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ARTICLE INFO ABSTRACT

With the increasing complexity of modern buildings, it is becoming more challenging for the professionals in the
Architecture, Engineering, and Construction (AEC) industry to effectively digest complex engineering and design
information and develop an accurate spatial memory that is critical to their daily tasks. As emerging visuali-
zation technologies, such as Virtual Reality, are considered as a promising solution, there is a pressing need to
understand the mechanism by which different information visualization methods affect AEC task performance.
Cognition literature has discovered a strong relationship between attention and memory development, but little
has been done to understand how the visual attention patterns during the design documents review affect the
effectiveness of spatial memory in AEC tasks. To fill the knowledge gap, this paper presents a human-subject
experiment (n = 63) to test how spatial knowledge is acquired in a building inspection task and how the
different visual attention patterns affect the development of spatial memory. Participants were asked to review
the design information of a real building on campus. To trigger different attention patterns, they were randomly
assigned to one of the three groups based on the forms of information given in the review session, including 2D,
3D, and VR groups. After a brief review session, participants were asked to go to the real building to identify
discrepancies (based on memory) that were intentionally inserted by the authors. The inspection performance
was used to evaluate the spatial memory development. The results indicate that in general there is a positive
relationship between test subjects’ visual attention (fixation time) and spatial memory, but the increasing rate
varies across the three groups, suggesting that visual context plays a critical role in the development efficiency of
spatial memory. The findings also indicate that the visual attention — spatial memory relationship may be
mediated by the use of different spatial knowledge acquisition strategies. This study is expected to contribute to
the construction information technology literature by setting the cornerstone of a cognition-driven information
system that tailors into the spatial cognitive process of AEC professionals.
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1. Introduction

Attributed to the advances in architectural and engineering tech-
nologies, modern buildings are becoming increasingly complex [1],
featuring a large number of available shapes, dimensions, spatial po-
sitions of internal building components and complex topology re-
lationships of rooms [2], posing significant challenges to the design,
construction and maintenance of modern buildings. While the new
design features and building technologies have greatly improved our
indoor living experience, it is becoming more difficult for the AEC in-
dustry professionals to effectively digest increasingly complex
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engineering and design information in important tasks such as building
inspection [3-5]. One of the challenges caused by the increasing com-
plexity of information in typical AEC tasks relates to the effective de-
velopment of spatial memory, i.e., the memory of storing and manip-
ulating visuospatial information such as locations, orientations, and
frames of reference in the space [6]. Spatial memory plays a critical role
in many space-related judgement and decision-making tasks related to
buildings [7,8]. For instance, building inspectors rely on spatial
memory to establish the base for comparing the differences between the
as-built systems and the original designs [9]. In emergency situations,
responders need to build an accurate spatial memory of the unfamiliar
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space in a short period of time for the indoor navigation [10]. Given the
increasing spatial complexity of modern projects, and the emerging
(while underexplored) methods of displaying relevant information
(e.g., virtual reality for design communications), it is critical to un-
derstand the development, retention and retrieval mechanism of spatial
memory for AEC tasks.

So far, the cognitive science literature has discovered a strong re-
lationship between attention and memory development in general
[11-13]. Nonetheless, little has been done to understand how visual
attention (when reviewing engineering and design information) affects
the spatial memory development in the AEC tasks. Even if we can find a
positive visual attention-spatial memory relationship, as suggested by
the cognitive science literature, a further investigation is still needed to
explain why this relationship exists, i.e., the mechanism in which visual
attention improves spatial memory development for AEC tasks. Un-
derstanding the general visual attention-spatial memory relationship, as
well as the underlying mechanism behind it will greatly help the in-
dustry develop intelligent information systems that enhance spatial
memory development, and eventually, the performance of critical AEC
tasks.

Based on a comprehensive review of the cognitive science literature,
we propose to investigate spatial knowledge acquisition strategies as a
potential explanation for the positive visual attention-spatial memory
relationship. Spatial knowledge acquisition represents specific methods a
person relies on to build the spatial memory [14-16]. When a person
presents in a completely new environment, she/he tends to rely on
landmarks (e.g., a special plant or certain significant signages) at be-
ginning to navigate (landmark knowledge acquisition). As the exposure
time increases, many people will attempt to memorize the relative se-
quences of these landmarks (route knowledge), and ultimately, will try
to develop a cognitive map to abstractly model the layout of the en-
vironment in mind (survey knowledge). This sequential and hier-
archical process of spatial knowledge acquisition may present different
strategies that are critical to the effective development spatial memory
in AEC tasks.

To cumulate evidence about the visual attention-spatial memory
relationship, and the role of spatial knowledge acquisition strategies in
this process, this paper reports the findings of a building inspection
experiment. Participants (n = 63) were required to review design in-
formation for a short period of time, and then finish a set of building
inspection tasks. In order to trigger different visual attention patterns
and spatial knowledge acquisition strategies [17], three information
formats (2D, 3D, and VR) were used in the review. A novel eye-tracking
system was developed to collect gaze movement data across different
groups. The remainder of this paper will introduce the background, the
experiment, and the findings.

2. Literature review
2.1. Engineering and design information in AEC projects

Amid the fast development of visualization technologies, different
information display methods are introduced in the daily tasks in the
AEC industry, such as 3D representations (e.g., laser scanning point
cloud and BIM), and Virtual Reality and Augmented Reality (VR/AR)
technologies [18-21]. The impact of these visualization methods on
human spatial cognition is still not fully understood, and as a result,
literature tends to present conflicting findings. Some researchers found
that the emerging visualization technologies improve performance of
typical AEC tasks [22-24], possibly due to the additional information
captured by the semantically-rich presentations. Diinser, Steinbiigl,
Kaufmann and Gliick [25] conducted a large-scale study (215 students)
to investigate the potentials of VR/AR methods for improving human
spatial ability. In addition to confirming the positive impacts of VR/AR
methods on spatial ability improvement, they found that the added
visual display features such as stereoscopic and head-tracked views
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could significantly improve test subjects’ ability to identify gaps among
different visual geometries [26,27]. Other studies found that VR can
improve the sequential memory for arranging 3D objects in a complex
spatial layout [28], or enhance memory about spatially distributed in-
formation [29], suggesting that VR helps the memory development in
spatial ability-based tasks. In the AEC literature, Sweany, Goodrum and
Miller [22] investigated how the format of engineering deliverables
affects craftworkers’ performance. They compared the impacts of 2D
plans, 3D CAD models, and 3D mockup models on the performance of a
pipefitting task, and found that the 3D groups outperformed the 2D
group in both task accuracy and efficiency. They found that this con-
clusion was still valid after controlling the factor of individual differ-
ences in spatial cognitive ability. Verghote, Al-Haddad, Goodrum and
Van Emelen [30] also examined the impacts of 2D drawings and 3D
models on indoor wayfinding performance. They found that 3D models
seemed to benefit the test subjects’ wayfinding performance the most in
comparison with the traditional 2D drawings.

