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We consider the following video activity recognition (VAR) task: given a video, infer the set of activities being performed in

the video and assign each frame to an activity. Although VAR can be solved accurately using existing deep learning techniques,

deep networks are neither interpretable nor explainable and as a result their use is problematic in high stakes decision-making

applications (e.g., in healthcare, experimental Biology, aviation, law, etc.). In such applications, failure may lead to disastrous

consequences and therefore it is necessary that the user is able to either understand the inner workings of the model or probe

it to understand its reasoning patterns for a given decision. We address these limitations of deep networks by proposing

a new approach that feeds the output of a deep model into a tractable, interpretable probabilistic model called a dynamic

conditional cutset network that is deined over the explanatory and output variables and then performing joint inference over

the combined model. The two key beneits of using cutset networks are: (a) they explicitly model the relationship between the

output and explanatory variables and as a result the combined model is likely to be more accurate than the vanilla deep model

and (b) they can answer reasoning queries in polynomial time and as a result they can derive meaningful explanations by

eiciently answering explanation queries. We demonstrate the eicacy of our approach on two datasets, Textually Annotated

Cooking Scenes (TACoS), and wet lab, using conventional evaluation measures such as the Jaccard Index and Hamming Loss,

as well as a human-subjects study.
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1 INTRODUCTION

Video activity recognition (VAR), which is the task of inferring high-level activities given a sequence of frames,
has received increasing attention in recent years. This task is notoriously diicult especially when (1) the number
of activities is large; (2) each frame is associated with multiple activities; and (3) activities in diferent frames
depend on each other. Despite the high degree of diiculty, recent advances in deep learning architectures and
algorithms have made it possible to accurately solve this task (see, for example, [41, 74, 111, 112]). In particular,
we can solve the VAR task using the following approach: (1) predict activities happening in each frame using deep
learning based image classiication techniques; and (2) make high-level predictions over segments of a video by
aggregating predictions over individual frames, leveraging prior knowledge and enforcing constraints to resolve
discrepancies (e.g., using a constraint that activities do not change rapidly).
Unfortunately, a problem with the aforementioned approach is that most deep learning models are not

explainable; they lack the required probabilistic reasoning tools (see, for example, [45]) that can derive meaningful
and faithful explanations for their decisionsÐfor example, see Rudin [102] for a discussion. As a result, in many
instances, users are unable to understand why a particular decision was made (by a deep learning model) as
compared to a plausible alternative. For example, given a set of explanatory variables each of which have a
real-world interpretation (e.g., explanatory variable �1 denotes whether an orange is present in a given frame
or not), a possible human-understandable explanation is the most likely assignment to a subset of explanatory
variables that caused the decision variables to take the predicted values. However, existing neural network
technology is unable to accurately and reliably answer such explanation queries (see, for example, Gunning and
Aha [30]). More speciically, the current technology uses another, possibly simpler (or interpretable) model�
which replicates the neural network in order to explain its decisions, without having any guarantees on how
closely � mimics the neural network [102]. The main virtue of the approach described in the paper is that it
learns a tractable, interpretable probabilistic representation over the explanatory and output variables and derives
explanations (via probabilistic reasoning) that are faithful to the model.

The lack of explainability is especially problematic in high-stakes applications of VAR and machine learning in
general (see, for example [114, 117]). For instance, consider a AI-based video surveillance system at a supermarket
that has labeled a particular activity by a shopper as suspicious. Without a human-understandable explanation,
the shopper could be wrongly detained if the activity was benign, thus exposing the supermarket to possible
lawsuits. On the other hand, in the event that the shopper did commit a crime, the criminal activity may not be
evident in the video to a casual observer without a veriiable proof/explanation provided by the system.

To address this issue, we focus on Explainable Activity Recognition (XAR), which we loosely deine as the task
of inferring high-level activities from videos (or in general, from low-level sensors) along with an explanation
of why the activities were chosen in lieu of other activities [30]. An XAR system can beneit and enable a wide
variety of real-world applications. For instance, a video surveillance system such as the one described above
would greatly beneit from human-understandable explanations that describe why the system lagged predicted
activities (happening in speciic video segments) as suspicious or benign. These explanations can either be short
or detailed. A short explanation, for example, would tag the most important sub-segments in each video segment
where the speciic (e.g., when a package is stolen from a porch) or a relevant activity (e.g., when a package is
touched but not stolen after seeing the surveillance equipment) happened. A detailed explanation, for example,
would describe alternate or competing hypotheses along with conidence in each hypothesis and its various
components (e.g., the system believes that with a probability greater than 70% that the package on the porch was
touched at a later time by the delivery person because he/she forgot to scan the package when it was delivered).
Finally, an indirect advantage of explanations is that they help the user better understand how the system works
which can potentially improve the user’s trust and reliance on the system [32, 33].
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The main purpose of this paper is to describe a general approach for XAR and then apply and evaluate it for
activity recognition in cooking videos as well as videos from a wet lab (lab dealing with potentially hazardous
substances). We also evaluate the explanation quality in cooking videos using human subjects studies.1 Speciically,
we build an XAR system that can perform the following three tasks: (1) parse a video into a set of pre-deined
activity labels, namely divide each video into segments and associate activity labels with each segment; (2) use
this information to answer Yes/No queries posed by the user; and (3) provide three diferent types of explanations
to add context to the system’s answers. The third task, in particular, can only be performed by an explainable
machine learning system and is of particular interest to us.

Our system consists of two parts: (1) an explainable machine learning model, which forms the nuts and bolts
of our system; and (2) a visual interface which provides answers to user’s queries and displays the explanations.
Our model, in turn, has two layers, a video classiication layer and an explanation layer (see Fig. 1). The video
classiication (top) layer is a deep neural network that takes video frames as input and predicts an activity label
for each frame. The predicted labels are then fed into the explanation (bottom) layer. The latter aggregates the
predictions made by the neural network and improves the accuracy using a probabilistic model that represents
and reasons about relationships between diferent activities as well as temporal constraints. The explanation layer
provides answers to the queries posed by the user as well as explanations; both tasks are solved by performing
inference over the probabilistic model.
The explanation layer consists of a tractable, interpretable probabilistic graphical model [45], speciically a

cutset network [90]. Unlike conventional graphical models such as Bayesian and Markov networks in which
probabilistic inference is NP-hard in general and inaccurate in practice, cutset networks are desirable in that
they admit accurate linear-time inference and often have the same generalization performance as Bayesian and
Markov networks [18, 58, 65, 87, 88, 90, 97]. In other words, inference over cutset networks is always fast and
accurate, and as a result they often yield signiicantly better quality predictions and explanations than Bayesian
and Markov networks.
A possible interpretation of our explainable machine learning model is that the deep learning layer provides

noisy sensory inputs to the cutset network layer, which in turn removes the noise and provides explanations. The
neural network, by itself, is unable to provide explanations because it does not model, and therefore is unable
to reason about, the relationships between the predicted labels. On the other hand, a cutset network explicitly
models relationships between various activities and can provide fast, high quality explanations by performing
(abductive) probabilistic inference over the network. To model temporal aspects in video, we further reine this
model, propose a novel temporal probabilistic modeling framework called dynamic cutset networks, and show
that it improves the estimation accuracy.

A key feature of our explainable model is that it is declarative in nature (see, for example, Koller and Friedman
[45]) and represents a joint distribution over the explanatory and decision variables given evidence. At a high
level, a declarative representation means that the model expresses knowledge or information about a particular
domain and for answering queries, either decision or explanation queries, one only needs to change the reasoning
algorithm (and not the model). In other words, if the query changesÐfor instance, if a diferent type of explanation
is soughtÐour proposed explainable model can use a new general-purpose reasoning method without the need
to relearn or modify the underlying model. In contrast, deep learning or discriminative models require learning a
distinct representation for each decision or explanation query, which can be computationally expensive. Moreover,
as mentioned earlier, because a separate discriminative model is used to generate explanations, which can be
quite diferent from the model used to make decisions, the explanations may not align with the decision (i.e., the
explanations may not be faithful to the model that made the decision).

1Unlike cooking videos, the wet lab domain is less accessible and requires a domain expert. Therefore, we performed human subjects studies

on the cooking domain only.
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The second part of our system consists of a browser-based user interface that can be used to pose Yes/No
questions to the system (see Fig. 5). The user irst chooses a video and can then choose from a list of questions of
the form łDid activity X take place?ž The system then uses the explanation layer to search for frames where there
is an activity match and displays explanations in the form of video segments, ranked triples, and component-wise
contributions to the explanations. If no perfect matches are found, then the system answers No to the query and
uses partial component-wise matches to explain its decision.

