurate, especially for expansion, flicker, and vertical motion.

TABLE 2
Ranking of the encoding types based on accuracy and response time

with better performing encodings higher in the list. Rows indicate
significant differences between encodings. Motion encodings are

shown in bold blue text.

Our Study (Experiment 2) Celevland & McGill [1]

Time Accuracy Accuracy

Color Position, Length Position
Angle, Length, Vibration Expansion Length

Position, Area, Flicker Angle, Flicker, Vertical motion Angle
Vertical motion, Expansion Area, Color Area

Vibration Color

6.3 Bias Analysis: Accuracy of Estimations

In addition to considering absolute accuracy, we analyzed
the observed error rates with consideration for participants’
tendencies to over or underestimate encoded values across
different representations. This can be considered a type of
perceptual bias for data interpretations, and similar analyses
are commonly performed in studies of graphical perception
(e.g., [1], [19], [45], [46]).

To assess bias, we use the directional error between
judged ratio responses and true ratio responses (∆ =
estimated ratio− actual ratio), where a positive ∆ indicates
overestimation and negative ∆ indicates underestimation.
To test for evidence of bias, we analyzed the total of di-
rectional errors per encoding with a one-sample t-test to
compare with an expected baseline of 0, i.e., when the mean
of ∆ across all estimations is 0, it shows that there is no bias
in estimations. We checked the normality condition for the
data of each encoding type before testing. The assumption
was met for all encoding types. We summarize the results
of the one-sample t test in Table 3. The results show that
the mean of the total bias is significantly different from 0
for some encoding types with a p < 0.05. In other words,
there is a significant bias of underestimation for angle, length,
expansion, flicker, and color encoding types.

TABLE 3
Results of bias analysis for all encoding types. The bold red stars show

a significant presence of bias. The significance level is α = 0.05.

Encoding Bias Estimation Significance

angle −0.570 underestimate p < 0.05 *
area 0.026 overestimate no

position −0.091 underestimate no
length −0.104 underestimate p < 0.05 *

expansion −0.283 underestimate p < 0.05 *
flicker −0.230 underestimate p < 0.05 *

vertical motion 0.144 overestimate no
vibration −0.257 underestimate no

color −0.740 underestimate p < 0.05 *

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3193756

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 11,2023 at 14:25:50 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF IEEE TRANSACTION ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, - - 10

Test of Within-Subjects Effects for Error Rate
Type of Encoding (F(5.84,233.60) = 68.49, p < 0.001, η2G = 0.73)

Significant Post-hoc Comparisons of Types of Encoding

(Ranked from most accurate to least)

length vs. expansion, angle, flicker, vertical motion, area, color, vibration p < 0.001
position vs. expansion, angle, flicker, vertical motion, area, color, vibration p < 0.001
expansion vs. area, color, vibration p < 0.01
angle vs. color, vibration p < 0.05
flicker vs. color, vibration p < 0.05
vertical motion vs. color, vibration p < 0.001
color vs. vibration p < 0.001

Test of Within-Subjects Effects for Response Time
Type of Encoding (F(5.44,217.60) = 32.56, p < 0.001, η2G = 0.68)

Significant Post-hoc Comparisons of Types of Encoding

(Ranked from fastest response time to slowest)

color vs. angle, length, vibration, position, area, flicker, vertical motion, expansion p < 0.001
angle vs. position, area, flicker, vertical motion, expansion p < 0.01
length vs. position, area, flicker, vertical motion, expansion p < 0.05
vibration vs. flicker, vertical motion, expansion p < 0.05
position vs. vertical motion, expansion p < 0.05
flicker vs. vertical motion, expansion p < 0.05

Fig. 6. Results of error rate (top) and response time (bottom) for different encodings along with statistical test results. Bar charts represent mean of
error rate (top) and mean of response time (top) for each data encoding. Error bars represent lower and upper Gaussian confidence limits based
on the t-distribution.

7 DISCUSSION

In this work, we investigate considerations for the use
of motion encodings for scalar values. To support future
research of methods for embedding motion encodings into
data visualizations, the presented studies provides foun-
dational knowledge about how different types of visual
motion can best be used to represent human-interpretable
numerical values and how accurate their graphical percep-
tion are compared to static encodings.