In contrast, evidence also indicates that 3D or VR representations
are not better than the traditional 2D drawings in certain situations,
possibly due to the added cognitive burden for processing additional
information such as textures, colors, orientations [31-33]. For instance,
Bliss, Tidwell and Guest [34] compared the benefits of using 2D blue-
prints and VR models in an indoor navigation task. Although in general
subjects trained with VR models and 2D blueprints outperformed those
without training, there was no significant difference between the VR
and blueprint groups in the both navigation speed and accuracy. Dadi,
Goodrum, Taylor and Carswell [23] examined how 2D and 3D en-
gineering information affect cognitive load. The result did not find any
significant difference among the three information formats (2D draw-
ings, 3D CAD models, and 3D mockup models) in both task perfor-
mance and mental workloads. As an effort to resolve the disagreement,
this study aims to investigate the cognitive process affected by the use
of different information visualization methods. The most relevant pro-
cess that will be investigated is the spatial knowledge acquisition.

2.2. Spatial knowledge acquisition and built environments

Acquiring spatial knowledge from the surrounding environment is a
critical process of creating spatial memory [14]. The spatial knowledge
can be hierarchically categorized into three main stages, which are
landmark knowledge, route knowledge, and survey knowledge [17].
The landmarks are defined as the unique and distinctive objects at fixed
locations in the environment [14]. Landmark knowledge is the
knowledge of identifying and memorizing landmarks based on their
shapes, sizes, colors, and contextual information in the environment
[35]. With that said, the landmark knowledge is the fundamental pro-
cess for forming spatial knowledge [17]. People can incidentally re-
cognize the landmarks and unconsciously build their landmark
knowledge through the navigation in the environment [15]. The pro-
cess of acquiring landmark knowledge usually does not need much
mental efforts. Siegel and White [17] found that even very young
children were able to identify landmarks.

Route knowledge is a more advanced strategy for spatial knowledge
acquisition. Route knowledge is encoded as the knowledge of memor-
izing the sequences of landmarks or locations from one location to the
other location [17]. People can gain route knowledge either from a map
or from a navigation experience [36]. The process of developing route
knowledge requires a higher mental effort, and thus practices are
helpful for the acquisition of route knowledge by navigating in the
environment [37].

Lastly, survey knowledge is the process to mentally abstract the
configurational information as a map-like representation of the en-
vironment [14]. It is the last and the most mentally demanding spatial
knowledge acquisition method. People can gain survey knowledge ei-
ther from a map study or from real-world exposure to the environment
[35]. van Asselen, Fritschy and Postma [15] found that route
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knowledge and survey knowledge coexisted in the process of spatial
memory development. They further found that the spatial information
representation methods of the environment could significantly affect
the process of spatial knowledge acquisition. Subjects who learnt from
the map outperformed others in developing the survey knowledge. On
the other hand, subjects who learnt by navigating in the environment
performed better than others in developing the route knowledge
[15,36]. Cognitive science literature has found the relationship between
spatial knowledge acquisition strategies and spatial memory develop-
ment effectiveness in navigation tasks [30,33,38-42], but little has
been done to inform a conclusion in AEC applications. Most AEC lit-
erature focuses on the application of environmental cues, such as
landmarks for spatial ability-based tasks (e.g., indoor navigation in
large-scale buildings) [43,44], but a deeper understanding of the spatial
knowledge acquisition and its impacts on spatial memory is not yet
available. This study will set the foundation of the investigation into the
cognitive basis of the visual attention - spatial knowledge acquisition —
spatial memory process.

3. Research methodology

As illustrated in Fig. 1, a building inspection experiment (n = 63)
was conducted to investigate the correlation between visual attention
and spatial memory, as well as the role of spatial knowledge acquisition
strategies in this process.

In the experiment, each participant was given five minutes to review
and memorize the design of an unfamiliar building, and then go to the
real building to identify discrepancies between the design and the real
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observations within 15 min. Without losing the generality, 28 dis-
crepancies were designed in this experiment including architectural
discrepancies (e.g., missing windows and doors), structural dis-
crepancies (e.g., changing locations of columns), and mechanical dis-
crepancies (e.g., missing air vents). Both quantities and locations of the
selected building components were intentionally changed in the models
(2D, 3D, and VR). To trigger the use of different spatial knowledge
acquisition strategies, participants were asked to review the design in
one of the three ways: (1) a 2D drawing, (2) an interactive 3D model,
and (3) an immersive VR environment. Eye tracking was deployed to
measure participants’ gaze positions as an indicator of their visual at-
tention patterns. For the 2D and 3D groups, the Tobii eye tracker 4C
mounted to the monitor was used. For the VR group, participants’ gaze
movement data was recorded by an eye tracker embedded in the VR
Head Mounted Display (HMD).