We evaluated the machine learning part of our system using standard information retrieval metrics such as the
Jaccard Index and Hamming Loss (see, for example Leskovec et al. [55]). Speciically, we compared our two-layer
architecture, which contains a video classiication layer and an explanation layer, with a one-layer architecture
that contains only the video classiication layer. We observed that the two-layer architecture is more accurate
than the one-layer architecture. We evaluated the interface using human-subjects studies where each user was
shown a set of videos and presented with questions that she/he had to answer using the explanations provided by
the system. Our results clearly demonstrate that the users who used the two-layer system (having the explanation
layer) completed the human-machine task faster and more accurately than users who used the one-layer system
that did not provide explanations.
In summary, this article makes the following contributions beyond what has been already published by a

subset of the authors at archival venues2 (see [88, 99, 100]):

• We propose a novel two-layer architecture which combines a tractable, interpretable model called dynamic
conditional cutset network (DCCN) with deep neural networks for solving the multi-label activity recog-
nition task in video (where the DCCN is deined over the explanatory and output variables). The main
virtue of this new architecture is that once learned from data, it is able to generate meaningful, real-time
explanations for its decisions via eicient probabilistic inference.
• Via experimental evaluation on the TACoS (third-person videos of a person cooking in a kitchen) and wet
lab (third person videos of a person performing lab experiments) datasets, we showed that the two-layered
architecture is superior to the one-layered architecture in terms of accuracy.
• We propose and describe a novel interactive visual interface which allows users to load videos, ask queries
and visualize the system’s answer as well as its explanations.
• Via a human subjects evaluation with 80 users for the task of activity recognition in single-actor cooking
videos from the TACoS dataset, we show that the explainable model helps the user answer queries faster
and more accurately as compared to the non-explainable model.

The rest of the paper is organized as follows. In the next section, we describe related work. In section 3, we
describe the desiderata of an XAR system for both cooking and wet lab videos and show how to build the system
using machine learning representations and algorithms in section 4. We empirically evaluate the machine learning
models in section 5 and describe the results of a human-subjects study for measuring explanation efectiveness in
section 6. Finally, we summarize our contributions and present avenues for future work in section 7.

2 RELATED WORK

2.1 Traditional Space-Time Approaches

Traditional activity recognition has been typically concerned with isolating segments of video and mapping
them to particular actions. These traditional space-time approaches treat each video as a 3D volume along the X,
Y (spatial) and T (temporal) axes. This 3D volume is then either (a) matched against smaller template volumes
for each action [9, 42, 95, 106]; or (b) used to track the trajectories of the agent inside the volume in order to
detect speciic actions [13, 92, 107, 122]; or (c) used to extract spatio-temporal features or points of interest (eg.

2This paper is an extended version of a non-archival paper presented at the 2019 ICML Workshop on Tractable Probabilistic Models [101].
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Fig. 1. High-level Architecture and Data Processing Pipeline. Our system has two layers: a video classification layer (see
section 4.1) based on deep learning whose output is fed to an explanation layer which is based on dynamic conditional
cutset networks (see section 4.2), which are temporal versions of a tractable interpretable probabilistic model called cutset
networks [90]. During the learning phase, the classification layer uses the video and the ground truth (labels) as input and
learns a mapping from frames to object, action and location. During the learning phase, the explanation layer uses the labels
predicted by the classification layer and ground truth as input and learns a mapping from predicted labels to the ground
truth. During the query phase, the classification layer uses the frames (from video) to provide us with predicted labels for
each frame and then these labels are provided to the explanation layer to answer the query by performing marginal and
MAP inference over the dynamic cutset network.

changes in directions, collisions, etc.) and use these features to assign actions [8, 15, 19, 50, 51, 77, 105, 118, 124].
A detailed description of these methods can be found in the survey paper by Aggarwal and Ryoo [2]. Unlike
previous work, our model encodes additional context about each activity by also modeling the object and location
associated with each action.

2.2 State-Based Sequential Approaches

These approaches use Hidden Markov Models (HMMs) and Dynamic Bayesian Networks (DBNs) to model the
problem as a sequence of states and then use these sequences to determine the action in question. There exists
a large body of work that uses these approaches [10, 12, 29, 35, 63, 73, 78, 81, 110, 121]; however, similar to the
traditional space-time approaches, most of these approaches are concerned with single actions only and although
they can be used to generate the explanations we use in our system, HMMs sufer from a lack of expressivity
while DBNs are impractical either because exact inference over them is intractable or approximate inference
algorithms such as particle iltering are inaccurate in practice. The Dynamic Conditional Cutset Network (DCCN)
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model we use in this paper circumvents both of these issues and also allows for multiple action/object/location
labels per time slice by framing the problem as a temporal multi-label classiication (TMLC) problem.

2.3 Deep Learning Approaches

More recently, there have been a number of works that use Convolutional Neural Networks (CNNs) [53],
which have already found extraordinary success in large scale image classiication and object detection, e.g.
[48, 111]. Most of these works use CNNs as spatial feature extractors and then train a recurrent model such as
an HMM or an RNN/LSTM on top of these spatial feature vectors to model the sequential nature of activities
[20, 26, 27, 31, 37, 52, 59, 61, 67, 75, 79, 108, 119, 120, 123]. Unfortunately, as is typical of deep-learning approaches,
these systems are not explainable. The approach used in this paper aims to rectify this problem by training our
tractable, dynamic and probabilistic framework to create a transparent and robust decision-making process that
can be used to answer any probabilistic query accurately and eiciently as well as to generate explanations to
justify its decisions.

There has been another line of work from the variational autoencoder (VAE) community that compose graphical
models with neural networks and perform joint learning and inference [38, 40, 47]. The key diference between
the formulation used by these models and our formulation is the fact that the graphical models in the former are
deined over latent variables while in our model, they are deined over the explanatory variables themselves. This
makes our model better suited towards computing the answers to probabilistic queries posed over the explanatory
variables that can be presented to the end-user as explanations.

2.4 Event Recognition Models that use Black-box Models as Sensors

In addition to training HMMs and DBNs on top of low-level feature extractors, there have also been a number of
grammar-based approaches [36, 39, 104, 125] that use stochastic context-free grammars to model the hierarchical
nature of activities as well as the temporal relations between them. The work by Pei et al. [83], for instance, uses
a black-box random forest model to predict noisy activities which, in turn, are fed into an AND/OR graph that
represents the hierarchical semantic structure of each video. While such approaches are globally interpretable
(since they provide a good, hierarchical overview of the event structure in each video), they are unable to
eiciently compute conditional probabilities of actions over time e.g. the probability of a slicing activity taking
place over an orange in the seventh interval given that the orange was taken out of the fridge in the second
interval.
The second class of approaches [11, 68] involve generating candidate interval hypotheses using black-box

models and then using a probabilistic relational model to reine these probabilities. Although probabilistic
relational models work very well in situations where prior knowledge about the domain is known a-priori,
learning these relations from data is typically NP-hard [24]. In fact, inference is also intractable in these models
unless some very restrictive assumptions are made. For example, the work by Morariu et al [68] restricts the
treewidth of the underlying Markov Logic Network (MLN) in order to guarantee tractability of exact inference.
Similarly, the work by Brendel et al. [11] deines their own probabilistic event logic; however, computation of the
maximum a-posteriori (MAP) is required for inference which is intractable in their model and is approximated
using a local search-based algorithm. Our model addresses all these problems since it treats each action, object
and location as individual labels and compactly encodes a joint distribution over them. Solving this temporal
multi-label classiication (TMLC) problem using our dynamic and tractable framework allows for both (a) reining
the results of the black-box outputs and (b) generating eicient and accurate posterior probabilities as explanations
using particle iltering.

ACM Trans. Interact. Intell. Syst.
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2.5 Semantic Representation of Videos

This efort is also closely related to the work of Rohrbach et al. [96] and Donahue et al. [20] on generating a
semantic representation from videos at an activity level using deep learning architectures. Instead of generating
sentences in natural language, we assign a number of pre-deined labels divided into categories. Related eforts
have considered the task of dense captioning [46], i.e., generating summaries of texts from particular segments.
Song et al. [109] attempted to create captioning methods that require minimum supervision on the TaCOS dataset.
Duan et al. [22] attempted to combine caption generation and sentence localization to feed of of each other to
create a weakly supervised training model. These works focus on creating text summaries for video segments,
and as is typical of deep learning approaches, they are essentially black-boxes. Our approach, on the other hand,
aims to create a semantic representation for activities in each frame that can be used to both answer queries
easily as well as generate explanations (via probabilistic inference) that justify these answers.

2.6 Explainable AI and Machine Learning

Most modern machine learning models use deep neural networks or ensembles as key components to achieve
state-of-the-art results. However, due to the opaque nature of these black-box models, decision makers have been
reluctant to adopt them in mission-critical applications where the cost of failure is high and where it is imperative
to have at least some understanding of the underlying logic used by these models to arrive at their decisions
(cf. Veale et al. [116]). There are many types of explanation techniques that are currently in use. The survey
by Adadi and Berrada [1] list some of these including visualization techniques such as surrogate models and
partial dependency plots (PDPs); knowledge-extraction techniques such as rule extraction and model distillation;
inluence methods such as feature importance; as well as example-based techniques such as counterfactuals.
While these techniques are both powerful and versatile, they are not speciically tailored to the task of activity
recognition. There has been some work in this area regarding the usage of association rules [3] and computing
feature relevance scores using interpretable models [7] as explanations; however, these systems primarily use
sensor data as input (as opposed to video data that is used in this paper). In addition, there have also been
some successful attempts in the visual question-answering (VQA) community to generate meaningful visual
explanations [57, 80]; however these use still images instead of videos. Very recently, Chen et al. [14] proposed
a method that extended the visual question-answering task to videos. However, the aim of most of these VQA
methods is to generate natural-language answers to questions posed in natural-language which is signiicantly
diferent from our aim of building a context-rich semantic representation that can be easily queried. Further,
these methods do not incorporate uncertainty very well (for example, they cannot tell the user how conident the
model is about certain components of the answer).

