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ABSTRACT

In virtual reality (VR), natural physical hand interaction allows users
to interact with virtual content using physical gestures. While the
most straightforward use of tracked hand motion maintains a one-
to-one mapping between the physical and virtual world, some cases
might benefit from changing this mapping through scaled or redi-
rected interactions that modify the mapping between user’s physical
movements and the magnitude of corresponding virtual movements.
However, large deviations in interaction fidelity may potentially
provide distractions or a loss of perceived realism. Therefore, it is
important to know the extent to which remapping techniques can
be applied to scaled interactions in VR without users detecting the
difference. In this paper, we extend prior research on redirected
hand techniques by investigating user perception of scaled hand
movements and estimating detection thresholds for different types
of hand motion in VR. We conducted two experiments with a two-
alternative forced-choice (2AFC) design to estimate the detection
thresholds of remapped interaction. The first experiment tested the
perception of motion scaling for simple hand movements, and the
second experiment involved more complex reaching motions in a
cognitively demanding game scenario. We present estimated detec-
tion thresholds for scale values that can be applied to virtual hand
movements without users noticing the difference. Our findings show
that detection thresholds differ significantly based on the type of
hand movement (horizontal, vertical, and depth).

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Em-
pirical studies in HCI; Information interfaces and presentation—
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities

1 INTRODUCTION

Natural physical motions are commonly seen as a fundamental ele-
ment of virtual reality (VR) systems. By tracking the head, hands,
or even the entire body, users are able to interact with virtual en-
vironments using familiar movements and gestures. To provide
realistic experiences, virtual movements are usually determined by a
one-to-one mapping based on physical movements in the real world.
However, one-to-one mappings might not always be preferable or
possible for all VR applications. Due to reasons such as limited avail-
ability of physical space or interacting with distant objects, modified
interaction techniques are sometimes used. For example, modified
walking techniques allow users to use their physical walking but
traverse virtual spaces that are larger than the physical space (e.g.,
redirected walking [6,34], seven league boots [18], or amplified head
turning [33,40]). Changing the scaling for hand movements can also
be used to reach far away objects (e.g., the Go-Go technique [32])
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or to physically interact with virtual objects via real-world physical
props [2, 11, 16].

While modified interactions can be used in VR systems by ad-
justing the mapping between tracked motion inputs and the corre-
sponding virtual motions, large deviations in interaction fidelity may
potentially provide distractions or a loss in perceived realism for
users. In some VR applications, system designers aim to preserve
the sense of realism while using modified interaction techniques.

Our research focuses on detection of modified hand interaction
techniques. Hand-centric controls are commonly used in current
VR technology via natural hand movements using tracked hands,
controllers, or physical props to enable interactions with virtual
objects in order to increase the sense of presence and provide realistic
interaction experiences. While previous work [43] has been done on
estimating the detection thresholds for the hand redirection using
haptic retargeting techniques [2], there is still little knowledge on
detection thresholds for scaled hand movements in different types
of hand motion in VR. Moreover, more research needs to be done
regarding the detection thresholds of the scaled hand movements
which involves free hand motion in less controlled scenarios with
higher cognitive demands [7].

In this paper, we investigate user perception of scaled hand move-
ments and estimating detection thresholds for different types of
hand motion in VR. The primary goal of this paper is to answer our
research questions:

• How do detection threshold estimations differ within each
single degree of freedom for scaled hand motion?

• How do detection threshold estimations change with respect
to task complexity: controlled hand movements compared to
complex reaching motions in a cognitively demanding game
scenario?

To address our research questions, we conducted two psychophys-
ical experiments with a two-alternative forced-choice (2AFC) design
to measure user perception of the scaled hand movements and esti-
mate detection thresholds using psychometric functions. The first
experiment tested user perception of motion scaling for simple hand
movements in three directions (horizontal, vertical, and depth) while
the second experiment involved more complex reaching motions in
a cognitively demanding game scenario. In both experiments, hand
movements were scaled by multiple scale values (slower, normal,
and faster), and participants were asked to indicate whether their
virtual hand movement felt normal or not normal. Our results pro-
vide estimations of detection thresholds for scaled hand movements
and insights on the effects of motion direction and task complexity
on the detection thresholds. These detection thresholds are of high
value in VR applications that strive to maintain a natural and realistic
experience for users, specifically with regards to hand motion.

2 RELATED WORK

Our work extends prior research conducted on modified general
interaction techniques, perceptibility of these techniques, and hand
remapping techniques. This section provides an overview of prior
work in these areas and context for new insights provided by our
research.
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2.1 Modified Interaction Techniques and Detection
Thresholds

Many altered modes of interaction have previously been explored,
included those for redirected travel [6, 17, 18, 34, 40] and head redi-
rection [36, 39]. These techniques often leverage the ability to
manipulate aspects of virtual environments to increase naturalness,
comfort, or users’ ability to manipulate their environment. When
using these types of techniques, it is important to determine the
magnitude to which modifications to a user’s virtual position can be
applied before it is noticeable in order to preserve user immersion.
Performance metrics are also important; while a technique may be
undetectable, there still may be effects on measures such as task
completion times and accuracy.