7.1 Promising Motion Encodings

While previous research has shown motion encodings can
be effective for categorical data (e.g., [47]), our experiments
empirically demonstrate how differences in motion type do
significantly influence perceptual accuracy for scalar values.
Our experiments tested which specific motion features were
easier for participants to perceive accurately. Results of our
first study showed that among the three tested motion
types, the translational Vertical motion was the most ac-
curate overall, Expansion motion would be at the middle,
and Flicker motion had the least accuracy. In addition,
the time results indicated that Expansion had significantly
shorter response times compared to Vertical motion, though
Figure 3 indicates a very small effect size. Our second
experiment provides context for graphical perception of
motion encodings with respect to static encodings. Perhaps
the most notable finding is the that the expansion motion
encoding is ranked relatively high in the list—just after
position and length regarding accuracy—which suggests high
potential in use for quantitative information visualization.
Considering the results of both experiments, expansion and
vertical motions had higher accuracy rates among the motion

types, while flicker and vibration had less accuracy. Therefore,
we suggest further research needs to be done on how and
in what contexts to use expansion and translational motion
as a display dimension. Flickering and especially vibration
motion did not demonstrate convincing levels of accuracy
and performance to make them compelling candidates for
quantitative mapping. Many participants also subjectively
reported not preferring the vibration encoding type, and
some also reported that flicker and vibration cause them to
have eye strain which made it more difficult to judge the
difference of speed.

Another important and interesting finding from our
study was that non-synchronized motions were significantly
easier to be compared than synchronized motions in terms
of both speed and accuracy. This was counter to our original
hypothesis that aligned cycles would support easier com-
parison, and a prior study by Huber and Healey [17] found
strong significant advantages of synchronized flickering
animations. The major difference between our studies was
the focus on quantitative estimation of values rather than
merely detecting differences, as is needed for distinguish-
ing categorical representations. For accurate comparisons
of rates, synchronizing animations seems to add difficulty
by introducing periods where one item is waiting for the
other to finish its cycle, which means there is less time
available for participants to directly observe and compare
the motion differences. This difference has important design
implications for the use of motion for different purposes
in visualization, where categorical encodings may do bet-
ter with synchronization while scalar encodings may do
better without synchronization. Further research may be
warranted into encodings with discrete numerical values
or other variations of motion that could allow influence
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strategies used for motion comparison.

7.2 Motion in Practical Visualizations
The presented experiments evaluated performance mea-
sures through a comparison of motion data encodings in
a controlled and isolated setting. This allowed for high
experimental control and provided empirical findings and
suggestions for encoding numerical data with motion. How-
ever, practical applications of motion in visualizations will
likely involve combinations with multiple visual cues (e.g.,
position, color, size, shape). Further, it would be uncommon
only to show two animated items together, as visualizations
generally aim to display numerous data values at once to
aid comparisons and identifications of trends. Thus, while
the simplistic and controlled study design is standard for
visualization evaluations of graphical perception (e.g., [1],
[4], [19]), it is also necessary to consider more complex
scenarios or with multidimensional data.

Our results are particularly of value for expanding the
design space of information visualization in encoding nu-
merical values. Designers can incorporate motion qualities
individually or as an additional data coding dimension
along with other visual cues. In particular, animated maps
have been shown to be highly important in enhancing ana-
lysts’ ability to express data in scientific visualizations [10],
[11]. For example, the dynamic variables can be used to indi-
cate the location of a phenomenon, its attributes, or display
changes in its spatial, temporal, and attribute dimensions.
In such cases, motion-related data encoding would be a
candidate to encode the numerical attributes of data in ani-
mated maps to better communicate the quantitative values
and their comparison. It is especially important to study
motion due to its ability to distract or attract attention in
peripheral vision. Thus, it is essential to also consider cases
of interpreting numerical values from motions among a field
of several moving objects (such as study methods similar to
those used by [17], [18], [47]). It would also be interesting
to explore perceptual tests in environments where there
are many distractions or multi-tasking scenarios. One of
the properties of motion as an encoding is that it can grab
attention quickly, and further research in this direction could
prove beneficial for broadening potential application con-
texts. In particular, when users are working with different
high-density information displays or dashboards, it would
be a potential benefit of motion encoding not only to guide
users’ attention but also simultaneously provide numerical
perception and convey information through quantitative
data encoding. Overall, the contributed knowledge of visual
motion opens numerous paths for exploring motion encod-
ings for different purposes.