2.7 Explainable Activity Recognition (XAR) in Videos

Technically, we can use image attribution approaches (see, for example Grad-CAM [53] and LIME [94]) to perform
XAR because each video is a sequence of images. However, these approaches do not model or reason about
spatiotemporal relationships and often yield coarse-grained, unsatisfactory explanations [56]. To circumvent this
issue, recently, researchers have begun investigating video attribution approaches [5, 56] which output important
regions in each relevant frame of a video as explanations. The issue with the above approaches is that they use a
separate explainable model or an external process (e.g., loss functions or gradient computations) to explain the
original model’s decision. These external methods are unable to guarantee that the provided explanation will
be close to the optimal explanation. In contrast, the method described in this paper derives optimal or close to
optimal explanations by reasoning over a tractable, interpretable probabilistic model deined over the explanatory
and output variables.

ACM Trans. Interact. Intell. Syst.
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Our work is also closely related to the work of Zhuo et al. [126] which uses logical reasoning over scene graphs
to derive explanations. Our work is diferent from Zhou et al.’s approach in that we use tractable probabilistic
models and reasoning.

2.8 AI and Trust

There have been a number of studies on how trust inluences interactions between humans and automated
systems, e.g., [32, 54, 69, 70]. These studies examine factors that might afect the trust of the user in the system,
such as the past performance of the system and how understandable the system is to the user [54]. Hofman [33]
provides a more detailed taxonomy of such factors and explains how trust is context-speciic and dynamic. In
other words, trust might vary with respect to speciic contexts of automation and must also be maintained over
time. Our aim is to compare the demonstrated trust [66] between two systems (models), one that uses explanations
and another that does not by conducting human subjects studies. More speciically, we irst divide the participants
into two groups and allow participants in the irst and second group to observe and interact with a model that
uses explanations and a model that does not (use explanations) respectively. Then, we have participants in each
group use the system they interacted with to answer yes/no queries about activities performed in the video.
Finally, we assume that the participant has deemed a system more trustworthy than the other if they are able
to answer the query in less time, more accurately and agree with the system’s answer in more cases than the
other system. An interesting future work is to measure participants’ self-reported perception of their trust (via
questionaires and surveys) using the trust scale for explainable AI proposed by Hofmann et al. [34] and compare
the results with the three metrics (accuracy, speed and agreement) used in this paper.

3 ACTIVITY RECOGNITION WITH EXPLANATIONS

In this section, we describe the desiderata and assumptions for our proposed explainable activity recognition
system. We will describe how we can build such a system using a combination of dynamic conditional cutset
networks and neural networks in the next section.

3.1 Desiderata and Assumptions for the Activity Recognition System

We assume that the we are given a collection of third person videos where each video contains exactly one actor
performing simple activities such as łopen doorž, łtake bottle out of fridgež, etc., but not complicated ones such
as łcut a banana into ten 1-inch pieces with a knife on a cutting boardž. Under these assumptions, we deine an
activity (performed by an actor) as a triple (action, object, location) where object and location can be łNonež but
action cannot be łNone". We assume that the domains of (namely the values that can be assigned to) action, object
and location are provided to the system as input.

The action component forms the core part of the activity. These are usually verbs such as wash, cut, slice, open,
etc. The object component denotes the entities over which the activity is performed. These are generally nouns
such as apples, refrigerator, cutting board, knife, etc. Finally, the location component tells us where the activity is
taking place. These are generally location nouns such as kitchen, bathroom, counter top, sink, etc. but can also
overlap with the nouns we use as objects. For example, when a person łkicks open a door,ž the activity is łkickž
and the object is łdoor,ž but the same entity might play a diferent semantic role in a diferent activity such as
if a person łpaints a picture on the door.ž Here łpaintž is the activity, łpicturež is the object, and łdoorž is the
location. For relexive actions, such as łwalking,ž the object and location are łNone.ž

Users interact with our system by posing so-called selection questions: łDid a particular (simple) activity deined
by the triple (action, object, location) happen in the video?ž Examples of selection questions include: (1) łDid the
person slice an orange on the counter?ž where slice, orange, and counter denote the action, object, and location
respectively; (2) łDid the person take out grapes from the refrigerator?ž where take out, grapes, and refrigerator

ACM Trans. Interact. Intell. Syst.
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denote the action, object, and location respectively; and (3) łDid the person open the refrigerator?ž where open
and refrigerator denote action and object respectively and location is None.

3.2 Desiderata for Explanations Provided by the Activity Recognition system

In addition to answering queries posed by the user, we also want the system to provide explanations to justify its
answers. We seek three diferent types of explanations:

(1) Video Explanations:When the system answers łyes,ž we want the system to highlight segments (possibly
more than one) of the video where the activity happened. For łnož answers, we want the system to highlight
segments where a related activity happened. For example, for the question łdid the person in the video
wash their hands?ž, there might be two segments in the video from say, 01:00 to 01:10 and from 04:15 to
04:25 where the person washes their hands. We want our system to detect these segments and use them
as explanations to justify its answer to the question (łyesž in this case). If the person does not wash their
hands, we would expect the system to answer łnož and explain its answer by highlighting a section of the
video (say from 00:20 to 00:35) where the person performs a similar activity such as washing a knife or
washing a peeler. The system is expected to therefore justify łnož answers by saying that similar activities
were detected but not the speciic activity (or activities) that the user was querying about.

(2) Ranked (action, object, location) Triples: Given a video explanation (namely a segment of the video),
we want the system to display the top-� predicted activity triples in the segment that are relevant to the
query. For example, for the question łdoes the person cut a carrot?ž, the system might answer łyesž and
display a list of three possible explanations: (cut, carrot, cutting-board), (cut, carrot, plate) and (cut, orange,

plate). We want these explanations to be ordered in descending order of likelihood (or conidence). In this
case, we know that the system believes that the activity taking place was (cut, carrot, cutting-board) with
the highest degree of conidence, followed by (cut, carrot, plate) and (cut, orange, plate). These explanations
not only provide more context to the answers but also help the user decode patterns in the behavior of the
system. For instance, the user might notice that the system frequently generates łorangež as an alternative
explanation for łcarrotž presumably because they have the same color.

(3) Most Probable Entities: Given a video explanation, we want the system to display the most probable
actions, objects and locations (along with their likelihood) that are relevant to the query in the video
segment. Using the same example as above, we want the system to give us a component-wise score for the
components cut (action), carrot (object), orange (object), cutting-board (location) and plate (location). The
system might have a 100% score for cut because it is very conident that the action cut happened in the
video but only a 60% score for carrot because it is not sure if the object being cut is a carrot or an orange.

4 SYSTEM DESCRIPTION

Fig. 1 shows a high-level overview of the components of the system and the processing pipeline. The system
can be roughly organized into the following two layers: (a) the video classiication layer which takes as input
video frames (and a vocabulary ile) and assigns a set of labels (from the vocabulary) to each frame; and (b) the
explanation layer which takes the predicted labels from the video classiication layer as input, corrects them
using a probabilistic model, and outputs (potentially more accurate) labels and explanations.

4.1 Video Classification Layer

The input to this layer is a set of frames (i.e., a video), and the output is a set of predicted activity labels, one for
each frame. Each frame is passed through a deep neural network and the latter generates the output activity
labels for the frame.

ACM Trans. Interact. Intell. Syst.
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Video 
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(a) Pre-Trained GoogleNet

Feature
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layer

Video 
Frame
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(b) Modified GoogleNet

Fig. 2. Changes to the GoogleNet architecture. (a) The original GoogleNet schematic which contains a feature extraction
module (based on convolutional neural networks) and a sotmax classification layer that takes the output of the feature
extraction module as input and classifies the input video frame into one of the roughly 1000 possible object categories. (b) Our
proposed modification which uses the same feature extraction module as the original GoogleNet but has a fully-connected
sigmoid layer having� nodes (labels) that takes the output of the feature extraction module as input and assigns either a 0
(false) or a 1 (true) to each of the� labels.

In our study, we used GoogleNet [111], a 22-layer Convolutional Neural Network (CNN) (see, for example
Dumoulin and Visin [23]) that is pre-trained on the ImageNet dataset [103]. Note that any deep neural network
can be used instead of GoogleNet; the accuracy of our system will only (likely) improve with more advanced
deep learning algorithms and architectures.