Three indicators were selected to capture participants’ visual at-
tention and spatial memory in the review and inspection task, including
review fixation time, effective attention ratio, and building inspection
score (BIS). To calculate effective attention ratio and review fixation
time, the 28 discrepancies were used as the areas of interests (AOIs)
that directly related to the building landmarks. Review fixation time is
defined as the aggregated duration (in seconds) that subjects spent on
each AOI This indicator represents participants’ attention relevant to
the buildup of the spatial memory about the building. Effective atten-
tion ratio is defined as the percentage of participants paying attention
on the AOISs versus the total review time (max. 5 min). BIS is calculated
as the correct discrepancy identifications minus wrong discrepancy
identifications in the inspection session. In other words, there is a

Spatial Knowledge
o Landmark knowledge
o Route knowledge
o Survey knowledge
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Eye Tracking
o Monitor mounted eye tracker (2D and 3D)
o Raycast eye tracking in HMD (VR)

Information Stimuli
o Two-dimensional (2D)
o Three-dimensional (3D)
o Virtual Reality (VR)

Building Inspection Experiment |

.

| Discrepancy |
- |e Architectural discrepancy :
I (windows and doors) I
e Structural discrepancy (columns) | |
o Mechanical discrepancy (air vents) L

Position

Quantity |

Fig. 1. Research Framework.
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Table 1
The list of performance indicators in the experiment.
Indicator Unit Equation
Review fixation time Second T= Zi”_l t
O] t; is the fixation time of one area of interest (AOI) for each gaze visit. n is the number of gaze Vvisit of one AOL T is the aggregated fixation
time of one AOI
Effective attention ratio Percentage

k
(0/0) P= Ej:l T]/ Tiotal

Tj is the aggregated fixation time of one AOL k is the number of AOL T is the total review time. P is the visual attention percentage

Building inspection score (BIS) = N/A

BIS = correct identifications-wrong identifications

penalty for any wrong identification to prevent participants from ran-
domly guessing the discrepancies in the inspection session. BIS was
used as a direct indicator of participants’ spatial memory. Table 1 lists
indicators in the experiment.

4. Experiment design
4.1. Eye tracking for visual attention assessment

We used eye tracking as the main instrument to collect participants’
visual attention data across the three groups. Literature has shown the
effectiveness of using eye tracking to investigate human perception and
cognitive processes [45,46]. We developed and implemented a novel
interactive eye-tracking system that works with all 2D, 3D and VR
environments. For the eye tracking in 2D and 3D group, the Tobii eye
tracker 4C mounted to the monitor [47,48] was used. The accuracy of
the Tobii eye tracker 4C is within a radius of 0.5 in. from the gaze
positions recorded on the monitor [49] and the operating distance is 20
to 37 in. from the monitor [50]. A building layout drawing was shown
on the screen for the 2D group. Similarly, an interactive 3D model was
shown on the screen for the 3D group. For the 3D group, the partici-
pants used the WASD keys on the keyboard to control the navigation
including moving forward, moving backward, and moving left and right
in the 3D model. Participants also utilized the mouse to change the field
of view and rotate the 3D model. In the training session, the partici-
pants in the 3D group were asked to practice the use of this navigation
method. As for the interaction in the VR model, the participants used an
Xbox joystick to control their navigation and used their physical body
rotation to control their movement directions. The interactive 3D model
was designed to provide a third-person navigation experience for the
participants, while, the VR environment was designed to provide an
immersive walking experience. Gaze position and camera position data
was recorded by the system at a frequency of 90 Hz. At the end of each
experiment trial, the system automatically generated a CSV file with all
raw data. For eye tracking in 3D and VR groups, we developed an in-
novative system using the Raycast function of Unity game engine.
Raycast technique [51] was utilized to record the three-axis gaze po-
sition data and camera position data at the frequency of 90 Hz. An
invisible ray shoots from the center of the participants’ camera or gaze
focus point on the screen, and returns a three-axis vector value when it
collides with any virtual object in the 3D model [52]. Similar techni-
ques were successfully implemented in the computer graphics literature
to render camera directions or paths. We also developed a visualization
function to playback the gaze movements based on the CSV files. To
achieve all these functions, the Tobii software developer’s kit (SDK) and
the application programming interface (API) provided by Unity were
used with C# programming [53]. The VR headset we used in the study
was Oculus Rift Consumer Version 1 (CV1) [54]. The eye tracking
system used in the experiment was developed with the Unity 3D-5.6.3f1
version. The models were developed based on Francis Hall at Texas A&
M University. Fig. 2 shows the review sessions and eye tracking func-
tion of the three groups.

4.2. Virtual models as the testbed

Francis Hall at Texas A&M University was selected as the testbed for
the building inspection experiment. Only the first floor was used in the
experiment to control the difficulty level of the task for a better feasi-
bility of the experiment. Fig. 3 (a) illustrates the 2D floor plan used to
build the VR model. The VR model includes architectural, structural,
and MEP system. A BIM-based multi-user VR platform [55,56] was used
as the study instrument for this experiment.

We intentionally designed 28 discrepancies for the inspection that
spread evenly in the model. In order to cover different types of dis-
crepancies, they included three categories: architectural discrepancies,
structural discrepancies, and MEP discrepancies. The architectural
discrepancies included those related to windows and doors (e.g., the
number of the windows/doors or the position of them). The structural
discrepancies were associated with columns and beams (e.g., the
number of the columns/beams or the position of them). The MEP dis-
crepancies related to supply diffusers. Table 2 lists the details of the 28
discrepancies. In brief, there were 13 architectural discrepancies (five
window discrepancies and eight door discrepancies), six structural
discrepancies, and nine MEP discrepancies. Fig. 3(b) illustrates all
discrepancies on the 2D drawing. The blue circles represent the archi-
tectural discrepancies, the red circles represent structural discrepancies,
and the green circles represent MEP discrepancies. Meanwhile, in order
to control the amount of information given to the participants, the
building components on the ceiling and furniture were not modified.
Fig. 4 show some examples of architectural and structural discrepancies
between the models and the real building.