7.3 Future Work
We found significant underestimation bias for both motion
encodings (i.e., expansion and flicker), and static encodings
(i.e., length, angle, and color). While previous research has
explored possible underlying causes of bias in the graphical
perception of static visualizations [19], [45], [46], [48], [49],
it would be interesting to study the potential sources of
bias in motion encodings to mitigate them in future data
visualization techniques with motion.

We conducted our first experiment in controlled lab
space using the same device for all participants, but we
were not able to conduct our second experiment in person
due to the COVID-19 pandemic. Since our study was online,
we did not have control over users’ physical devices, their
screen size, and resolution. We acknowledge that these dif-
ferences might have effects on users’ graphical perception;
however, we did ask participants to set their resolutions
during the study session for partial reduction of display
differences. We suggest that future work in an online setting
takes the system-based differences into account and logs
them for further testing of their effects on the graphical
perception.

Many visual applications may find benefits to using
motion and animation to encode quantitative data values.
In multidimensional data visualizations, motion may be
valuable as an additional type of encoding available. Visual
search of particular movements may be easier than static
encoding such as color [47]. Since motion is discernible
through peripheral vision, motion may also be beneficial
as part of peripheral displays may allow users to monitor
quantitative information without incorporating such values
as part of the focal region of a display.

Print media may be waning in popularity [50] as main-
stream media outlets incorporate multimedia and animated
formats [23], [51], [52], [53], [54] into public discourse.
Future research can further investigate how motion can be
incorporated into more chart types and geographical plots.

8 CONCLUSION

We investigated user graphical perception of quantitative
data encoding using different types of motion. We con-
ducted two controlled experiments to measure users’ per-
ception of numerical differences of motion-encoded tech-
niques, and compare them with the graphical perception
accuracy of conventional static data encodings, such as
length, area, angle, and color. The first experiment tested
different properties of motion including three motion types,
i.e., vertical motion, flicker, and expansion, and presence or
absence of synchronicity. The second experiment focused
on comparing data encoding of quantitative data between
motion encodings and static encodings in terms of graphical
perception accuracy and response time. The results show
that different types of motion encodings can significantly
affect numerical judgments, which indicates the importance
of further research of the fundamental approaches for using
motion and animation for quantitative data representation.
We also found out that expansion and vertical motion
encodings have a high accuracy compared to some static
encodings. This finding indicates the promising potential of
motion as a display dimension for quantitative data. The
presented research can serve as a foundational basis for
future research on quantitative motion encodings in more
advanced visualization scenarios.

REFERENCES

[1] W. S. Cleveland and R. McGill, “Graphical perception: Theory,
experimentation, and application to the development of graphical
methods,” Journal of the American statistical association, vol. 79, no.
387, pp. 531–554, 1984.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3193756

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 11,2023 at 14:25:50 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF IEEE TRANSACTION ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, - - 12

[2] B. G. Shortridge, “Stimulus processing models from psychology:
Can we use them in cartography?” The American Cartographer,
vol. 9, no. 2, pp. 155–167, 1982.

[3] J. Mackinlay, “Automating the design of graphical presentations of
relational information,” Acm Transactions On Graphics (Tog), vol. 5,
no. 2, pp. 110–141, 1986.

[4] J. Heer and M. Bostock, “Crowdsourcing graphical perception: us-
ing mechanical turk to assess visualization design,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2010, pp. 203–212.

[5] J. Heer and G. Robertson, “Animated transitions in statistical data
graphics,” IEEE transactions on visualization and computer graphics,
vol. 13, no. 6, pp. 1240–1247, 2007.