For example, in order to minimize strain on a user’s neck, Sargu-
nam et al. [36] investigated amplified head rotation (physical head
turns resulting in larger virtual head turn) and guided head rota-
tion (amplified head rotation with extra rotation added to realign
the user’s head with a forward direction) in comparison to tradi-
tional one-to-one head-tracked viewing in the context of navigation.
Semi-natural techniques work for the intended purpose in the virtual
environments compared to one-to-one mappings. However, there
are side effects, such as sickness and unnatural spatial orientation.
Later, Stebbins et al. [39] applied a similar technique to 3D movies
where the user must rotate their head to areas of focus in the scene.
Rotations were applied in two speeds (avg 3 deg/s and avg 13 deg/s).
While the fast speed resulted in less time spent away from the for-
ward direction, it was much more perceptible than the slow speed.
However, neither fast, slow, or the control conditions resulted in
different comfort or sickness ratings from users.

To assess the effects of warped space on redirected touching,
Kohli et al. examined task performance [22] and adaptation [23].
Using the Fitt’s-law-based ISO 9241-9 multidirectional tapping task,
they determined that the task performance in warped space was
no worse than an unwarped space [22]. They conducted further
work and found that when given time to adapt, warped space and
unwarped space performed similarly, though real-world training still
outperformed both [23].

Prior work has shown that visual stimuli dominate propriocep-
tion in virtual environments, meaning that human’s perception in
virtual environments is dominated by what they see rather than what
they sense regarding the orientation or position of their body and
limbs [7]. Burns et al. [7] conducted a user study to investigate
whether users are more sensitive to visual interpenetration or the
mismatch between visual and proprioceptive cues in virtual envi-
ronments. They concluded that people are more sensitive to visual
interpenetration than the visual-proprioceptive conflict. Furthermore,
they investigated the users’ detection thresholds for visual and pro-
prioceptive discrepancy by asking the participants to report anything
odd in the virtual environment during the study.

Highly relevant to our research is psychometric analysis, a tech-
nique used to determine if a proprioceptive difference is perceptible
to humans as well as upper and lower magnitudes to which the
technique can be applied [13, 19]. Psychometric studies commonly
employ a two-alternative forced-choice (2AFC) study design where
users are repeatedly presented with a stimulus with varying inten-
sity and must classify it as one of two options (e.g., “larger” or
“smaller”). 2AFC had been used to analyze human perception when
exposed to hand redirection [43], resized grasping [3], travel tech-
niques [6, 8, 15, 17, 40], and haptic sensation [26]. In the realm of
hand redirection, Zenner et al. [43] determined detection thresholds
for horizontal warping, vertical warping, and gain-based warping.
Bergström et al. [3] proposed resized grasping to redirect the user’s
fingers in VR to enable an individual prop to represent virtual ob-
jects of different sizes. In their work, they determined detection
thresholds for the extent to which we can resize virtual objects from
a physical prop. Steinicke et al. [40] utilized a series of 2AFC ex-

periments to determine that walked distances can be up-scaled by
26% or down-scaled by 14% before users perceive proprioceptive
discrepancies and that a turning radius of 22m or larger is sufficient
to prevent most users from detecting the redirection. Bruder et al. [6]
extend this work by analyzing task performance with various magni-
tudes of redirection and determined an inverse relationship between
gain magnitude and task performance.

Bölling et al. [8] found that longer exposure to increased curvature
gains can lead to higher detection thresholds in redirected walking.
Grechkin et al. [15] also studied detection thresholds for redirected
walking when applying two types of perceptual manipulations, cur-
vature and translation gains, simultaneously. Their results found
no changes in curvature detection thresholds when combined with
translational gains. Moreover, they reported significantly smaller
estimates for curvature detection thresholds compared to Steinicke
et al. [40]. In a similar vein of research, Hayashi et al. [17] in-
vestigated height, rotational, and translation gains applied to users
while jumping. Users were more sensitive to larger height gains
and smaller rotational/translation gains. Lee et al. [26] utilized a
cutaneous haptic device and simulated tracking error to determine
thresholds for positional errors in VR. Furthermore, a distinction
between detection and immersion has been proposed by Schmitz et
al. [37]. While a stimulus may be detectable by a user, it may not
be large enough in magnitude to break their immersion in VR. This
suggests that current detection thresholds are not as generous as they
could be if the goal of a specific technique is to enhance immersion
over undetectability.

2.2 Hand Remapping Techniques

Modified mappings for hand locations have been long explored and
utilized as an interaction technique in VR [2, 32]. Prior work has
largely focused on the application of these mappings for hand redi-
rection. However, little work has been done to determine the extent
and magnitudes to which these mappings can be applied before they
are detectable by humans. This section examines prior work on
the application and evaluation of hand redirection techniques and
outlines areas worthy of further exploration.

Perhaps the earliest instance of virtual hand manipulations, the
Go-Go technique proposed by Poupyrev et al. [32] allows the users
to extend their arm beyond their normal reach in VR. In this case, it
is expected that users are aware of the modified interactions and it
is preferred to make certain interactions easier or more convenient
rather than natural and unnoticeable interactions [4]. The Go-Go
technique uses a smooth curve to control positional gains applied
to the virtual hand relative to the chest of the user. The mapping is
linear until a threshold distance D (chosen to be 2/3 of the user’s
reach), after which non-linear gains are applied to the virtual hand.
This application of gains has the effect of extending the virtual hand
further into the environment as the user fully extends their arm
allowing for amplified hand movements. This application of gains,
later formalized as a modification of the Control/Display ratio [25],
has been shown to significantly alter the perception of movement
and mass in VR [12].

Extending the work of Poupryev et al. [32], Azmandian et al. [2]
investigated several techniques for hand redirection in VR. The re-
searchers distinguished two primary techniques for achieving hand
direction: body warping and world warping. Body warping manipu-
lates the virtual position of a user’s hand in order to align its virtual
location with the physical location of a haptic prop by shifting virtual
hand’s position as the user approaches the target. World warping
translates or rotates the scene in order to realign virtual objects with
a haptic prop while leaving the user’s body unmodified.