4.3. Experiment procedure

The inclusion criteria of the experiment recruitment was that par-
ticipants had never been to Francis Hall before the experiment and they
had basic knowledge about building designs. The task required parti-
cipants to find as many discrepancies as possible. The experiment
consisted of six sessions: (1) pre-questionnaire, (2) cube test (spatial
cognition ability test), (3) training session (to familiarize with the eye
tracking systems), (4) review session, (5) building inspection session,
and (6) post-questionnaire and interview session. The pre-questionnaire
session (5 to 10 min) was designed to collect participants’ basic de-
mographical information such as age, gender, major, degree level, and
previous game and VR experiences. The cube test session (5-10 min)
was designed to evaluate participants’ spatial cognition abilities as the
baseline for their task performance. The cube comparison test devel-
oped by the Educational Testing Service (ETS) was used for assessing
participants’ spatial cognition abilities. It is widely used for evaluating
participants’ spatial cognition in previous AEC literature [22,30]. The
training session (5-10 min) was designed for participants to familiarize
with the eye tracking devices, navigation functions, and the virtual
environment. Participants were asked to calibrate their eye movement
with the eye tracking system, where the investigator ensured partici-
pants’ eye movements to be accurately captured by the eye tracker after
the calibration trails. The participants were also given instructions
about the navigation functions. For the 3D group, participants were
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Fig. 2. The eye tracking in different groups. (a) recording gaze focus when reviewing a 2Ddrawing; (b) the playback of gaze movement on the same drawing; (c)
recording gaze focus when reviewing an interactive 3D model group; (d) the playback of gaze movement in the same 3D model; (e) recording gaze focus in VR; (f) the

playback of gaze movement in VR.

instructed to use a keyboard and mouse to navigate and change their
field of view (FOV) to interact with the 3D model. For the VR group,
participants were taught to utilize an Xbox joystick to control their
navigation and use their physical body rotation to control their move-
ment directions in the virtual environment. The review session (5 min)
was used for participants to review and memorize the layout and details
of the building. Participants were randomly assigned to one of the three
groups depending on what information they were given (2D, 3D, and
VR). Five minutes was limited for the review session as some partici-
pants may feel sickness (nausea, headache, dizziness, and lightheaded)
for 10 min or more in the VR environment based on our previous stu-
dies. The participants were also informed that there would be 20 to 30
discrepancies in the building. They were required to find as many dis-
crepancies as they could, and their performance would be compared
with the other groups. The purpose of providing such information was
that we wanted to motivate the participants in the inspection task. After
the review session, participants were immediately asked to go to the
real building site to identify discrepancies that were different from what
they reviewed (15 min). The starting point of the inspection was the
entrance of building to be consistent with the setups in the 3D and VR
review sessions. The investigator of this experiment accompanied the
participants to help participants record the time points when they found
each of the discrepancies. The participants were also asked to briefly
describe the discovered discrepancies with a data collection sheet. To
reduce random guessing during the inspection, participants were told
that there was a point penalty if they identified a wrong discrepancy. At

the end of the experiment, participants were asked to fill out a post-
questionnaire and provide comments and feedback for the experiment,
including ease of control, presence, sickness, and attention (subjective
evaluations). The entire experiment procedure took approximately
60-90 min for each participant. Fig. 5 shows different groups of par-
ticipants utilizing the system to review the building.

5. Results and data analysis
5.1. Participants

A total of 63 participants (35 males, 28 females) participated in the
experiment, including 10 undergraduate students and 53 graduate
students. All participants were recruited via university email lists. They
were from a variety of disciplines, with most of them being civil en-
gineering, construction management, and architecture students.
Participants’ ages ranged from 19 to 39, and the median age was 26.
Their previous video gaming and VR experience was also collected as it
could affect their VR task performance [57]. The participants reported
their previous video gaming and VR experiences as 11-point Likert scale
(0- no experience, 10-a lot of experience). The average gaming ex-
perience was 4.68/10 and the average gaming time per week was
2.33 h. The average VR experience was 2.79/10. The results indicated
that most participants had few VR experience. All participants claimed
that they had never been to the building before the experiment. Ac-
cording to the cube test score for each participant, an ANOVA test
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Estimating Lab

Study Area P—

Estimating Lab

Study Area

Blue
Red
Green --MEP (M)

--Architecture (AD, AW)
--Structure (S)

Fig. 3. The 2D floorplan of the building. (a) The original floorplan. (b) The modified floorplan.

(normality assumption was supported by the Shapiro-Wilk test) found
that there was no significant difference (p = 0.63) in the cube test score
across the three groups, which indicated that participants had a similar
spatial ability level across the three groups. At the same time, in order
to rule out individual differences, we randomly assigned 30 participants
in each group. According to the Hogg and Tanis' Probability and Sta-
tistical Inference [58], the choice of n = 30 is a rule of thumb for a
switching from a small sample size to a big sample size, supporting the
statistical findings. Table 3 summarizes the demographic information of
the participants.

5.2. Results of building inspection (BIS)

We first examined if the three groups performed differently in the
inspection task. BIS was used as the performance indicator of this ex-
periment. BIS is calculated as the correct discrepancy identifications
minus wrong discrepancy identifications in the inspection session. The
purpose of designing penalty is to reduce participants’ random guessing
during the inspection. We found that the design of the penalty helped

reduce the random identifications during the building inspection ex-
periment. We also found that wrong identifications could affect the
analysis in a negative way more seriously than the missed detections, as
participants tended to randomly report detections when a penalty did
not exist in our pilot study. Random reports may increase “accuracy”
because of simply more chances to guess. Therefore, we introduced the
penalty to prevent random guesses. The average numbers of wrong
identifications in 2D, 3D and VR groups were 2, 1.95, and 2.29 re-
spectively. After removing three outliers according the Mahalanobis
analysis, 20 participants in each of the three groups were used for the
analysis (60 total). The 2D group had M = 10.5 with SD = 4.03, the 3D
group had M = 16.1 with SD = 3.28, and the VR group had M = 15.3
with SD = 4.11. According to the Shapiro-Wilk tests of normality, BIS’
of the three groups were normally distributed. The data met the re-
quirements one-way ANOVA. We found a significant difference
(p < 0.0001) in participants’ BIS’ across the three groups. A pairwise
comparisons test for all pairs-Tukey-Kramer HSD test found differences
between 2D group and 3D group (p < 0.0001), between 2D group and
VR group (p < 0.001); but did not find a significant difference
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Table 2
List of discrepancies.