We modiied the GoogleNet architecture slightly to accommodate our problem. The original GoogleNet, which
is trained on the ImageNet dataset, solves a multi-class classiication task in that it takes an image as input and
classiies it into one of the roughly 1000 object categories in ImageNet. In this work, we are interested in solving a
multi-label classiication task where each image can be associated with multiple labels. Speciically, the TACoS and
wet lab datasets used in our experiments have 28 and 57 labels respectively. To this end, we replaced the softmax
classiication layer of GoogLeNet which yields a probability distribution over roughly 1000 object categories
with a fully connected sigmoid layer having� nodes, one for each class label (where� equals 28 and 57 for the
TACoS and wet lab datasets respectively). Fig. 2 depicts the diference between the original GoogleNet and our
modiication.

Training: As mentioned earlier, we used a feature extractor that was pre-trained on the ImageNet dataset [103].
Then, we retrained our modiied architecture (see Fig. 2(b)) for a ixed number of iterations using the ADAM
gradient optimization technique [44] on the TACoS and wet lab datasets respectively.

4.2 Explanation Layer

In this section, we present dynamic conditional cutset networks (DCCNs), our new tractable, temporal probabilistic
representation. We use DCCNs in the explanation layer to: (a) correct errors in the labels predicted by GoogLeNet
at each frame; (b) model the dynamics as well as persistence (activities do not change rapidly between frames) in
the video; and (c) provide explanations via abductive poly-time probabilistic inference.

4.2.1 Cutset Networks. Probabilistic Graphical Models (PGMs) such as Bayesian and Markov networks (see,
for example Koller and Friedman [45]) are widely used in practice to represent and reason about uncertainty.
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At a high level, they are a compact representation of the joint probability distribution over a large number
of random variables. Once learned from data, they can be used to answer any query posed over the joint
distribution via probabilistic inference. The two main types of inference (queries) tasks are posterior marginal
(MAR) and maximum-a-posteriori (MAP) inference. In MAR inference, we are interested in computing the
marginal probability distribution over each query variable given evidence where evidence (or observation) is
an assignment of values to a subset of random variables. In MAP inference, we are interested in computing the
most likely assignment to all query variables given evidence. Both tasks are notoriously diicult to solve in many
practical networks, and theoretically they are NP-hard in general [98]. As a result, in practice, one has to often
use approximate inference algorithms to solve these problems (approximately). Unfortunately, these algorithms
are unreliable and often yield inaccurate query answers [89].

Tractable probabilistic models (TPMs) [4, 17, 62] are special types of probabilistic models which admit poly-time
MAR and MAP inference and thus circumvent the problem of unreliability of approximate inference in Bayesian
and Markov networks. Although TPMs are less expressive than intractable (latent) probabilistic models such as
Bayesian and Markov networks, their prediction accuracy (at test time) is often much higher than intractable
models. This is because tractable models use exact inference at prediction time while one has to use inaccurate
approximate inference algorithms in Bayesian and Markov networks. Examples of popular TPMs include cutset
networks [86, 87, 90], arithmetic circuits [17, 62], sum-product networks [84] and probabilistic sentential decision
diagrams [6].
Cutset networks [90] are a class of TPMs that use recursive cutset conditioning [64, 82] to build a rooted

OR tree where each non-leaf node corresponds to a conditioned variable and each leaf node corresponds to a
tree-structured Bayesian Network deined over all variables not appearing on the path from the root to the leaf.
Formally, given a set of variables � = {�1, . . . , ��}, a cutset network� is a pair (�,� ) where� represents an OR
tree and � represents a set of tree-structured Bayesian Networks, one for each leaf node in � (see Fig. 3(a) for
an example). Assuming that all the variables in � are binary, each non-leaf node in � will have two branches.
We will assume that the left and right branches of an OR node labeled by �� in � correspond to the values ��
and �� respectively where �� (similarly �� ) denotes an assignment of value 0 to �� (similarly 1). Each directed
edge between an OR node labeled by �� and its child node in � is labeled with the conditional probability of the
variable �� taking the corresponding value given the assignment on the path from the root to �� . For example,
in Fig. 3a, 0.92 equals the conditional probability � (�4 |�1). Every non-leaf node partitions the probability space
into data points that agree with �� in the left sub-tree and those that agree with �� in the right sub-tree. The
probability of a full assignment � w.r.t. the cutset network � is given by

�� (�) = �� (� )

(

�� (�� (� ) )

)

·
∏

�∈� (� )

� (1)

where � (�) denotes the leaf node in� corresponding to the assignment � ,�� (� ) denotes the tree Bayesian network
at � (�), � (�� (� ) ) denotes the set of variables over which �� (� ) is deined, �� (�� (� ) ) denotes the projection of the

assignment � on the variables �
(

�� (� )
)

(where �
(

�� (� )
)

⊆ � ) and � (�) is the set of conditional probabilities on
the path from root to the leaf node � (�) in the OR tree � .

The time complexity of posterior marginal estimation (MAR) and full maximum-a-posteriori estimation (MAP)
is linear in the size of the cutset network and can be solved by making two passes over the network [90]. The
fact that most prediction tasks can be reduced to these two types of inference queries makes these models an
attractive choice for applications that rely heavily on exact inference at test time.
The structure and parameters of cutset networks can be learned from data using the top-down, recursive

induction approach described in Algorithm 1. The algorithm has two main steps: base case and conditioning
step. In the base case, the algorithm returns a tree Bayesian network if a pre-deined termination condition (a
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(a)
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Y3 → Y2 Y2 → Y3

1− σ1(x) σ1(x)

1− σ2(x) σ2(x) 1− σ3(x) σ3(x)

(b)

� � � �+1 True labels

� � � �+1 Predicted labels

(c)

Fig. 3. (a) A cutset network over 4 variables {�1, . . . , �4}. OR nodes are denoted by circles. �1 is the root node of the OR tree.
Let and right arcs emanating from an OR node labeled by �� indicate conditioning over false (assignment of 0) and true
(assignment of 1) values of �� respectively. Arcs emanating from OR nodes are labeled with conditional probabilities. For
example, the arc labeled with 0.08 denotes the conditional probability � (�4 = 1|�1 = 1). The leaf nodes of the OR tree are tree
Bayesian networks. (b) A conditional cutset network (CCN) representing � (�1, . . . , �4 |� ). Arcs emanating from OR nodes
are labeled with (calibrated) classifier functions. For example, the arc from the OR node �1 to the OR node �3 is labeled
with a logistic regression classifier 1 − �1 (�). Given an assignment � = � to all variables in � , the CCN yields a cutset
network having the same structure as the one given in (a) except that the parameters will be computed using �1, �2 and �3.
(c) 2-slice dynamic conditional cutset network. The CCN at time slice � represents � (� � |�� ) while the CCN at time slice � + 1
represents � (� �+1 |��+1, � � ).

popular condition is described below) is satisied. The tree Bayesian network is learned from data using the
Chow-Liu algorithm [16]. This algorithm irst constructs an undirected weighted complete graph in which each
node corresponds to a variable �� in � and each edge (�� , � � ) is weighed using the mutual information score
(MIScore) between �� and � � :

MIScore(�� , � � ) =

1︁

�=0

1︁

�=0

�� (�� = �, � � = �) log
�� (�� = �, � � = �)

�� (�� = �)�� (� � = �)

where �� (�� = �, � � = �) is estimated from the dataset � ; the estimate equals the number of times the partial
assignment (�� = �, � � = �) appears in the data divided by the number of examples in � , and �� (�� = �) =
∑1
�=0 �� (�� = �, � � = �) (similarly, �� (� � = �) =

∑1
�=0 �� (�� = �, � � = �)). Then, the Chow-Liu algorithm inds

a maximum spanning tree from the weighted complete graph and converts the tree to a directed tree � using
depth-irst search. The latter yields a tree Bayesian network which represents the following distribution:

� (�) =

�
∏

�=1

�� (�{�� } |���� (�� ) )

where ��� (�� ) is the set of parents of �� in � . Note that ��� (�� ) ≤ 1 for all � .
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Algorithm 1 LearnCNet

Input: Dataset � = {� (1) , . . . , � (�) } having� training examples
Variables � = {�1, . . . , ��}

Output: Cutset network �

1: if termination condition then
2: return ChowLiuTree(�)
3: Use a splitting heuristic to select a variable �� ∈ �
4: Create a new OR node � and label it by ��
5: ��� ← {� ∈ � |�� = 0}
6: ��� ← {� ∈ � |�� = 1}
7: Let � and � denote the left and right child nodes of �
8: � ← LearnCNet(��� , � \ {�� })
9: � ← LearnCNet(��� , � \ {�� })
10: Let ��,� and ��,� denote the conditional probabilities on the edge between � and � and between � and �

respectively.

11: ��,� ←
|��� |

|� |

12: ��,� ←
|��� |

|� |

13: return �

The following termination condition is often used in practice [86, 87, 90]: stop growing the OR tree if any of
the following conditions are satisied

(1) The number of examples is smaller than � ;
(2) The depth of the OR tree is larger than � (� is bounded by �)

Hyperparameters � and � are tuned using the validation set; namely we search over possible choices of � and �
and choose the combination that gives the highest log-likelihood score on the validation set.