Several techniques for passive haptic use in virtual environments
rely on hand redirection to map one physical object onto several
virtual objects [11, 16, 29]. Han et al. [16] investigated using transla-
tional and interpolative methods for mapping a user’s virtual hand
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to a single grabbable prop. Their work indicates that translational
hand shifting was generally preferable over interpolation, both in
performance and user preference contexts. Similarly, Matthews et
al. [29] utilized body warping as well as a new technique interface
warping to provide users with functionality of several virtual buttons
on VR controllers while only using one physical button. A com-
bination of both techniques resulted in fewer errors and produced
faster response times. Additionally, Cheng et al. [11] demonstrated
hand redirection in combination with physical haptic landmarks
used to simulate the geometry of various objects in the scene. To
maximize alignment of physical objects in the virtual space, Suhail
et al. [41] examined resetting (moving virtual objects to match the
location of their physical proxy) and redirected reach (offsetting
the virtual hand to make users grasp a physical object). Both tech-
niques were compared to air grasping using no haptic props, with
both haptic techniques yielding higher score for sense of control and
realism. Extending this approach, Abtahi et al. [1] haptic retargeting
with physical targets mediated through quadcopters by appropriating
objects and the environment. To overcome a lack of accuracy in
positioning the quadcopter at the target location, haptic retargeting
was used to correct for the offset between the quad and the position
of the virtual object. Additional factors such as hand size and inter-
action techniques have also been examined in the context of virtual
hand modifications [27], with results showing that motion tracking
gloves increased realism and ownership of virtual hands and lend
themselves as a more appropriate input device for haptic use in the
VR.

Most recently, Zenner et al. [43] used three different techniques
of redirecting hands towards a destination, suggested by previous
research. They investigated horizontal and vertical warping, as well
as gain-based warping. Horizontal and vertical warping displaces
the virtual hand along a vector rotated by an angle α around the
displacement vector between the physical hand and the warp origin.
Gain-based warping scales the position of the virtual hand by a
constant value along the displacement vector between the physical
hand and the world origin. Their results suggest that hands can be
redirected up to 4.5 degrees in any direction using horizontal and
vertical warping or scaled up by a factor of 1.07 or scaled down by
a factor of 0.88 when using gain-based warping. While they have
reported magnitudes at which hand redirection can go unnoticed
when reaching for a virtual target under redirection, their work is
focused more on the redirected position of the hand, rather than its
movement, since they have used targets with a limited distance in
front of the user (30-40 cm away from the user, and only in depth
direction) and users were asked to touch a point in front of them,
therefore their hand movement was limited only to reaching that
point. Also related to detection of virtual hand adjustments, Gonza-
lez et al. [14] examined the effects of rotational gains on bimanual
(two-handed) redirection. The researchers examined single hand,
bimanual same-direction, and bimanual opposite-direction rotations
to hands and determined offsets in the opposite directions yielded
lower detection thresholds and offsets in the same direction produced
higher detection thresholds indicating the effects of handedness and
offset direction on redirection detectability.

Our research examines hand redirection techniques that apply po-
sitional gains to a user’s hand movement. A multitude of techniques
warp and distort or remap hand positioning (e.g., [2,11,16,29]), but
few examine the intensity to which these techniques can be applied
before they are perceptible to humans. Most prior work [14, 43]
has studied detection of scaling with simple controlled motions of
reaching away from the body, but prior research has not investigated
the effects of scaling over a range of contexts and with different
directionality of hand motions. Our work provides a set of detec-
tion thresholds for scaled hand movements with (i) simple motions
with single independent degrees of freedom, (ii) compound reaching
motions, and (iii) varying levels of cognitive load.

3 EXPERIMENTS

We conducted two psychophysical experiments with a two-
alternative forced-choice (2AFC) design to measure user perception
of the scaled hand movements and estimate the detection thresholds
using psychometric functions. This section includes the study design
goals, and detailed explanations of technique and procedure for each
of the experiments. Note that although we report two experiments,
both use similar methodology and yield comparable outcomes. For
this reason, we first describe the experimental designs for each study,
and then we present the results from both experiments together.

3.1 Goals
The primary goal of this research is investigating user perception of
scaled hand movements in VR and estimating detection thresholds
of the scaled values. To measure human perception, Psychophysical
experiments are commonly used that provide “the analysis of per-
ceptual processes by studying the effect on a subject’s experience
or behaviour of systematically varying the properties of a stimulus
along one or more physical dimensions” [5]. Psychophysical ex-
periments have varieties of procedures, such as performance-based
procedures, appearance-based procedures, and adaptive procedures.
It is important to consider the advantages and disadvantages of each
procedure based on the research questions when designing a psy-
chophysical experiment. Therefore, to address our research question
of finding detection thresholds for scaled movement, two-alternative
forced-choice (2AFC) methods are commonly used which is one
of the methods of the performance-based procedures [19]. Simi-
larly, 2AFC design has been used in previous research for detection
thresholds (e.g., [3, 6, 8, 17, 40, 43]). In 2AFC methods, partici-
pants are repeatedly exposed to different varieties of a stimulus and
forced to choose between two different responses (provided by the
researchers) based on their perception of the stimulus. Typically,
proportion of correct answers is used to measure the human per-
formance in 2AFC methods [19]. Based on our research question
of detection threshold estimation, we adopted a 2AFC method in
which participants are exposed to different magnitudes of scaled
hand movements in VR while moving their hands and being asked
to choose between normal and not normal based on their perception
of the virtual hand movement. The first experiment involves isolated
hand movements along each primary axis (horizontal, vertical, and
depth). The second experiment investigates complex hand move-
ments under cognitively intense conditions with scaling applied in
all three directions.