Discrepancy ID Discrepancy Description

1 Missing window on the north side of estimating lab

2 Missing window on the south side of estimating lab

3 Curtain wall missing in estimating lab

4 Window missing near estimating lab

5 Column missing between estimating lab and BIM Cave
6 Column missing on the left side of the right stairwell
7 Right exit door missing

8 Air vent missing near the right exit door

9 The door of crawl space missing

10 Air vent missing on the right side of BIM Cave

11 Dooring missing on the right side of BIM Cave

12 Column wrong position in the study area

13 Air vent missing in the study area

14 Window missing in the study area

15 Air vent missing on the right front side of BIM Cave
16 Column missing in front of BIM Cave

17 Air vent missing on the left side of the front entrance door
18 Air vent missing on the right side of the front entrance door
19 Air vent missing on the left front side of BIM Cave

20 Window missing near the ramp area

21 Air vent missing on the left side of BIM Cave

22 The door of Roger entrance missing

23 The layout of the IT helpdesk is wrong

24 Left exit door missing

25 Air vent missing near the left exit door

26 The door of bid room missing

27 The door of the storage room missing

28 The door of the electrical room missing

Fig. 4. The discrepancies between the models and the real building. (a) (b)
Virtual model (c) (d) real building.

between 3D group and VR group (p = 0.787). This result suggests that
advanced visualization technologies (3D and VR) facilitated partici-
pants’ spatial memory development for the unfamiliar building. Fig. 6
shows the results of BIS in three groups. We further tested if this result
was affected by gender. For males, we found a significant difference in
building inspection task performance across the three groups
(p < 0.0001, as shown in Fig. 7(a)). An all pairs-Tukey-Kramer HSD
test found differences between 2D group and 3D group (p < 0.0001),
and between 2D group and VR group (p < 0.0001). This result in-
dicates that male participants in 3D and VR groups showed a better task
performance than those in 2D group. In contrast, for females, we did
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not find any statistical differences in building inspection task perfor-
mance across the three groups (p = 0.1395, as shown in the flowing
Fig. 7(b)). This result may suggest that different visualization methods
did not strongly affect females’ spatial memory development. The
performance difference across the three groups encouraged us to per-
form future analyses for explanations.

5.3. Relationship between review fixation time and spatial memory

Then we tested the relationship between review fixation time on the
AOIs and the effectiveness of spatial memory development measured by
BIS. According to the previous eye-tracking studies, fixation is defined
as a stale eye-in-head position within two-degree dispersion tolerance
over 100 to 200 ms staring duration and fixation time is defined as the
cumulative duration of fixation within an area of interest [59]. It is a
critical eye tracking metric that widely used in driving simulation
[60,61], UI studies for web pages [62], and marketing [63]. Review
fixation time represents participants’ visual attention on each building
component in this experiment.

An algorithm of calculating gaze fixation for each AOI was devel-
oped. Each AOI records the fixation time of each gaze visit in the array
and calculates the aggregated gaze fixation time at the end of the ex-
periment. The review fixation time is calculated by Eq. (1) as shown in
Table 1. We first collected the gaze focus and navigation (walking
trajectories in the 3D and virtual space) data in the review session.
Fig. 8 visualizes participants’ aggregated gaze movement and walking
trajectories across the three groups. Fig. 8(a) shows the aggregated
participants’ gaze focus data in 2D group. It shows that participants
paid much attention in the elevator and stairwell areas when reviewing
a 2D drawing. Despite the fact that the participants were told that the
elevator shall not be considered as an AOI before the experiment, they
still spent a lot of time in that area as a reference (landmark) to
memorize the general layout of the building. Fig. 8(b) shows the gaze
and walking trajectory of participants from the 3D group. The red lines
are participants’ walking trajectories and purple to yellow dots are
participants’ gaze focus point clouds. Fig. 8(c) are aggregated the gaze
and walking trajectories (red lines) of participants from the VR group.

Then based on the collected gaze and movement data, we calculated
the review fixation time. Fig. 9 shows the distribution of review fixation
time for all AOIs. The mean of the review fixation time was 4.54 s with
a standard deviation of 5.73, and 90% of the review fixation time was
less than < 11.86 s.

We analyzed the relationship between the review fixation time on
each of the AOIs and the possibilities of correct discrepancy identifi-
cations. The Spearman correlation test indicates that there is a sig-
nificant positive correlation between the review fixation time and the
likelihood of finding the correct discrepancies, as shown in Fig. 10(a)
(rho = 0.778, p < 0.001)). It indicates that as a participant spends
longer time in reviewing a certain area, the likelihood of discovering
something is wrong in the same area increases. Given that BIS is an
indicator of the spatial memory development, it suggests that visual
attention is a predictor of spatial memory development. This finding is
also supported by existing cognitive science literature [11-13]. Thus, a
regression model was fitted as follows:

Meombined = 0.000675t% + 0.03819t + 0.4514 (D

where Meompined is the overall spatial memory indicator, t is the fixation
time.

We then analyzed if the visual attention-spatial memory relation-
ship was the same across the three groups. We found that although in
general BIS performance improved as review fixation time increased,
the increasing rates were different across the three groups, suggesting
that the format of information affects the visual attention-spatial
memory development relationship. Fig. 10(b) shows the relationships
between fixation time and the likelihoods of finding the correction
discrepancies in the three groups. The 2D group demonstrated the
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Table 3
Demographics of participants.
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Fig. 5. The participants were utilizing the system to review the building (2D, 3D and VR groups respectively).