In the conditioning step, the algorithm heuristically selects a variable�� to condition on. The following heuristic
is often used in practice [86]. We select a variable having the following sum mutual information score with ties
broken randomly:

SumMIScore(�� ) =
︁

� :�≠�

MIScore(�� , � � )

Once the variable (�� ) is selected, the algorithm induces an OR node � labeled by �� (line 4). Then, the algorithm
partitions the dataset � into two datasets, ��� and ��� where the former contains only those examples in �

which �� is assigned the value 0 while the latter contains only those examples in � in which �� is assigned
the value 1. It then creates two child nodes � and � and recursively constructs a CN on � and � using ��� and
��� respectively. Finally, the algorithm estimates the conditional probability on the edges between � and � and
between � and � (lines 11 and 12) and returns the OR node � .

4.2.2 Conditional Cutset Networks. Conditional cutset networks (CCNs) are a new framework that was recently
proposed by Rahman et al. [88]. As the name suggests, they generalize the cutset networks framework to
compactly represent conditional distributions of the form � (� |� ) where � and � are sets of variables. In CCNs,
the OR tree and each tree Bayesian network is deined over variables in � . The conditional probabilities in
the OR tree and tree Bayesian networks are given by a calibrated probabilistic classiier [76]. These classiiers
take as input an assignment � to a set of variables � and output a probability distribution over the class label
�� ∈ � . Tractability over each individual distribution is still maintained since the number of parameters for most
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Algorithm 2 LearnCCN

Input: Dataset � = {(� (1) ,� (1) ), . . . , (� (�) ,� (�) )}, Sets of Variables � and �
Output: Conditional cutset network �

1: if termination condition then

2: return ConditionalChowLiuTree(�, � ,� )
3: Use a splitting heuristic to select a variable �� ∈ �
4: Create new OR node � and label it by ��
5: Learn a calibrated classiier � (� ) with class label �� and � as input using �

6: ��
�
← {(�,�) ∈ � |�� = 0}

7: ��� ← {(�,�) ∈ � |�� = 1}
8: Let � and � denote the left and right child nodes of �
9: � ← LearnCCN(��

�
, � \ {�� })

10: � ← LearnCCN(��� , � \ {�� })
11: Label the edge between � and � by 1 − � (� )
12: Label the edge between � and � by � (� )
13: return �

calibrated classiiers scales polynomially with the number of input variables � . For example, if we use the logistic
regression classiier, � (�� = 1|� = �) equals � (�0 +

∑

�� ∈� ���{�� }) where�� ’s are the weights (parameters) and
� denotes the sigmoid function.

Given an assignment � to all variables in � , a CCN yields a cutset network because each calibrated classiier
yields a marginal probability distribution over the class variable. Thus, given � , CCNs yield a tractable probabilistic
model over � . Fig. 3(b) shows an example of a conditional cutset network.
Structure and parameters of a CCN can be learned (see Algorithm 2) using the same top-down induction

approach used for cutset networks. The diferences between the two algorithms are:

(1) In LearnCCN, we learn the parameters on the edges of the OR tree and the conditional distributions at
each node in each tree Bayesian network using a calibrated classiier � (� ) (e.g., logistic regression, neural
networks, random forests, etc.). The best classiier is chosen using cross-validation.

(2) In LearnCCN, we learn the tree Bayesian networks at each leaf node of the OR tree using conditional mutual

information scores. Similarly, the splitting heuristic in the LearnCCN algorithm uses sum conditional mutual
information scores as compared with sum mutual information scores in the LearnCNet algorithm. See
Rahman et al. [88] for details.

4.2.3 Using CCNs to Predict Activity Labels. To use CCNs in our video activity recognition framework, we feed
the output of GoogLeNet to the CCN. More formally, let � denote the set of output nodes of GoogLeNet and �

denote the set of true labels at a frame. We use the CCN to model � (� |� ) and learn its structure and parameters
using Algorithm 2. Given a set of videos � , the training dataset � is constructed as follows. We have one training
example in � for each frame in each video of � . Each example is composed of true labels (� ) and labels predicted
by GoogleNet (� ) with the pixels in the frame as input.
At test time, at each frame, we instantiate all the classiiers in the CCN using the predicted labels to yield a

cutset network and then perform MAP inference over the cutset network to yield the inal set of labels. In other
words, the CCN treats the output of GoogLeNet as a noisy sensor (see Fig. 3(c)) and computes a conditional joint
probability distribution over the true labels given the predicted (noisy) labels. A second beneit of CCNs, apart
from the improved accuracy, is that it can be used to generate high quality explanations.
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4.2.4 Dynamic Conditional Cutset Networks. An issue with CCNs is that they are static and do not explicitly
model temporal aspects of video. For instance, we can use persistence, namely objects do not change their position
rapidly between subsequent frames to correct prediction errors at a frame by using data from neighboring frames.
To address this issue, we propose a novel framework called dynamic conditional cutset networks (DCCNs).
Formally, let a video consist of � frames, let � � = {� �1 , . . . , �

�
�} and ��

= {� �1 , . . . , �
�
�} be the set of true labels

and predicted labels (evidence) respectively at frame � . Then, the DCCN represents the following probability
distribution:

� (�1:� |�1:� ) = � (�1 |�1)

�
∏

�=2

� (�� |�1:� ,�1:�−1) (2)

where the notation �1:� (similarly �1:� ) denotes an assignment of values to all true (predicted) labels in frames 1

to � . We will use the notation � 1:� to denote the set
⋃�
�=1 �

� .
The representation given in Eq. (2) is not compact as the number of frames in a video (�) increases. To

circumvent this issue, we adopt two standard assumptions widely used in temporal or dynamic probabilistic
modelsÐthe 1-Markov and stationarity assumptions [85]. Speciically, we assume that each frame is conditionally
independent of all frames before it given the previous frame (1-Markov) and all conditional distributions are
identical (stationarity). With these assumptions, we can represent � (�1:� |�1:� ) using

� (�1:� |�1:� ) = � (�1 |�1)

�
∏

�=2

� (�� |�� ,��−1), (3)

where � (�1 |�1) and � (�� |�� ,��−1) are conditional cutset networks and � (�� |�� ,��−1) has the same parameters
and structure for � = 2, . . . ,� (see Figure 3c).

We learn DCCNs using the following approach. The prior model � (�1 |�1) is the same as the CCN described in
the previous section. To learn the structure and parameters of � (�� |�� ,��−1), we construct the dataset as follows.
Each frame in each video is a training example and is composed of (1) true labels at frame � , namely � � ); (2) true
labels at frame � − 1, namely � �−1; and (3) labels predicted by GoogLeNet at frame � , namely �� using the pixels
in the frame as input.
Inference over DCCNs is intractable in general and can be approximately solved using the particle iltering

algorithm [21, 60], a sequential importance sampling algorithm that generates samples from a proposal distribution
and estimates the posterior distribution using a weighted average over the generated samples. The performance of
the particle iltering algorithm is highly dependent on the quality of the proposal distribution; higher the quality
better the estimate. It is known that the ideal proposal distribution is the posterior distribution � (�1:� |�1:� ).
Unfortunately, it is NP-hard to compute in DCCNs [71]. Therefore, we propose to approximate the ideal proposal
using the following:

� (�1:� |�1:� ) ≈ � (�1 |�1)

�
∏

�=2

� (�� |�1:�−1, �1:� ) (4)

Thus (see Eq. (4)) we propose to use evidence up to the current time slice to approximate the ideal proposal, namely
we use the iltering distribution � (�� |�1:�−1, �1:� ) [71] to approximate the posterior distribution � (�� |�1:�−1, �1:� ).
It is easy to see that this approximation, because it uses evidence up to the current time slice, is likely to yield
higher quality estimates as compared to the likelihood weighting approach which uses the prior distribution
(namely a distribution that is not conditioned on evidence) as the proposal. Note that � (�� |�1:�−1, �1:� ) can be
computed in linear time in DCCNs because they use CCNs, which are conditionally tractable models to represent
the transition distribution. Algorithm 3 uses this process to generate � particles that we will later use to generate
the explanations.
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Algorithm 3 GetPosteriorParticlesDCCN

Input: DCCN � , GoogleNet labels X = {�1, . . . , �� } for � video frames, number of particles �

Output: Set of � particles from the iltering posterior distribution �̂� (�
� |�1, . . . , ��)

1: for � ∈ {1, . . . , �} do
2: ��������� [1, �] ← Generate a sample from the prior distribution �� (�

1 |�1)

3: end for

4: for � ∈ {2, . . . ,� } do
5: for � ∈ {1, . . . , �} do
6: ��������� [�, �] ← Generate a Sample from the transition distribution

�� (�
� |��−1, ���_��������� [� − 1, �])

7: end for

8: end for

9: return ���������

4.2.5 uestion-Answering and Explanation Generation. As mentioned earlier, the main virtue of CCNs and
DCCNs is that unlike GoogleNet and other deep learning/discriminative methods, they can be used to eiciently
generate the three diferent types of explanations described in Section 3.2. Fig. 4 gives a detailed overview of
the knowledge compilation and query processing pipeline where each video is irst compiled into a tractable
probabilistic knowledge base which is later used by the system to answer queries posed to it. In this section, we
describe in detail how the explanations for these queries are generated.