[6] B. Bach, E. Pietriga, and J.-D. Fekete, “Graphdiaries: Animated
transitions andtemporal navigation for dynamic networks,” IEEE
transactions on visualization and computer graphics, vol. 20, no. 5, pp.
740–754, 2013.

[7] N. Elmqvist, P. Dragicevic, and J.-D. Fekete, “Rolling the dice:
Multidimensional visual exploration using scatterplot matrix nav-
igation,” IEEE transactions on Visualization and Computer Graphics,
vol. 14, no. 6, pp. 1539–1148, 2008.

[8] F. Du, N. Cao, J. Zhao, and Y.-R. Lin, “Trajectory bundling for
animated transitions,” in Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, 2015, pp. 289–
298.

[9] Y. Wang, D. Archambault, C. E. Scheidegger, and H. Qu, “A vector
field design approach to animated transitions,” IEEE transactions
on visualization and computer graphics, vol. 24, no. 9, pp. 2487–2500,
2017.

[10] D. DiBiase, A. M. MacEachren, J. B. Krygier, and C. Reeves,
“Animation and the role of map design in scientific visualization,”
Cartography and geographic information systems, vol. 19, no. 4, pp.
201–214, 1992.

[11] M. P. Peterson, “Spatial visualization through cartographic anima-
tion: Theory and practice,” in GIS/LIS, 1994, pp. 619–628.

[12] A. L. Griffin, A. M. MacEachren, F. Hardisty, E. Steiner, and
B. Li, “A comparison of animated maps with static small-multiple
maps for visually identifying space-time clusters,” Annals of the
Association of American Geographers, vol. 96, no. 4, pp. 740–753,
2006.

[13] S. Rufiange and M. J. McGuffin, “Diffani: Visualizing dynamic
graphs with a hybrid of difference maps and animation,” IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 12,
pp. 2556–2565, 2013.

[14] I. Boyandin, E. Bertini, and D. Lalanne, “A qualitative study on
the exploration of temporal changes in flow maps with animation
and small-multiples,” in Computer Graphics Forum, vol. 31. Wiley
Online Library, 2012, pp. 1005–1014.

[15] M. Itoh, N. Yoshinaga, M. Toyoda, and M. Kitsuregawa, “Analysis
and visualization of temporal changes in bloggers’ activities and
interests,” in 2012 IEEE Pacific Visualization Symposium. IEEE,
2012, pp. 57–64.

[16] G. Johansson, “Visual perception of biological motion and a model
for its analysis,” Perception & psychophysics, vol. 14, no. 2, pp. 201–
211, 1973.

[17] D. E. Huber and C. G. Healey, “Visualizing data with motion,” in
Visualization, 2005. VIS 05. IEEE. IEEE, 2005, pp. 527–534.

[18] L. Bartram and C. Ware, “Filtering and brushing with motion,”
Information Visualization, vol. 1, no. 1, pp. 66–79, 2002.

[19] B. Saket, A. Srinivasan, E. D. Ragan, and A. Endert, “Evaluat-
ing interactive graphical encodings for data visualization,” IEEE
Transactions on Visualization and Computer Graphics, 2017.

[20] D. H. Chung, D. Archambault, R. Borgo, D. J. Edwards, R. S.
Laramee, and M. Chen, “How ordered is it? on the perceptual or-
derability of visual channels,” in Computer Graphics Forum, vol. 35.
Wiley Online Library, 2016, pp. 131–140.

[21] A. Chalbi, J. Ritchie, D. Park, J. Choi, N. Roussel, N. Elmqvist,
and F. Chevalier, “Common fate for animated transitions in visu-
alization,” IEEE transactions on visualization and computer graphics,
vol. 26, no. 1, pp. 386–396, 2019.

[22] L. Byrne, D. Angus, and J. Wiles, “Acquired codes of meaning
in data visualization and infographics: beyond perceptual prim-
itives,” IEEE transactions on visualization and computer graphics,
vol. 22, no. 1, pp. 509–518, 2016.