In each experiment, we used the following scale values:

• fast-scaled values (14 values): {1.025, 1.1, 1.175, 1.25, 1.325,
1.4, 1.475, 1.55, 1.625, 1.7, 1.775, 1.85, 1.925, 2.0}

• slow-scaled values (14 values): {0.5, 0.519, 0.54, 0.563, 0.588,
0.615, 0.645, 0.678, 0.714, 0.755, 0.8, 0.851, 0.909, 0.976}

The extreme scaled values (i.e. 2.0, which is the fastest scale, and
0.5, which is the slowest scale) were chosen based on previously
reported detection thresholds by [43] and pilot study observations.
We wanted to make sure that our slowest and fastest scales are
detected by participants as a not normal hand movement in VR.
Then, based on our study time limitation, we decided to use a step
size of 0.075 to cover the scale values between 1.0 and 2.0. Since by
using 0.075 steps size, less scale values would have been covered
between 0.5 and 1.0, we decided to use 1/value, the inverse of the
fast-scaled values, to create the corresponding slow-scaled values.
Using this method, we were able to cover more values in the slow
range to get better results for detection thresholds estimation.

3.2 Apparatus
The experiment was run in our lab using an Oculus Rift (consumer
version 1) HMD, The default Oculus motion tracking system. The
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Oculus Touch right hand controller was used throughout the study,
since all participants preferred right hand, or were right-handed.
Participants used the right hand controller to move their virtual hand
in the study, and no controller buttons were used. The software
applications used in both experiments were developed in Unity
5.6.3p1 and run on 64-bit Windows 10 Professional. The computer
had a 4.6 Ghz 6-Core processor and a GeForce GTX 1080 8GB
GDDR5X. Participants were standing and in a relatively stationary
position for both experiments. We provided a line on the floor for
participants to stand behind.

3.3 Experiment 1: Simple Hand Movements
Experiment 1 was a within-subjects user study, designed to investi-
gate the perception of scaled movements during simple, axis-isolated
movements.

3.3.1 Experimental Design
Experiment 1 followed a within-subjects design and each partici-
pant completed all the conditions and trials. We tested 14 different
values for faster hand movements, 14 different values for slower
hand movements, and 14 normal hand movements (scale = 1.0). We
had 42 (3× 14) scale values, consisting of slow, fast, and normal
scale values, and repeated each scale value twice to strengthen our
data analysis results. Since in this experiment we aim to compare
detection thresholds for simple, axis-isolated movements, we re-
peated all of the scales in three different axis: horizontal (x), vertical
(y), and depth (z). Overall, each participant completed 252 trials (3
directions × 42 scale values × 2 repeats). The order of directions
were counterbalanced with all order combinations. The ordering of
scale values within each direction block was randomized for each
participant. For each trial, we logged participant’s answers (either
normal or not normal), and their response time (from the time the
participant started moving their hand to the time they said their an-
swer). We used each participant’s answers and response time as the
measures for our data analysis.

3.3.2 Technique
The primary goal of this experiment was to determine the estimations
of detection thresholds for scaled hand movements in simple, axis-
isolated movements. It was necessary to develop a technique to
isolate scaled movements to one axis at a time. To achieve this, we
used the following formula to calculate an offset to be applied to the
user’s hand per frame based on the current scale value:

Oa = s∗Da

• O: offset added to virtual hand

• D: displacement of real (tracked) hand between the previous
and current frame

• s: current scale value

• a: axis currently being scaled (x, y, z)

3.3.3 Procedure
The study was approved by our university’s Institutional Review
Board (IRB). Participation was voluntary, and extra credit was of-
fered as a compensation for approved courses. We conducted an
in-lab study, with one participant completing the study procedure at
a time. Upon participant’s arrival, informed consent was obtained
from participant prior to beginning the study. Afterwards the par-
ticipant was randomly assigned to a group dictating the order of
axis-isolated movements that they were going to perform during the
study. Participants were instructed on how to wear the HMD and
were advised to make sure it was comfortable on their head and the
display was clear. Then, the experimenter introduced the concept
of VR briefly and asked the participant to use the controllers to get

familiar with virtual hand movement, as well as turning their head
around to explore Oculus Rift’s default virtual environment. This
step was mainly done to reduce the novelty of VR [31], i.e., the

‘Wow’ factor, and prevent further distractions during the actual study.
A practice session (using the procedure stated below) was permit-

ted using 1.0, 0.5, and 2.0 scale factors respectively, in order to (a)
practice the study procedure, and (b) allow participants to gain an
understanding of normal and not normal hand movements.

Participants proceeded to begin the first block of movements
which consisted of all the scale factors for the initial axis, determined
by the counterbalanced group at the start of the study. Participants
were allowed to move their hand until an answer was determined.
When a response was given, it was logged by a researcher in the
system and the scale factor was updated automatically. The partic-
ipant was then notified to begin moving their hand again for the
next trial. This process was repeated until all scale factors were
tested for that specific axis. The participant completed all the scale
factors for the second block of movements, for the second axis,
followed by completion of the third block of movements. Breaks
were provided as needed and the participants were reminded every
4-5 minutes to take a break to minimize the risk of motion sickness.
In one of the breaks, the participant was given a brief demographic
questionnaire to fill. At the end of the study session, they completed
a final questionnaire and answered several free response questions
about their VR experience and preferences. Each participant took
approximately 60 minutes to complete the study.