To recap, in our proposed system, the user poses a selection type query to the system such as łDoes the person
in the video cut anything?ž (cut,∗,∗) or łDoes the person do anything with an orange in the sink?ž (∗,orange,sink).
The ields with ∗’s can be matched with anything. The system then tries to search the video for any activity
tuples that match the conditions of the selection query. If a complete match is found, then the system answers
Yes. If, however, no complete match is found then the system answers No. Re-using the previous notation,
� �

= {� �1 , . . . , �
�
�} and �

�
= {� �1 , . . . , �

�
�} are two sets of� binary random variables that denote the set of true

labels and noisy labels respectively at time slice � . ��
= {��1, . . . , �

�
�} and �

�
= {��1, . . . , �

�
�} denote instantiations

of the true and noisy labels respectively. The system then uses CCNs and DCCNs to generate the following types
of explanations:

(1) Video Explanations: For each unlabeled video, we use Algorithm 3 to compute the joint probability
distribution over all possible ground labels at time slice � . Then, we generate the most likely set of labels
�̂� at � by choosing the particle having the highest iltering posterior probability, which is equivalent to
performing MAP inference after computing the iltering posterior i.e. �̂� = argmax�� (�

� |�1:� ). Once we

have the most likely set of labels for all the time slices, we can cluster frames that have the same set of labels
into a single segment. In the worst case, this process might exhibit high variance and result in segments
spanning only a few frames; however, this issue can be somewhat circumvented by merging windows
containing multiple frames instead of doing it on a frame-by-frame basis. Once this is done, we record
the most probable activity triple associated with each segment. When the user submits a selection query,
all segments whose activity triples completely match the parameters of the query are returned as video
explanations. This helps the user to quickly navigate to the relevant segments of the video where the
system believes that the activity took place.
More interesting, however, are the explanations generated when the system answers No. In such a scenario,
the system returns all video segments that have partial matches. For example, for the question łDoes the
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0.07 cut, None

0.79 eat, carrot
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0.05 cut, None
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Query Engine(eat, carrot)?
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1 eat, carrot

2 cut, carrot
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Activities
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eat cut carrot eat cut carrot eat cut carrot eat cut carrot eat cut carrot

eat cut carrot eat cut carrot eat cut carrot eat cut carrot eat cut carrot

eat cut carrot

Fig. 4. A brief overview of the knowledge compilation and query processing pipeline w.r.t. a dummy video with five frames
having two activities. For this particular example, we define three labels ś eat, cut and carrot ś and activities as pairs consisting
of action and object instead of triples. During the knowledge compilation phase, each frame is first passed individually through
GoogleNet in order to obtain the noisy labels. These noisy labels are then passed through the Dynamic Cutset Network that
computes the information necessary for the query processing phrase such as computing the top-� activities and marginal label
probabilities as well as grouping frames with the same activity into segments. During the query processing phase, the query
engine searches through all segments that completely match the query parameters on all components. If such a segment is
found, then it answers łYesž and displays all such segments along with the ranked activities and most probable entities for
each segment as explanations. Otherwise, it answers łNož and displays segments with partial matches as explanations.

person take out a knife from the drawerž (take out, knife, drawer), in the absence of a complete match,
the system will irst try to search for partial matches where at least two of the three components match.
For example, if there are segments where the person takes out a peeler from the drawer (take out, peeler,
drawer) or takes out a knife from the cupboard (take out, knife, cupboard), these segments will be returned
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as explanations for the No answer. The rationale is that while the system found activities similar to the
activity being queried, it did not ind the exact activity being searched for and therefore answered No. If
no such partial matches exist, the system then tries to match at least one component such as, say, (wash,
knife, sink) or (take out, carrot, fridge). If there are no single component matches either, then the system
displays that no segments are found.
Note that video explanations can also be generated using video moment retrieval methods [26, 27, 31, 37,
59, 61, 67, 79, 119]. At a high level, the goal of video moment retrieval (VMR) is to take a video and a natural
language sentence describing an activity as input and output a segment in the video that is relevant to
the activity. However, as mentioned earlier a drawback of using these methods is that the output of the
model that generates explanation may not align with the answer to the query. A second issue is that these
discriminative VMR models do not have the representation and reasoning power to generate other types of
explanations.

(2) Ranked (action, object, location) Triples: The particles/samples output by Algorithm 3 can also be used
to generate ranked explanations for any given frame. In particular, if we want to compute the top-� most
likely activities at time slice � , then we can select � particles having the highest likelihood at time slice �
and display them to the user in descending order of likelihood scores; this is equivalent to performing
�-MAP inference on the iltering posterior distribution. We can approximate this by sampling directly
from � (�� |�1:� ). Since video segments are returned as explanations to the system’s answers and each video
segment is associated with a single activity triple, we take the average of all the particles over a segment
and return the top-� particles having the highest average likelihood as ranked triples.

(3) Most Probable Entities: Once again, these kinds of explanations can also be generated by Algorithm 3
using an approach similar to the one used for ranked triples. The only diference is that instead of generating
�-MAP tuples, we wish to compute the marginal distribution � (��� |�

1:� ) for each true label ��� ∈ �
� that

will tell us how conident the system is about a particular label at a given time slice. Since the last step of
particle iltering involves generating � instantiated cutset networks, we can simply perform exact inference
on these networks (which can be done tractably and in fact, linearly) to compute the posterior marginals
and then average out over all the � networks.

4.3 User Interface

Our prototype system uses an interactive visual interface that allows users to load videos, ask queries, and review
the model output along with explanations. The goal for the interface design was to limit the amount of model
information presented to the users in order to avoid overwhelming them with information. For this reason, the
system uses simple visual representations in the form of graphical annotations, textual component lists, and
simple bar charts. Figure 5 shows the interface.

The interface allows the users to select a video and a relevant query based on that video. These would serve as
inputs for the model. The interface would then provide two types of output: (1) the model’s answer to that query
and (2) the explanations for why the answer is provided. For this purpose, the interface includes a video player
with the selected video that would allow the users to go over the video if they wanted to review and analyze the
system’s answer to the query or try to come up with their own answer for that query. The queries used in this
system are in the form of yes/no questions, and hence, the answers are either yes or no.
The system also provides information to justify its answer to the selected query. For this purpose, it would

irst highlight the most relevant segments (a sequence of relevant and consecutive frames) in the video through
visual annotations added under the video progress bar. These annotations are in the form of square-shaped blue
buttons, as seen under the video in Fig. 3. These annotated segments are buttons, and when clicked, the video
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Fig. 5. The interactive visual interface allows users to load videos and ask queries. The interface shows the ML system’s
answer along with explanatory elements for the output. The most relevant portions of the video play time are shown by
colored bars beneath the video, and the right side shows detected video components and combinations of components
relevant to the video and query.

jumps to the start of that segment, and new information is loaded that explains why this segment is relevant to
the query answer. By default, the irst identiied segment is selected.
Each segment includes detailed explanations as to why it is related to the system answer. We display this

information on the right-side of the interface, as seen in Fig. 3. On the top right, the summary of detected video
components (action, objects, and locations) for the given query is shown, which represent the highest ranking
combinations of components the model detected in this segment. On the bottom right, the interface shows the
component scores that summarize the marginal probabilities of single components in the selected segment. To
help users to quickly judge component scores, graphical bars are shown underneath detected components to
visually represent the values of the component scores. Users can select diferent video segments to view the
corresponding component scores and combinations from diferent portions of the video.

5 MODEL EVALUATION

The model for the activity recognition system was trained on two datasets - the Textually Annotated Cooking
Scenes (TACoS) dataset [93] and the Wetlab [72] dataset.

• The TACoS dataset consists of videos of several diferent cooking-related activities. For example, a typical
video will have a person take out a vegetable from the refrigerator, wash it, cut it, and then cook it. The
cooking context has the advantage of being easily understandable, even without particular domain expertise.
The dataset includes hand-annotated labels of actions, objects, and locations for each frame of video. We
isolate 28 such labels and use videos with only these labels for our experiments. Most videos are around 2
minutes in length (although videos as long as 15 minutes are also present). We used diferent sets of videos
for training and testing; speciically 14 videos (60,313 frames) for training and 3 videos for testing (9,355
frames).
• The Wetlab dataset contains videos of technicians performing experiments in a wet laboratory with
hazardous chemicals. In such settings, it is very important to ensure that correct protocol is being followed,
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which is the motivation for using these videos for our system. The dataset consists of 12 videos spread out
over the following three protocols: Cellobiose M9 Media (CELL), LB Liquid Growth Media (LLGM), and
Yeast YPAD Media (YPAD). Out of the 12 videos, only 6 of them were annotated which is what we used for
our experiments. A total of 57 labels were isolated and the training and test sets were comprised of 100,054
(5 videos) and 11,743 (1 video) frames respectively.