Demographic Factors  Response Range Mean or Percentage Median
Gender Male/Female 55.56% male -
Age 19-39 26.43 26
Degree level Undergraduate/ 84.1% graduate -
Graduate student
Game experience 0-10 4.68 4
VR experience 0-10 2.79 2
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Fig. 6. The results of BIS across three groups.
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lowest learning efficiency (measured as the increasing rate), indicating
that prolonging review time with 2D drawings has the least impact on
the development of better spatial memory. In contrast, the VR group
showed the highest learning efficiency. As the review fixation time
increased in the VR review, participants tended to develop a better
spatial memory and the likelihood of finding the correct discrepancies
was significantly increased. While the 3D group was somewhere be-
tween the 2D and VR groups. Based on the experiment data, three re-
gression models were fitted for 2D, 3D and VR display respectively:

M,p = —0.000217¢2 + 0.02171¢ + 0.416 (2)
Msp = —0.001655t + 0.04143¢ + 0.5264 3)
My = —0.0052341% + 0.08825¢ + 0.4726 4

The difference existed across the three groups (Fig. 10b) suggests
that a further analysis is needed to explain why the learning efficiency
or increasing rate is affected by the visualization methods. Our first
effort was to examine the effective attention ratio, i.e., the percentage
of the aggregated attention time on all discrepancies versus total review
time as shown in Table 1. Since the distributions of effective attention
ratio passed the normality test (Shapiro-Wilk tests), we applied a one-
way ANOVA test to compare the effective attention ratios across of the
three groups (o = 0.05) and found a significant difference (p < 0.001,
see Fig. 11). Post hoc comparisons by Tukey-Kramer HSD testing also
found significant differences between 2D group and 3D group
(p < 0.001), between 2D group and VR group (p < 0.001), and be-
tween 3D group and VR group (p = 0.006). Specifically, participants in
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Fig. 7. The results of BIS across three groups by gender. (a) Male; (b) Female.
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VR group paid more attention on AOIs than participants in other groups
in the review session. Although all participants did not know what the
discrepancies were when they were reviewing the models of the
building, the results indicated that the VR helped participants con-
centrate on the details of important building components, and thus
improved the overall performance. In general, the VR learning effi-
ciency curve in Fig. 10(b) was higher than the other curves (and si-
milarly for 3D curve versus 2D curve),. Following the cognitive science

literature [30,33,38-42] claiming that spatial memory development
can be affected by spatial knowledge acquisition strategies, we further
investigated the spatial knowledge acquisition strategies used by the
participants across the three groups.

5.4. Spatial knowledge acquisition strategies as the mediating factor

The traditional methods of assessing the acquisition strategies of



Y. Shi, et al.

T —rarB oo 0o o .

12 16 20 24 28 32 36 40 44 48
Fixation time

02468
Fig. 9. The distribution of review fixation time

spatial knowledge are to measure navigation distance and orientations
[30,33,38,39], hand-draw sketch maps [40-42], and scales such as
Santa Barbara Sense-of-Direction (SBSOD) [64]. Unlike traditional
methods, this study focused on providing an alternative approach by
using the eye-tracking to evaluate the acquisition of the spatial
knowledge in real time [65]. It should be noted that we only focused on
the landmark knowledge and route knowledge acquisition analysis in
this study. The survey knowledge, i.e., the mentally abstract map-like
representation of the built environment [14] will be in the future
agenda of our research.

5.4.1. Landmark knowledge

Acquiring landmark knowledge is the first stage of developing
spatial knowledge in the unfamiliar built environment. In this study, we
surveyed participants in the post-experiment session about the main
“anchoring points” they used in the review session to memorize the
overall layout of the space. According to their feedback, three building
components were selected as the main landmarks of the building, in-
cluding stairwells on both sides and the elevator. The gaze fixation
method was implemented to assess the effective attention ratio of the
landmarks. Using gaze movement data to infer cognitive processes
follows the eye-mind hypothesis in cognitive science literature, for ex-
ample [65,66]. According to the Shapiro-Wilk tests, the effective at-
tention ratios were normally distributed. Thus, one-way ANOVA test
was implemented to evaluate if participants in the three groups spent
similar amount of time for landmark knowledge acquisition. As
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illustrated in Fig. 12, the result indicates a significant difference
(p < 0.0001) across the three groups. A post hoc comparisons for all
pairs-Tukey-Kramer HSD test found that there were significant differ-
ences between 2D and 3D groups (p < 0.0008), and between 2D and
VR groups (p < 0.0001). The difference between the 3D and VR
groups was not significant though (p = 0.6047).The result indicates
that participants in 2D group relied heavily on landmarks to acquire
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spatial knowledge about the building, and sequentially, developed their
spatial memory. It was also supported by the post-experiment interview
as most of them (16 out of 21 participants) confirmed that they selected
some reference points (landmarks) on the 2D drawing to memorize the
layout of the building. They specifically mentioned that they selected
elevator and stairwells as their reference points (landmarks) since these
building components were easy to identify on the drawing. In contrast,
participants in 3D and VR groups reviewed and memorized the building
in a participatory way. They paid less attention to these landmarks.

5.4.2. Route knowledge

Given the difficulty of a direct measurement of the cognitive process
related to spatial information acquisition, literature has been using gaze
tracking as an indirect indicator. According to Siegel and White [17]’s
study, the route knowledge is encoded as the memory of the sequence
of landmarks or turns. As a result, a more sequential and stable gaze
movement in spatial information review may relate to the use of route
knowledge. [67,68] further found that gaze transition entropy to be an
effective indicator of visual attentions related to areas of interest (AOI).
A higher value of gaze movement entropy indicates more irregularity
and unpredictability of gaze movement, suggesting that participants
just randomly look around in the environment. On the other hand, a
lower value of gaze movement entropy shows the a more regular and
relatively stable gaze focus transitions, indicating that the participants’
gaze movement may have followed navigation and turns related to
building the route knowledge. This is supported by Hartley, Maguire,
Spiers and Burgess [69] finding that the eye movement is associated
with the forward motion and turning during the navigation. Although
we cannot conclude that distinct gaze movement patterns are results of
different cognitive processes. But at least, we shall be able to claim that
distinct gaze movement patterns, such as entropy of visual pathways,
indicate the use of different spatial information acquisition methods.
Therefore, we evaluated participants’ route knowledge based on parti-
cipants’ gaze movement entropy in vertical and horizontal directions in
this study. It shall be noted that the perception of the horizontal and
vertical directions is not uniform, which deserves a further investiga-
tion that is out of the scope of this research. The basis of visual pathway
entropy analysis is that when people develop their route knowledge
during the review, their gaze movement trajectories should follow
certain patterns in the vertical and horizontal directions such as turn
left, turn right, bottom-up, or up-bottom. In other words, if the parti-
cipants in the three groups (2D, 3D, VR) used different spatial knowl-
edge acquisition strategies, participants’ gaze movement data shall
demonstrate different levels of regularity and predictability during re-
view. A preliminary visualization suggests the existence of the gaze
movement difference. Fig. 13 illustrates the first 10 s of gaze movement
data of three participants from the three groups each. The lines re-
present participants’ gaze movement. Fig. 13(a) shows that the parti-
cipant from the 2D group had a more irregular and less predicted gaze
movement when he/she was reviewing the building layout. In contrast,
Fig. 13(b, c) indicate that participants from the 3D and VR groups de-
monstrated a more regular and predictable gaze movement. The Ap-
proximate Entropy (ApEn) was selected to evaluate the regularity and
unpredictability of the fluctuations over participants’ gaze movement
data. ApEn is defined as a technique to quantify the regularity and
complexity of the noisy time-series data [70]. This method is widely
used in the data analysis of physiological time-series data such as heart
rate [71,72], Electro-Encephalon-Gram(EEG) [73,74], and endocrine
hormone [75,76]. According to Pincus [77]’s research, ApEn is calcu-
lated by the following algorithm. ApEn is calculated by the following
algorithm, as shown in Table 4.