[23] E. Badger, C. C. Miller, A. Pearce, and K. Quealy, “Income Mobility
Charts for Girls, Asian-Americans and Other Groups. Or Make
Your Own,” 2018. [Online]. Available: https://nyti.ms/38TaKIR

[24] L. Bartram and A. Nakatani, “What makes motion meaningful?
affective properties of abstract motion,” in Image and Video Technol-
ogy (PSIVT), 2010 Fourth Pacific-Rim Symposium on. IEEE, 2010,
pp. 468–474.

[25] K. Hornbæk and M. Hertzum, “The notion of overview in in-
formation visualization,” International Journal of Human-Computer
Studies, vol. 69, no. 7-8, pp. 509–525, 2011.

[26] L. Bartram, “Perceptual and interpretative properties of motion
for information visualization,” in Proceedings of the 1997 workshop
on New paradigms in information visualization and manipulation, 1997,
pp. 3–7.

[27] D. Archambault, H. Purchase, and B. Pinaud, “Animation, small
multiples, and the effect of mental map preservation in dynamic
graphs,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 4, pp. 539–552, 2011.

[28] H. Romat, C. Appert, B. Bach, N. Henry-Riche, and E. Pietriga,
“Animated edge textures in node-link diagrams: A design space
and initial evaluation,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’18. New York, NY,
USA: ACM, 2018, pp. 187:1–187:13.

[29] K. Nakayama and G. H. Silverman, “Serial and parallel processing
of visual feature conjunctions,” Nature, vol. 320, no. 6059, pp. 264–
265, 1986.

[30] A. Treisman, “Search, similarity, and integration of features be-
tween and within dimensions.” Journal of Experimental Psychology:
Human Perception and Performance, vol. 17, no. 3, p. 652, 1991.

[31] J. Driver, P. McLeod, and Z. Dienes, “Motion coherence and con-
junction search: Implications for guided search theory,” Perception
& Psychophysics, vol. 51, no. 1, pp. 79–85, 1992.

[32] G. D. Kerlick, “Moving iconic objects in scientific visualization,” in
Proceedings of the 1st conference on Visualization’90. IEEE Computer
Society Press, 1990, pp. 124–130.

[33] J. J. Van Wijk, “Image based flow visualization,” ACM Transactions
on Graphics (ToG), vol. 21, no. 3, pp. 745–754, 2002.

[34] R. Etemadpour and A. G. Forbes, “Density-based motion,” Infor-
mation Visualization, vol. 16, no. 1, pp. 3–20, 2017.

[35] H. Chen, S. Engle, A. Joshi, E. D. Ragan, B. F. Yuksel, and
L. Harrison, “Using animation to alleviate overdraw in multiclass
scatterplot matrices,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, 2018, pp. 1–12.

[36] E. Velloso, M. Carter, J. Newn, A. Esteves, C. Clarke,
and H. Gellersen, “Motion correlation: Selecting objects by
matching their movement,” ACM Trans. Comput.-Hum. Interact.,
vol. 24, no. 3, pp. 22:1–22:35, Apr. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3064937

[37] T. Takeuchi, “Visual search of expansion and contraction,” Vision
research, vol. 37, no. 15, pp. 2083–2090, 1997.

[38] P. Anandan, “A computational framework and an algorithm for
the measurement of visual motion,” International Journal of Com-
puter Vision, vol. 2, no. 3, pp. 283–310, 1989.

[39] S. Mateeff, G. Dimitrov, and J. Hohnsbein, “Temporal thresholds
and reaction time to changes in velocity of visual motion,” Vision
research, vol. 35, no. 3, pp. 355–363, 1995.

[40] K. Amano, N. Goda, S. Nishida, Y. Ejima, T. Takeda, and Y. Ohtani,
“Estimation of the timing of human visual perception from mag-
netoencephalography,” Journal of Neuroscience, vol. 26, no. 15, pp.
3981–3991, 2006.

[41] J. Matejka, M. Glueck, T. Grossman, and G. Fitzmaurice, “The
effect of visual appearance on the performance of continuous
sliders and visual analogue scales,” in Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, 2016, pp. 5421–
5432.