Training was carried out in two phases. In the irst phase, we swapped out the softmax layer in GoogleNet
with a fully-connected layer having sigmoid cross-entropy loss. We then trained it on the training labels by using
backpropagation for around 50k iterations using the Adam optimizer [44]. In the second phase, we trained both
(a) an intra-frame sensor model (CCN) that modeled the error between the noisy labels of GoogleNet and the
ground labels; and (b) an inter-frame transition model (dynamic CCN) that modeled persistence between labels
over multiple frames. During testing, we computed the MAP tuple for each frame in each video using particle
iltering with 100 particles. We performed the following ablation study: (1) our system in which the explanation
layer is removed (GoogLeNet); (2) our system which uses (static) conditional cutset networks in the explanation
layer (CCNs); and (3) the full system (dynamic CCNs).
Table 1 outlines the accuracy scores for correct activity recognition according to various evaluation metrics.

We use standard measures such as the Hamming Loss and the Jaccard Index (see, for example Leskovec et al.
[55]). Hamming loss is deined as the average fraction of incorrect labels (smaller the better). Jaccard index is the
ratio between the cardinality of the intersection of the predicted labels and the true labels and the cardinality of
the union of the predicted and true labels (higher the better).
We observe that for both our datasets, the full dynamic model (dynamic CCNs) gives the best results. Even

if we ignore the temporal component and use only the sensor (CCN) model for each time slice independently,
we usually see an improvement in scores. As seen in Table 1, the diferences are more apparent in the Wetlab
dataset than they are on the TACoS dataset. We surmise that this is because of twoe reasons. First, the number of
labels for the Wetlab dataset (57) is more than double that of the TACoS dataset (28). Secondly, the objects in
the TACoS dataset are distinct and easily recognizable while those in the Wetlab dataset comprises mostly of
test tubes and bottles of diferent shapes and sizes. This presumably makes it diicult for the neural network to
properly distinguish between these objects and assign the correct labels to them.
Thus, our results clearly show that reasoning about relationships between the various labels via CCNs and

temporal constraints via DCCNs improves the accuracy of deep neural networks. One thing that needs to be
noted here is that higher scores in each of our evaluation metrics ensure greater quality of explanations. This is
because the metrics are being computed w.r.t. the MAP tuple which denotes the most likely activity at each frame.
Further, these activities are grouped together into frame segments which, in turn, are presented to the end users
as explanations for a yes/no selection query. In other words, although video segment explanations can also be
generated from GoogleNet by grouping similar multi-label assignments together (as alluded to in Section 4), our
joint model would result in explanations of signiicantly higher quality as evidenced by its superior performance
shown in Table 1.
Note that in contrast to the video moment retrieval (VMR) techniques described in the literature [26, 27, 31,

37, 59, 61, 67, 79, 119], which typically employ segment-level evaluation metrics (e.g., Recall@n,IOU=m which is
deined as the percentage of at least one of the top � predicted moments which have Intersection over Union
(IoU) with ground-truth moment larger than� [25]), we opted for frame-level evaluation metrics (e.g., Jaccard
Index, Hamming loss, etc.). This choice was driven by the fundamental characteristics of our underlying model, a
modiied GoogLeNet, which operates at the frame level. To clarify, our model takes individual frames as input
and generates predictions for actions, objects, and locations.

Furthermore, we want to point out that in contrast to state-of-the-art VMR techniques that leverage advanced
deep learning architectures such as 3D CNNs [27], which can capture temporal relationships among video frames,
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Table 1. Accuracy for Activity Recognition on Test Videos. Bold results indicate the best performing model.

Dataset Metric GoogLeNet CCNs Dynamic CCNs

TACoS Jaccard Index 0.8608 0.8559 0.8674

Hamming Loss 0.1392 0.1286 0.1160

Wetlab Jaccard Index 0.6299 0.7564 0.8308

Hamming Loss 0.0142 0.0118 0.0083

our study relies solely on a less advanced frame-level 2D CNN model derived from GoogLeNet. More speciically,
our study’s primary objective is not to demonstrate superiority over existing VMR techniques. Instead, our aim is
to showcase that our explainable model, which can easily be integrated with other deep learning approaches,
does not degrade performance. In fact, as our results indicate, especially when GoogLeNet serves as the base
model, our approach can lead to improved performance. This improvement can be attributed to our model’s
capability to reason not only about time but also about the relationships between actions, locations, objects, and
the query.

6 HUMAN SUBJECTS EVALUATION

To evaluate the overall efectiveness of the explanations in our video activity recognition system, we designed
and conducted a human-centered experiment.

6.1 Goals and Hypotheses

Video activity recognition (VAR) systems are valuable and have many real-world applications, from ire detection
[49] and airport security [113], to elderly care [43] and autonomous vehicles [91]. As alluded to in the introduction,
many state-of-the-art models exist that yield high accuracy on the VAR task. However, no matter how accurate
the model, these kinds of models typically sufer from false positives, which may be highly undesirable in mission-
critical applications. At the very least, as users of these systems, we would like to predict the circumstances under
which the system would be likely to generate erroneous results and if it does, what these results might look like.
Thus, human-AI collaboration plays an important role in identifying the weaknesses of such systems. For this
purpose, it is crucial that human users maintain a proper understanding of the systems and how they work in
order to understand when to rely on them. This is the problem we expect to be addressed by the Explainable
Activity Recognition (XAR) framework that we deined earlier.

The goal of this study was to measure the degree to which the explanations generated by our system would
beneit non-expert end users with little to no understanding of how such systems work. We hypothesized that
given a set of videos and several yes/no queries where each query asks whether an activity was performed
in a video or not, the time required by the user to answer the query as well as the error rate over all queries
would decrease signiicantly with the introduction of explanations. We also hypothesized that the user’s level of
agreement with the system’s answers would vary signiicantly if explanations were shown. A user’s answer is
said to ‘agree’ with the system’s when they are the same.

6.2 Experimental Design

The task used for evaluating user performance involved answering a series of questions (or queries) over a set of
videos with the help of the system. The participants were divided into two groups: one with and the other without
explanations. Participants from both groups had access to the video player and the system’s answer to each
question. Participants in the with explanations category used the interface with all the explanation components
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available (i.e., the video segments, the detected combination of components, and the component scores), while
participants in the without explanations category did not have these components shown (i.e. they were only able
to view the system’s answers but no explanations). The experiment was conducted between-subjects in order to
allow the same set of questions and videos to be used for both groups and also to avoid learning efects about
knowledge of the model performance.
The TACoS dataset that was used for training and evaluating our system was used since cooking videos

typically do not require any domain-speciic knowledge. Each user was presented with 20 queries spread out
over 4 videos (i.e., 5 queries per video). Each query was a simple yes/no question about the video and had a
single, unique answer (e.g., łDoes the person cut a carrot?ž). Participants of each group were presented with the
system’s answer to each of these queries and their task was to determine the true answer by watching the video
and using the system’s answers as point of reference.
Since the goal of the study was to evaluate whether the explanations helped the participants perform better

than the model alone, it was necessary that the system made enough errors so that the explanations would
actually be useful to determine the actual answer and that this improvement could be measured. It was, therefore,
imperative that the task include multiple queries where the system provided incorrect answers so that participants
would have opportunities to recognize system errors. However, since the actual model had a high accuracy
score (The accuracy of our system was > 92%, also refer to Table 1 which show two other measures related to
accuracy, the Jaccard Index and Hamming Loss), using a set of sample queries representative of the actual model
accuracy would not have provided enough opportunities to view system errors since the system would have been
too accurate for participants to see enough errors in the limited time of the study. To address this problem, we
constrained the system accuracy to a constant 80% for this phase of the evaluation. This was done by controlling
the composition of trials so that all participants experienced the system answering 80% of the queries correctly.
To assess task performance, we used the following three metrics: (1) error (2) time taken for task completion

and (3) agreement. Error was calculated as the percentage of queries where the participant’s answer was incorrect
with respect to the (known) true answer. Agreement was measured as the percentage of queries where the
participant’s answer matched that of the system.

6.3 Procedure

The interface was a web-based application and the evaluation was conducted as an online study. We ran the
experiment through the Amazon Mechanical Turk (AMT) crowdsourcing platform. The study was approved
by our organization’s Institutional Review Board (IRB), and participants were compensated at a ixed rate per
hour. The experiment consisted of a single session with completion time of the participants varying from 25
minutes to 55 minutes (Note that the total session time includes time required to complete the questionnaires
and demographic information).
The study opened with a consent form followed by a background questionnaire asking general information

about participant demographics, education, and occupation. The participants were also provided with instructions
on how to complete the task as well as a small tutorial prior to the main query review trials.
We slightly modiied the interface described in Section 4.3 to (1) control the sequence of viewed videos and

queries, and (2) include buttons for participants to provide their own answer for each query. Thus, instead of
allowing participants to choose from the set of existing videos and queries, the interface only showed one video
and one corresponding query at a time. For each trial, the system’s answers were available, but the participants
were asked to answer each query themselves. After providing their answer, the system showed participants the
correct answer (which was sometimes diferent from the system’s answer to simulate 80% accuracy as mentioned
earlier) as feedback to help them estimate the system’s simulated accuracy as well as build an understanding of
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Table 2. Contingency tables for the (a) with explanation and (b) no explanation categories showing the proportion of instances
where the user’s responses were correct/incorrect when the system they had access to made correct/incorrect predictions.