In this study, the higher value of ApEn indicates more irregularity
and unpredictability of gaze movement, showing that the participants
just randomly looked around in the building model during the review
session, instead of attempting to develop the route knowledge about the
space. The lower value of ApEn, in contrast, indicates that participant’s
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gaze movement was relatively stable and regular, and the participants
attempted to develop the route knowledge during the review of the
building model. The ApEn of participant’s gaze movement was calcu-
lated with MATLAB [78]. The ApEn of gaze movement data was ana-
lyzed in X and y directions. The z direction was not analyzed because
participants did not move vertically in the experiment. For each par-
ticipant, the X and y gaze trajectory data was separately processed by
this algorithm. The ApEn in x-axis and y-axis in all three groups were
found to be normally distributed based on the Shapiro-Wilk tests of
normality. Thus, one-way ANOVA was used to compare the ApEn re-
sults across the three groups in X and y directions. For the ApEn in x-
axis (horizontal direction), there was a significant difference
(p < 0.0001) across the three groups. Specifically, a pairwise com-
parisons test for all pairs-Tukey-Kramer HSD test found differences
between 2D and 3D groups (p < 0.0001), between 2D and VR groups
(p < 0.0001), and between 3D and VR groups. Fig. 14 (a) shows the
results of ApEn comparison results in x-axis. Similar differences were
also found for the ApEn values in y-axis (vertical direction)
(p < 0.0001). A pairs-Tukey-Kramer HSD test supported differences
between the 2D and 3D groups (p = 0.0002), between 2D and VR
groups (p < 0.0001), and between 3D and VR groups (p < 0.0001),
as illustrated in Fig. 14 (b). The results of the ApEn comparisons in both
% and y directions indicate that participants in the 2D group showed
the most irregularity and unpredictability in terms of gaze movement
patterns in both horizontal and vertical directions. They did not rely on
the route method to acquire the spatial knowledge about the building.
While the 3D and VR groups (especially the VR group), showed much
more regularity and predictability in gaze movement, suggesting that
route knowledge was gained when reviewing the model. Considering
the findings of landmark knowledge assessment (5.3.1), we should be
able to state that that participants in the 2D group leaned to landmark
knowledge to develop their spatial memory, i.e., focusing more on
scanning the 2D drawing and memorizing the relative locations of
major landmarks in the building. These landmarks were later used as
the “anchoring points” of their spatial memory in the inspection task.
While participants in 3D and VR groups (especially the VR group), were
able to develop enough route knowledge about the building and use the
route knowledge more as the base of their spatial memory. The findings
further suggest that different spatial knowledge acquisition strategies
affected the development of spatial memory in the building inspection
task at different levels. To be specific, landmark knowledge-based
spatial memory development may be less effective than the route
knowledge-based spatial memory development. This constitutes a pos-
sible explanation for why 2D group demonstrated the lowest learning
efficiency (least increasing speed) in review fixation time — spatial
memory performance relationship.

6. Discussion

The results of this study indicate that there is a general positive
relationship between visual attention (measured as the review fixation
time on the area of interest) and their spatial memory development in
the building inspection task. Nonetheless, this positive relationship was
different depending on the spatial information visualization methods in
during the review of the engineering and design information.
Specifically, the overall spatial memory development of the 3D and VR
groups were better than the 2D groups. In addition, the three groups
demonstrated different increasing rates in the visual attention-spatial
memory relationship, suggesting that the learning efficiencies were
different. We explored the possible explanation from two perspectives.
(1) We investigated participants’ effective attention ratios on the main
AOIs. The results indicate that the participants in the VR group had the
highest effective attention ratio, i.e., they paid more attention on the
AOIs that directly contributed to the successful identification of dis-
crepancies. Even though participants did not know what the dis-
crepancies were when they were reviewing the drawing/model, VR
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Fig. 13. The first 10 s of gaze movement data of three participants from the three groups each. (a) 2D group (b) 3D group (c) VR group

helped participants concentrate on details of key building components,
which helped their spatial memory development later. In contrast,
participants in the 2D group showed the lowest effective attention ra-
tios, indicating that 2D drawing did not help them focus on details. This
observation possibly explained why in general, VR and 3D groups
showed a better spatial memory than the 2D group (2) we also ex-
amined the spatial knowledge acquisition strategies used by the three
groups. Based on the holistic assessment of participants’ gaze data in-
cluding effective attention on landmarks and gaze movement ApEn, we
found that participants in the 2D group showed a relatively higher

concentration on major building landmarks (stairwells and elevator)
compared to 3D and VR groups. This result suggests that participants in
the 2D group tended to use more landmark knowledge in comparison
with other teams as their spatial knowledge acquisition method to de-
velop spatial memory. Participants in 3D and VR groups, in contrast,
inclined to rely a little more on route knowledge as their main spatial
knowledge acquisition method. To be noted, it does not mean that any
group in this experiment relies only on a single spatial acquisition
method; instead, it shows obvious allocation differences in their review
attention. This could possibility be one of the driving factors of varying
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Table 4
The algorithm of calculating ApEn for route knowledge assessment.