[42] C. Ware and R. Bobrow, “Motion coding for pattern detection,” in
Proceedings of the 3rd symposium on Applied perception in graphics and
visualization, 2006, pp. 107–110.

[43] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven docu-
ments,” IEEE transactions on visualization and computer graphics,
vol. 17, no. 12, pp. 2301–2309, 2011.

[44] L. Nowell, R. Schulman, and D. Hix, “Graphical encoding for
information visualization: an empirical study,” in IEEE Symposium
on Information Visualization, 2002. INFOVIS 2002. IEEE, 2002, pp.
43–50.

[45] C. Xiong, C. R. Ceja, C. J. Ludwig, and S. Franconeri, “Biased
average position estimates in line and bar graphs: Underestima-
tion, overestimation, and perceptual pull,” IEEE transactions on
visualization and computer graphics, vol. 26, no. 1, pp. 301–310, 2019.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3193756

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 11,2023 at 14:25:50 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF IEEE TRANSACTION ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, - - 13

[46] C. Godau, T. Vogelgesang, and R. Gaschler, “Perception of
bar graphs–a biased impression?” Computers in Human Behavior,
vol. 59, pp. 67–73, 2016.

[47] L. Bartram, C. Ware, and T. Calvert, “Moticons: detection, dis-
traction and task,” International Journal of Human-Computer Studies,
vol. 58, no. 5, pp. 515–545, 2003.

[48] N. B. Robbins, Creating more effective graphs. Wiley, 2012.
[49] D. A. Szafir, “The good, the bad, and the biased: five ways

visualizations can mislead (and how to fix them),” interactions,
vol. 25, no. 4, pp. 26–33, 2018.

[50] H. I. Chyi and O. Tenenboim, “Reality check: Multiplatform
newspaper readership in the united states, 2007–2015,” Journalism
Practice, vol. 11, no. 7, pp. 798–819, 2017.

[51] N. Yau, “A day in the life of americans,” Jul
2020. [Online]. Available: https://flowingdata.com/2015/12/
15/a-day-in-the-life-of-americans/?platform=hootsuite

[52] Q. Bui, “The fall and rise of u.s. inequality,
in 2 graphs,” Feb 2015. [Online]. Available:
https://www.npr.org/sections/money/2015/02/11/384988128/
the-fall-and-rise-of-u-s-inequality-in-2-graphs?platform=
hootsuite

[53] S. Windyty, “Windy as forecasted.” [Online]. Available: https:
//www.windy.com/?29.650,-82.349,5

[54] G. Foundation, “Gapminder tools.” [Online]. Available: https:
//bit.ly/2V21jiG

Shaghayegh “Shae” Esmaeili is a Ph.D. student in Human-Centered
Computing at the Department of Computer & Information Science &
Engineering at the University of Florida, United States. She received her
bachelor’s degree in Computer Engineering from the Sharif University
of Technology, Iran in 2016. Her research interests include human-
computer interaction, visual analytics, data visualization, VR and 3D
interactions.

Samia Kabir is a Ph.D. student in Computer Science at Purdue Univer-
sity. She received her M.Sc. in Computer Science and Engineering from
Texas A&M University in 2022.

Anthony M. Colas is a Ph.D. student in Computer Science at the
Department of Computer & Information Science & Engineering at the
University of Florida, United States. His research interests include
knowledge bases and machine learning.

Rhema P. Linder holds a Ph.D. from Texas A&M University. His re-
search interests center around human-centered computing in popular
media and education, supporting and analyzing practices of expression,
curation, exploratory search, and creativity.

Eric D. Ragan is an Assistant Professor in the Department of Computer
& Information Science & Engineering at the University of Florida, United
States. He directs the Interactive Data and Immersive Environments
(INDIE) lab, which conducts research of human-computer interaction,
visual analytics, virtual reality, and explainable intelligent systems. He
received his Ph.D. in Computer Science from Virginia Tech. He is a
member of the IEEE Computer Society.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3193756

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Florida. Downloaded on May 11,2023 at 14:25:50 UTC from IEEE Xplore.  Restrictions apply. 