User Correct

Yes No
System Yes 74.61 ± 3.37 5.39 ± 3.37
Correct No 15.66 ± 4.38 4.34 ± 4.38

(a) With Explanations

User Correct

Yes No
System Yes 70.625 ± 6.01 9.375 ± 6.01
Correct No 16.25 ± 4.63 3.75 ± 4.63

(b) No Explanations

how the system made its decisions which, in turn, would help them decide whether or not to rely on its answers.
Participants were not allowed to change their response after submission.

6.4 Participants

The experiment was completed online by 80 AMT workers. Of these participants, 40 of them were shown
explanations while the other 40 were not. With the exception of a single participant who reported himself to be a
programmer, all the others had occupations that were not related to data science, machine learning, and statistics;
hence, the participants were non-experts with regards to machine learning knowledge. After pre-processing the
data and removing outliers that did not fall within 1.5 × IQR, we analyzed results from 38 participants for the
with explanations category and 40 for the without explanations category.

6.5 Results

Because the collected data is not normally distributedÐveriied using the Shapiro-Wilk test and graphically via
a histogramÐwe analyzed the results using the Kruskal-Wallis non-parametric test to measure the diference
between the two groups. The plots are shown in Fig. 6. We observed a signiicant diference on error per trial
(

�2 (1, 76) = 5.63, � < 0.05
)

, showing that the participants with explanations had signiicantly less error than
those without explanations. Our experiment also detected a signiicant diference on average time per trial
(

�2 (1, 76) = 28.1, � < 0.001
)

. Participants with explanations were signiicantly faster. Together, these results
support our hypothesis that the addition of our explanations signiicantly improves user task-performance in our
system.
We also observed that participants with explanations agreed with the system signiicantly more than their

counterparts
(

�2 (1, 76) = 8.00, � < 0.01
)

. This observation is aside the fact that both groups showed high
agreement levels with the system given its high accuracy (80%), as the mean and standard deviation is shown in
Fig. 6 (d).

We can further analyze user agreement by using the contingency table (confusion matrix) presented in Table 2.
In cases where the system is correct, we observe that the users in the with explanations group agreed with the
system signiicantly (

(

�2 (1, 76) = 12.01, � < 0.001
)

) more than those in the no explanations group. This implies
that providing more information helped participants understand the system and judge when it was correct;
namely users appropriately placed their trust in the with explanations system, in contrast to the no explanations
system and the explanations encouraged participants to correctly rely on its output. Conversely, when the system
was incorrect, on average, users in the with explanations category tend to agree with the system more than users
in the no explanations category. However, there was no signiicant diference (

(

�2 (1, 76) = 0.61, � > 0.43
)

) in the
user agreement when the system was incorrect, suggesting that no signiicant unwarranted (or inappropriate)
trust is developed. Based on this analysis, it can be inferred that users in the with explanations category frequently
develop appropriate trust with the system compared to users in the no explanations category.
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(c) User Agreement with the System

(Percentage)

Metric No Explanation With Explanation

Average Error Per Trial 13.12% ± 7.4% 9.74% ± 6.03%

Average time per Trial (seconds) 986.25 ± 561.35 517.42± 198.1

User Agreement with System 74.38% ± 7.78% 78.95%± 4.95%

(d) Mean and standard deviation for performance and agreement of novice participants.

Fig. 6. The plots show the distribution of user responses based on user task-performance and agreement with the system
among our two study conditions (NoExp: no explanations and WithExp: with explanations). Lower scores for the first two
measures indicate beter performance, i.e., lower errors and less performance time per each trial while higher scores for
agreement indicate higher reliance on the system for answering queries. Table shown in (d) is a summary of findings through
mean and standard deviation of each metric. These findings align with the results from Kruskal-Wallis non-parametric test
reported in section 6.5. We measured the average user error and time per trial and the fraction of instances on which their
answer agreed with the system’s answer. Bold results indicate significantly higher score.

Finally, since the with explanations category also had signiicantly better performance results, this suggests
that the higher rate of agreement was not simply blind trust or automation bias [28], where humans tend to trust
an intelligent system by virtue of its ‘intelligence’ alone. Rather, the results of this study suggest that agreement
was appropriately aligned with the queries where the system provided the correct answer. However, it is to be
noted that our study was not designed to speciically focus on the potential efects of explanations on automation
bias, and therefore this still remains an open area for further research.
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7 DISCUSSION AND CONCLUSION

In this paper, we proposed a new explainable framework for activity recognition (AR), which we call explainable
activity recognition (XAR). We surmised that such a framework would use Explainable Artiicial Intelligence
(XAI) techniques to provide enough model transparency to the users such that it will allow them to: (1) build a
good mental model of how the system functions; (2) use and interact with the system more efectively, speciically
understanding when it will succeed and when it is likely to fail; and (3) improve reliance (and possibly trust) on
the system.
We then proposed a general approach for building an XAR/XAI system. Our approach uses the following

pipeline:

(1) build an accurate model for activity recognition using deep neural network architectures and learning
algorithms

(2) build a tractable probabilistic model over the interpretable random variables in the application domain
using the output of the deep learning model as input treating the latter as a noisy sensor; the tractable
model further improves the accuracy of the deep learning model

(3) answer queries posed by the user and generate explanations by performing probabilistic inference over
the tractable model; tractability ensures that query answers and explanations are accurate and can be
generated in real-time

We used this general approach to build an XAR system for activity recognition and applied it on two datasets,
the TACoS cooking video dataset [96] and the wet lab dataset [72]. In both datasets, we assumed that the
activity is deined as a (action, object, location) triple. Our system had two-layers; the irst layer used a deep
convolutional neural network called GoogLeNet [111] and the second layer used a new tractable model called
dynamic conditional cutset networks (DCCNs). The latter is a novel representation which extends and generalizes
the recently proposed conditional cutset networks representation [88] to temporal domains.

In our system, GoogLeNet helped detect complex spatial patterns in each frame of each video while the DCCN
helped capture the relationships between the various activities as well as temporal dynamics. The DCCN answered
queries posed by the user and provided explanations via fast, accurate probabilistic inference. It also helped
decipher the output of the black-box GoogLeNet architecture by summarizing and aggregating its decisions
(see łVideo explanationsž in Fig. 5), suggesting alternative hypotheses that are likely to be true (see łDetected
Combinations of componentsž in Fig. 5) and providing conidence on its detected components (see łComponent
Scorež in Fig. 5).
We evaluated our system along two dimensions: prediction accuracy and explanation efectiveness. Via a

thorough ablation based empirical evaluation, we found that the łexplainable modelž which combines a DCCN
and a neural network is superior in terms of prediction accuracy to a łnon-explainable modelž which only uses
a neural network. This veriies our hypothesis that DCCN corrects the errors made by the neural network by
leveraging temporal information as well as relationships between activities. The usefulness of our explanations
was also corroborated by the user studies where explanations helped the user solve simple yes/no question-
answering tasks more accurately and with greater ease (measured using time required to complete the given
task).

7.1 Future Work

Although our new dynamic conditional cutset network framework generates high-quality samples from the
posterior distribution, both MAR and MAP inference over it are intractable (or NP-hard) in general. To this end,
one line of future work is to investigate temporal models on which both MAP and MAR inference tasks can
be solved in polynomial time. We are currently investigating speciic structural constraints for achieving this
objective building on our prior work [100] on this topic. A second avenue for future work is to combine DCCNs
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with more sophisticated deep learning architectures such as 3D CNNs [27] and transformers [115] and evaluate
whether the combined approach improves (or at least does not degrade) performance or not.

In this paper, we only considered simple selection queries with yes/no answers. An interesting direction to
expand upon would be to use more complex kinds of queries such as counting queries (e.g., how many carrots

are there in the video?) and queries where a given task can be accomplished in multiple ways (e.g., using a
spoon instead of a spatula to stir soup) which would require the use of common-sense reasoning. In order to
achieve this objective, we will have to develop a novel representation for activities and build an ontology to
represent hierarchies of activities. This would allow for other interesting queries involving super-activities and
sub-activities. A simple query of this type might be something like łDoes the person in the video cook a potato?ž
which might consist of the sub-activities (cut, potato, ∗), (move, potato, pot), (move, pot, stove), (turn on, stove, ∗)

and (turn of, stove, ∗). Since these are cooking videos, we might even ask the system if the person in the video
follows the recipe correctly. Once our system is able to answer these kinds of complex queries, we could then
think about more varieties of explanations that might be tailored to speciic kinds of queries. Finally, we would
re-design our human studies to accommodate these new queries and explanations and evaluate their usefulness
to diferent categories of end users.
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