3.3.4 Participants
In Experiment 1, 46 university students of graduate and undergradu-
ate level participated, consisting of 32 males and 14 females. Their
age ranged from 18 to 34 with a median of 21 years old. 18 par-
ticipants reported spending at least one hour a week playing 3D
video games. When asked to rate their experience with VR on a
scale from 1 to 5 (1 being with no prior experience and 5 being
expert), 16 participants rated themselves 1 (No prior experience),
25 participants rated themselves 2-3 (Beginner and Average), and
five participants rated themselves 4-5 (Advanced and Expert). 20
participants reported that they have never used a VR headset before.
4 participants reported they were comfortable with using both hands,
and others reported being right-handed. All participants completed
the experiment with their right hand.

3.4 Experiment 2: Complexity in a Game Context
Continuing the work from Experiment 1, we conducted a within-
subjects user study exploring the effects of perception of scaled
hand movements in more complex scenarios, involving compound
motions (rather than simple movements in a single degree of free-
dom, as in Experiment 1). In Experiment 2, participants played two
variations of a game with different degrees of difficulty to study the
effects of greater cognitive load.

3.4.1 Technique
This experiment utilized the gain-warping technique to scale the
virtual hand motion. The addition of a calibration step before starting
each game was necessary, since participants are moving their hand
continuously in the game version. Therefore an origin for the hand
scaling is needed to provide a seamless experience while changing
the scale values during the study. In our experiments, participants
were asked to hold the controller in a neutral position in front of
them (see Figure 1b). Its position was logged and used as the origin
of scaling for their hand while playing each game.

V = O+ s∗ (P−O)

• V: displayed position of virtual hand

• P: position of real (tracked) hand
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Figure 1: a) A top-down view of the setup for both games. b) A
side view of the pose used to calibrate the scaling position. The
controller position from this pose was used as the origin for scaling
in 3D space.

Figure 2: Player’s view during the complex game. Target balls
fall vertically, and the player must catch the ball indicated by a
dynamically updating math problem on the right. Distinguishing
between two colors requires additional focus to distinguish targets.

• O: position of origin

• s: current scale value

3.4.2 Experimental Design
Similar to Experiment 1, Experiment 2 also followed a within-
subjects design with a new set of participants. Each participant
completed all the conditions and trials. The same set of 42 normal,
fast, and slow scales from Experiment 1 were used in Experiment 2,
each with two repetitions. In total, we had 42 (3×14) scale values,
consisting of slow, fast, and normal scale values, and we decided to
have two repeats per each scale value to strengthen our data analysis
results. Since in this experiment, we aimed to compare detection
thresholds of scaled hand movements for two variations of a game
with different degrees of difficulty, we repeated all of the scales
in two different game version: basic and complex. Overall, each
participant completed 168 trials (2 game versions × 42 scale values
× 2 repeats). The order of game versions were counterbalanced to
reduce the ordering-effect on the data analysis results. Similar to
Experiment 1, the ordering of scale values within each version block
was randomized for each participant. For each trial, we logged par-
ticipant’s answers (either normal or not normal), and their response
time (from the time that the scale value changes to the time that they
say their answer). We used participant’s answers and response time
as the measures for our data analysis.

3.4.3 Task and Game Context
For a more complex application involving additional attention atten-
tional requirements and freedom of motion, we developed a simple
game for users to play while experiencing different scaled move-
ments. In the game, the player’s hand is replaced with a net, which
the player uses to catch target objects (spheres/balls) that fall from
above. This gaming scenario was used to add a dual-task basis
for the study of detection of motion scaling. While Experiment 1
allowed participants to solely focus on the motion and detecting
scaling effects, Experiment 2 requires attention to the game task
while they are also queried about scaling detection.

The player would score points during the game by catching the
targets. Objects are generated randomly in an area located above
and in front of the player, thus requiring a variety of hand reaching
motions for optimal performance. The generation area is sufficiently
large enough to require players to move their arm when attempting
to catch an object, rather than using small movements like wrist
rotation. All objects are identical except for their starting location in
the generation area.

To study differences in the amount of cognitive load, Experiment
2 tested two versions of the game, which we refer to as the basic
version and the complex version. In the basic game, the falling target
objects all had the same color (dark red), size, and speed. A new
falling target was generated every second.

The complex game followed the same basis of catching falling
target spheres, but the game had a few key modifications to increase
difficulty and mental workload. Rather than all targets being the
same color, the complex game had targets in two colors—two shades
of red. Similar colors were chosen to make it more difficult to
quickly distinguish colors. At any point in the game, catching
objects of one color will allow the player to earn one point while
catching the other will make the player lose three points. The correct
target color changed throughout the game, as indicated by a code
on a virtual sign in front of the participant (see Figure 2). The sign
shows a simple arithmetic problem participants need to solve to
determine which color is currently correct. Once the correct value is
determined, the player was instructed to verbally repeat the correct
number to earn double points until the sign changes. The sign and
arithmetic updated whenever participant responded normal or not
normal question during the game, so players needed to continually
pay attention to changes and then compute the new target color while
the game continued.