Approximate Entropy (ApEn) Algorithm [77]

Step 1:

Define input parameters: N, m, and r. N is the length of the gaze raw data. m is the length of
the compared runs, m = 2. r is effectively a filter. r = 0.2*std, std is the standard
deviation of the gaze raw data.

Step 2:

Given N data points [u(i)], from vector sequences x(1) through x(N-m + 1), defined by
x(@ = [u(@,...... Ju(i + m-1)].

Step 3:

The distance between vector x(i) and x(j) is defined as d[x(i),x(j)] as the maximum
difference in their respective scalar components.

Step 4:

For each i<N-m + 1 in x(1),x(2),.....x(N-m + 1),

Calculate CI"(r) = (number of j<N-m + 1 such that d[x (i), x (DI<r)/(N-m + 1)
C/™(r) is defined as a ratio that represents the number of vectors meet the maximum
constraint under the length of the gaze raw data.

Step 5:

Calculate ¢™(r) =(N — m + 1)1 Zi]i_l'"H Inc"(r)

@"(r) is the aggregated calculated number of C{" (r) under certain m and r condition.
Step 6:
Calculate ApEn=¢™(r)— ¢™+1(r)
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Fig. 14. The results of ApEn across different visual conditions. (a) x-axis (b) y-
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increasing rates in the visual attention-spatial memory development
relationship.

This study contributes to the AEC literature in the following ways:
(1) the evidence about the positive relationship between visual atten-
tion (during the information review) and the spatial memory helps us
identify a useful predictor of task performance that depends on the
spatial memory. It will help AEC professionals to predict, and therefore
to intervene, the performance of critical tasks, using handful eye-
tracking measures in the pre-task review phase. This method will also
help improve the performance and safety of other applications such as
emergency response. For example, the prediction method will greatly
help fire chefs to predict firefighters’ spatial memory performance
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before they enter the unfamiliar sites. (2) This study also found evi-
dence about the role of spatial knowledge acquisition strategies (af-
fected by the information visualization methods) in the development of
spatial memory, which helps explain the different AEC task perfor-
mance using different engineering information formats observed in
many studies. Amid the fast development of information visualization
technologies, such as the use of BIM and VR/AR, researchers have
tested if the emerging technologies could affect task performance.
Participants in our study stated that the 3D and VR could provide a
more realistic experience in the building (Mean = 7.4 on a scale of 0 to
10) and they were interested in using these visualization methods to
review unfamiliar buildings in the future (Mean = 8.35 on a scale of 0
to 10). Representative studies, such as [22,23,79], have discovered the
similar impacts of information formats on AEC task performance. This
study moves a step further by providing a cognitive explanation to the
observed difference. It suggests that the semantically richer information
provided by the newer visualization technologies may help users build
a better spatial knowledge (e.g., route knowledge versus landmark
knowledge) facilitating the development of spatial memory at different
levels. In real world projects, it will help the design of automation
methods regarding engineering information review and visualization,
to focus on triggering better spatial knowledge acquisition processes.
Building on this study, researchers may be able to develop personalized
information systems that tailors into the unique spatial cognitive pro-
cesses of the end users. As an example, the authors have developed a
personalized wayfinding information system for first responders [80].
(3) Although the implementation of eye-tracking technique is not novel
in AEC research, this study provided a valuable research approach of
using eye-tracking in different visualization conditions to evaluate
user’s task performance. This study also confirms the effectiveness of
eye-tracking method in capturing the cognitive process (in terms of
attention patterns) of people, and thus inspiring the innovative en-
gineering information review system with eye-tracking functions. The
eye tracking system we developed worked seamlessly with 2D, 3D and
VR models of the building. It sets the foundation of the next generation
engineering information systems that are intelligent and proactive.
Our study also presents opportunities for improvements. First, the
accuracy of eye tracking still needs to be improved. Despite the accu-
racy of Tobii eye tracker 4C and Raycast technique, some participants
mentioned that there were slight mismatches between captured gaze
points and their real gaze points. Although these mismatches were
minor and should not have affected the general conclusion of this study,
for the possible cognitive prediction model as discussed earlier, a
stronger eye tracking will guarantee the reliability. Second, this study
has only focused on investigating how visual attention in information
review affects spatial memory in a small-scale building. A large and
complex building environment will induce cognitive overload [32] and
may affect the findings of this study. Lastly, the survey knowledge was
not analyzed in this study. A comprehensive study of spatial knowledge
acquisition will be conducted in the future. The contribution of this
research also lies on providing evidence about the impacts of visual
attention on task performance in a practical design scenario. It helps
expand the theoretical findings from the cognitive and perception sci-
ence literature to a more realistic and practical setting. The findings of
this research are expected to facilitate the cross-validation of basic
perception research results and provide translational values.

7. Conclusions

This study investigates the relationship between visual attention
and spatial memory development, which may be mediated by the
strategies of spatial knowledge acquisition. A human-subject experi-
ment was conducted to investigate the spatial memory development in
a building inspection task based on a real building on Texas A&M
University campus. Three information visualization methods were used
in the review session including 2D drawing and 3D and VR models. The
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visual attention patterns and the building inspection task performance
were used to analyze the roles of visual attention, and spatial knowl-
edge acquisition, in forming the spatial memory that is directly related
to the inspection performance. The results indicate a strong positive
relationship between the visual attention and spatial memory.
Furthermore, it also found that the spatial knowledge acquisition stra-
tegies play an important role in the increasing rate of the visual at-
tention — spatial memory relationship. This study is expected to con-
tribute to the construction information technology literature by
providing evidence about a cognition-driven information system design
that tailors into the spatial cognitive process of AEC professionals.
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