Several game parameters were additionally modified in the com-
plex version of the game to increase difficulty. The fall speed and
generation rate of targets was increased by a factor of 3. One target
per second was generated in basic, while 3 targets per second were
generated in complex while their size was decreased as falling closer
to the ground. The added complexity required players to split atten-
tion between playing the game (i.e., solving the addition problem,
distinguishing different shades of red, and carefully planning hand
movements to avoid accidentally catching targets of the wrong color)
and also providing intermittent responses for the detection of motion
scaling. The participants were prompted to respond seven seconds
after the change of scale value. A virtual sign would appear after
that seven seconds in front of the participant asking if their hand
movement at that moment was normal or not normal.

3.4.4 Procedure

Informed consent was obtained from participants prior to beginning
the study. Participants were randomly assigned to one of two groups
dictating which game version to play first. The experimenter helped
participants to wear and adjust the headset. Participants were given
instructions for the first game well as an overview of the procedure.

Participants were told they would play each game continuously
for several minutes at a time. While they were playing, the speed of
their hand would be modified. After a delay, a sign would appear
asking if their hand movement at that moment was normal or not
normal and that they should verbally respond as soon as they could
make a judgement about the movement. Participants were also
instructed to respond as quickly as they detected whether the hand
movement was normal, even before the sign appeared. Participants
were then told to enter the calibration pose while the experimenter
logged the position of the controller. Participants were allowed to
play the game and practice the procedure using 1.0, 0.5, and 2.0
scale factors prior to starting the study.

Each participant was given seven seconds to play the game with
each hand speed. Modifications to the speed of the hand were only
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made after a response about the previous speed was collected. Upon
their response being collected, the speed of the hand was linearly
interpolated to the next scale value over the course of 0.25 seconds
to remove instantaneous hand warping. In the case of the complex
game, a correct sum response was also recorded if provided by
participants. However, this was not a necessary condition to move
to the next scale value.

Throughout the study, breaks were provided as needed to min-
imize risk of sickness. Between games, participants were given a
brief demographic questionnaire, and then, were provided instruc-
tions for the second game. The above process was repeated for
the second game. After completing the second game, participants
completed a final questionnaire and answered several free response
questions about their experience.

3.4.5 Participants
Twenty university students, consisting of 13 males and 7 females,
took part in Experiment 2. Their ages ranged from 19 to 28 with
a median of 22 years old. Participants were undergraduate and
graduate students. Sixteen participants reported spending at least
one hour a week playing 3D video games. When asked to rate
their experience with VR on a scale from 1 to 5 (1 being no prior
experience and 5 being expert), 3 participants rated themselves 1
(No prior experience), 4 participants rated themselves 2 (Beginner),
10 participants rated themselves 3 (Average), and 3 participants
rated themselves 4 (Advanced). Five participants reported that they
have never used a VR headset before. 1 participant reported being
comfortable with using both hands, and all others reported being
right-handed. All participants completed the experiment with the
right controller.

4 RESULTS

We present the results for the scaled hand movements detection
threshold, and response time analysis.

4.1 Estimations of Detection Thresholds
Due to our 2AFC task design, we used a psychometric function to
show the relationship between proportion of correct responses and
the different scale values, and to measure the detection thresholds
[19]. We follow accepted analysis methodology used by similar
2AFC psychophysical studies (e.g., [9,10,38]) and used the quickpsy
package in R [28] which fits curves to data observations by direct
maximization of the likelihood (see [19, 21]) using psychometric
functions of the form:

ϕ(x) = γ +(1− γ−λ )∗ f (x)

where γ is the guess rate, λ is the lapse rate and f is a sigmoidal-
shape function with asymptotes at 0 and 1. The quickpsy package fits
the psychometric functions to each of the conditions in Experiment
1: Simple Hand Movements, i.e., horizontal, vertical, and depth, as
well as the conditions of the Experiment 2: Complexity in a Game
Context, i.e., basic and complex, separately for the slow and fast
scale values. Figure 3 shows the plots for the probability of a normal
response against the fast and slow scale values in Experiment 1.
Figure 5 shows the probability of a normal response against the fast
and slow scale values in Experiment 2. The solid lines show the
fitted psychometric data with the Cumulative Normal distribution of
the form:

FN(x;α,β ) =
β√
2π

∫ x

−∞
exp(−β 2(x−α)2

2
)

with 2 free parameters, assuming 0 for guess rate (γ) and lapse rate
(λ ), and with the probability to calculate the threshold set to 0.5. A
probability level of 50% is often used to find the absolute threshold
which is the level of intensity of a stimulus (i.e., scale value in our

Table 1: Table of thresholds (α) and standard deviations (β ) for
slow and fast scales in each direction tested in Experiment 1.

Confidence intervals (CI) estimate 95% of the population.

Figure 3: Fit psychometric functions for slow (left) and fast (right)
scales from Experiment 1. Dropdown lines represent detection

thresholds based on 50% detection probability. Error bars show a
95% confidence interval.

*
*

*

*
*

*

Figure 4: Thresholds for slow (left) and fast (right) scales from
Experiment 1. Statistical significance at p < 0.05 is denoted by (*).

Error bars show 95% confidence interval.

experiment) at which the participant is able to detect the presence of
the stimulus 50% of the time [24].

We report the values for the fitted psychometric functions for each
of the experiments.

4.1.1 Detection from Simple Motions
Fast Scales: Figure 3 shows ϕN(x;α,β ), where F is modeled by
Cumulative Normal function FN(x;α,β ) for fast scales in horizontal,
vertical, and depth directions. Values for α , i.e., threshold, and β ,
i.e., standard deviation, can be found in Table 1.

Comparison of Thresholds for Fast Scales: Figure 4 shows
the comparison of thresholds for each of the axis in simple mo-
tions experiment. We used the thresholdcomparisons function of
the quickpsy to test if there is any significant difference between
the thresholds for different motions or not. The thresholdcompar-
isons function conducts paired comparisons between groups for all
possible pairs of groups using the parametric bootstrap test. This
function compares two given groups by calculating the difference
between the bootstrap estimations of the threshold for all samples
and from the distribution of differences, given the 0.95 significance
level. Then the percentile confidence intervals are calculated as

P(α ∈ CI) ≥ 1− a where P is a probability and a is chosen as
0.05 in quickpsy (See [28]). The confidence intervals for the other

parameters are obtained similarly.
We found a significant difference between thresholds for all the

paired directions using fast scales in the simple motion experiment:

• horizontal vs vertical: di f =−0.204, p < 0.05
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Table 2: Table of thresholds (α) and standard deviations (β ) for
slow and fast scales for each game tested in Experiment 2.
Confidence intervals (CI) estimate 95% of the population.

Figure 5: Fit psychometric functions for slow (left) and fast (right)
scales during Experiment 2. Dropdown lines represent detection

thresholds. Error bars represent a 95% confidence interval.

Basic BasicComplex Complex

*

Figure 6: Thresholds for slow (left) and fast (right) scales during
Experiment 2. Statistical significance at p < 0.05 is denoted by (*).

Error bars represent a 95% confidence interval.

• horizontal vs depth: di f =−0.067, p < 0.05

• vertical vs depth: di f =−0.138, p < 0.05

Slow Scales: Figure 3 shows ϕN(x;α,β ), where F is modeled
by Cumulative Normal function FN(x;α,β ) for slow scales in hori-
zontal, vertical, and depth directions. α and β values are found in
Table 1.

Comparison of Thresholds for Slow Scales: Figure 4 show
the comparison of thresholds for each of the axis in simple motions
experiment. Similar to fast scales, we used the thresholdcomparisons
to test for significance. We found a significant difference between
thresholds for all the paired directions using slow scales in the simple
motion experiment as well.

• horizontal vs vertical: di f =−0.060, p < 0.05

• horizontal vs depth: di f = 0.30, p < 0.05

• vertical vs depth: di f = 0.090, p < 0.05

4.1.2 Detection from Compound Motions
Fast Scales: Figure 5 shows ϕN(x;α,β ), where F is modeled by
Cumulative Normal function FN(x;α,β ) for fast scales in basic and
complex game versions. α and β values are found in Table 2.

Comparison of Thresholds for Fast Scales: Figure 6 shows
the comparison of thresholds for each of the game versions in Ex-
periment 2: Complexity in a Game Context. Similar to Experiment
1 comparisons, we used the thresholdcomparisons to test for sig-
nificance. We did not find a significant difference of the detection
thresholds between two versions of game for fast scales.

Slow Scales: Figure 5 shows ϕN(x;α,β ), where F is modeled
by Cumulative Normal function FN(x;α,β ) for slow scales in basic
and complex game versions. α and β values are found in Table 2.
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Figure 7: Response time as a function of scale value during Experi-
ment 1. Error bars show standard error.
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Figure 8: Response time as a function of scale value during Experi-
ment 2. Error bars show standard error.

Comparison of Thresholds for Slow Scales: Figure 6 show
the comparison of thresholds for each of the game versions in in
Experiment 2: Complexity in a Game Context. We used the thresh-
oldcomparisons to test for significance. We found a significant
difference between thresholds of the different game versions for
slow scales: di f =−0.039, p < 0.05

4.2 Correlation between Response Time and Scaling

We measured response time for each trial. In Experiment 1, response
time indicates the time between when the participant starts moving
their hand to when they provide their response. Since participants
may behave inconsistently during the study in regards to answering
the normal and not normal question (e.g., some participants might
wait longer to say their answer or forget to say it as soon as they
reached their decisions), the response time data may vary. Therefore,
we need to detect and remove outliers before continuing the corre-
lation analysis. For both of the experiments, we removed outliers
for response times based on the 1.5xIQR rule (data points more than
1.5 times the interquartile range beyond the first or third quartiles).
Then, we combined all trials from different directions in Experiment
1, and different game versions in Experiment 2, and calculated the
average of response time per scale value. Figures 7 and 8 show
the fitted curves and their equations for response time averages of
different scale values for Experiment 1 and 2, respectively. We also
ran an AIC (Akaike’s Information Criterion) test [35] for the best
fitting curve; the results of the AIC function with a polynomial with
degree of 3 was the best fit. The fitted curves and their formulas
have been shown in Figure 7 and 8.

459

Authorized licensed use limited to: University of Florida. Downloaded on March 12,2021 at 22:02:35 UTC from IEEE Xplore.  Restrictions apply. 



5 DISCUSSION

We present the range of scales that can be applied to the motion of vir-
tual hand while the difference between the physical hand movement
and the virtual one is undetectable to users. We estimate thresholds
for each of the directions separately, as well as the compound hand
movements in the complex scenario:

• horizontal plane: (0.809, 1.310), scales in the range of 0.809
(slow) to 1.310 (fast)

• vertical plane: (0.869, 1.520), scales in the range of 0.869
(slow) to 1.520 (fast)

• depth plane: (0.779, 1.380), scales in the range of 0.779 (slow)
to 1.380 (fast)

• compound (3-dimensional): (0.758, 1.430), scales in the range
of 0.758 (slow) to 1.430 (fast)

These scale ranges are valuable for the design of future VR ap-
plications that use scaled hand movements as a modified interaction
technique while aiming to provide a realistic, natural, and immersive
experience for users in VR. These values are estimations of detec-
tion thresholds that can be applied to either increase or decrease
the speed of the virtual hand. Slow-scaled hand movements can be
beneficial in situations where accuracy of an interaction in VR is
important (e.g., using VR for hand rehabilitation training [10], or
medical training VR applications [30]). Therefore, they can be used
in such applications to provide more controlled hand movements in
VR. By applying scales within the proposed thresholds, it can be
expected that discrepancies between VR and real world would not
distract users. Fast-scaled hand movements, on the other hand, can
be useful in VR applications aiming to provide a higher range of
hand reach, or faster hand interactions (e.g., VR game applications).
Using fast-scaled hand movements, VR users can move their physi-
cal hands less while their virtual hands are moving faster and can be
used to reach far distant objects.

The results of our research also provide new insights on human
perception of scaled hand movements in different motion direc-
tions in VR. We detected significant differences between detection
thresholds in different directions both for slow and fast scales. The
range was narrower for detection of modified motion scaling in the
horizontal plane. This may be due to the visual field of view of
horizontal plane covering a larger range than vertical [42]. Many
common object motions make use of horizontal and depth motions
(e.g., moving objects on a table or desk; opening doors; reaching for
objects), but motion in the horizontal direction allows clear visual
perception of positional changes, whereas depth changes also make
use of somewhat less precise depth cues (e.g., vergence, relative
size). Our interview subjective responses show people may be more
familiar with hand motions in the horizontal plane and therefore can
detect the abnormality better. On the other hand, our results show
that we can have the highest range of detection thresholds in the
vertical plane. This is probably due to the more limited degrees of
FOV in vertical plane. Additionally, our participants’ reports during
the interview section suggests less use of vertical motion in day to
day interactions, which may be related to a larger range in detection
thresholds for scaled vertical hand movements.

Overall, the contributed knowledge of detection thresholds for dif-
ferent directions is relevant when considering application of scaled
or remapped hand movements in VR applications. For example, in
applications that require use of vertical motions (e.g., lifting objects
or making climbing gestures) hand movements can be scaled higher
using the estimation of detection thresholds and therefore provide
higher reach for users while preserving realism. Similarly, estima-
tion of detection thresholds for depth interactions can be useful in
applications with back-and-forth hand movements such as reaching
for virtual objects, or opening/closing actions. The results from our
response time analysis is aligned with the detection thresholds of

the scale values. As scale value becomes closer to 1.0, i.e., normal
motion, users have a higher response time, which shows that they
probably have a harder time in choosing normal or not normal. Ad-
ditionally, compared to the scale thresholds suggested by [43], we
report a broader range of scale values. This difference is likely due to
our differences in study design. Similarly to previous work focused
on very limited hand motion, we also conducted a controlled experi-
ment. However, our study design focuses more on hand movements
which are closer to the real world use cases.

5.1 Limitations and Future Work

We found no significant results between the basic and complex
versions of our tested game scenarios which can be attributed to
our study design limitations. It may be that detection ability is not
greatly affected by cognitive load differences, as Zenner et al. [43]
also did not find significant differences. Though we designed the
complex game to be more cognitively demanding than the tasks in
this study compared to the previous work, it might be that even more
complex tasks would be needed to observe differences. Additionally,
in more controlled or limited movements detection of compound
motion may have differing sensitivity. The thresholds we propose
for compound scaling are likely more intense due to the cognitively
demanding tasks given to participants. We suggest further research
into detection using simple motions to determine more conservative
thresholds for compound motion, as well determining acceptable
scales after continuous use or training.

Moreover, we point out that psychophysical methods have inher-
ent limitations and are accompanied by different perspectives for
analysis [20]. We note that while we present the results with an anal-
ysis based on standard 2AFC methods similar to other researchers
studying similar detection thresholds in VR [3,6,8,15,17,26,40,43],
alternative analysis considerations may also be applicable based
on yes/no variations of 2AFC methods [20]. We acknowledge the
possibility of response bias in our study based on answering normal
and not normal. The meaning of normal and not normal may vary
between users, unlike other work which determine thresholds using
less subjective means (i.e. “right” or “left”). Users may default
to one option if they are unsure. Therefore, the reported detection
thresholds of scaled values should be considered estimations based
on the psychometric methodology used, i.e., proportion correct. To
reduce the effects of bias, future work can also consider alternative
d′ methods, which uses a measure derived from signal detection
theory.

6 CONCLUSION

We investigated user perception of scaled hand movements and
estimating detection thresholds for different types of hand motion
in VR. We conducted two psychophysical experiments with a two-
alternative forced-choice (2AFC) design to measure user perception
of scaled hand movements and estimate detection thresholds using
psychometric functions. The first experiment involved isolated hand
movements along each primary axis (horizontal, vertical, and depth).
The second experiment investigated complex hand movements under
cognitively intense gaming conditions with scaling applied in all
three directions. We analyzed the data using a psychometric function
methodology and found estimations of thresholds of scaled values
that can be applied to hand movements. Our results showed that
scales in the range of (0.758, 1.430) can be applied to virtual hand
movements without the user detecting any difference. We also
found significant differences between thresholds of the scaled values
between horizontal, vertical, and depth directions. Our results are
of value for the design of future VR applications. The scale ranges
can be used to modify the hand movements in VR (either slower
or faster than normal) based on the purpose of applications, while
maintaining a natural and realistic experience for users.
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