Natural Language Interaction for Editing Visual Knowledge
Graphs

Reza Shahriari
University of Florida
Gainesville, Florida, USA
rshahriari@ufl.edu

ABSTRACT

Knowledge graphs are often visualized using node-link diagrams
that reveal relationships and structure. In many applications using
graphs, it is desirable to allow users to edit graphs to ensure data
accuracy or provides updates. Commonly in graph visualization,
users can interact directly with the visual elements by clicking and
typing updates to specific items through traditional interaction
methods in the graphical user interface. However, it can become
tedious to make many updates due to the need to individually select
and change numerous items in a graph. Our research investigates
natural language input as an alternative method for editing network
graphs. We present a user study comparing GUI graph editing with
two natural language alternatives to contribute novel empirical data
of the trade-offs of the different interaction methods. The findings
show natural language methods to be significantly more effective
than traditional GUI interaction.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI;
Natural language interfaces.

KEYWORDS
Knowledge Capture and Interaction, Natural Language Interfaces

ACM Reference Format:

Reza Shahriari, Eric D. Ragan, and Jaime Ruiz. 2025. Natural Language
Interaction for Editing Visual Knowledge Graphs. In Knowledge Capture
Conference 2025 (K-CAP ’25), December 10-12, 2025, Dayton, OH, USA. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3731443.3771344

1 INTRODUCTION

A knowledge graph organizes information by connecting enti-
ties and their attributes within a structured, semantic framework.
To support meaningful reasoning and interpretation, knowledge
graphs are often visualized using node-link diagrams that reveal
relationships and structure. Maintaining accurate data is essential
for applications relying on network data, especially in dynamic en-
vironments where real-time data impacts outcomes [24, 25]. Graph
updates involve changes in items (nodes) or relationships (links),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

K-CAP 25, December 10-12, 2025, Dayton, OH, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06...$15.00
https://doi.org/10.1145/3731443.3771344

Eric D. Ragan
University of Florida
Gainesville, Florida, USA
eragan@ufl.edu

Jaime Ruiz
University of Florida
Gainesville, Florida, USA
jaime.ruiz@ufl.edu

and changes to additional properties are also common for knowl-
edge graphs. Regular interaction with these structures, such as edit-
ing, expanding, and correcting, ensures they remain reliable. Edit-
ing graph relationships is especially useful in human-in-the-loop
(HITL) applications, such as correcting or enriching data [1, 9, 17].

While node-link graph visualizations are excellent for easy in-
terpretation of small graphs [3], common forms of interaction for
visual graph editing can be tedious and time-consuming for a large
number of edits. Typically, interactions with graphs involve using
visual interfaces where users select individual nodes or edges to
make changes directly within the graph [16]. This process includes
actions like clicking nodes to view or edit properties, dragging to
explore relationships, and drawing or deleting edges to modify
connections. These methods tend to be easily understood and align
well with the familiar interaction philosophy of direct manipula-
tion [28]. However, direct GUI interactions in graphs also typically
require execution of each individual action. Consequently, due to
the importance of connectivity in network data, basic updates of-
ten require multiple actions. As graph size or complexity grows,
GUI interactions become more cumbersome and time-consuming,
increasing user effort.

To address the limitations of traditional GUI-based interaction,
our research studies alternative methods for editing visual graph
representations. We investigate how natural-language processing
(NLP) techniques can increase the efficiency of interacting with
graphs using text-based inputs. We demonstrate interaction meth-
ods that allow users to describe multiple graph relationships and
properties through language instead of a sequence of individual
edit operations. To evaluate these methods, we compare natural lan-
guage (NL) inputs with structured textual commands, which offer
precision but less accessibility for non-technical users. This compar-
ison highlights trade-offs between flexibility and efficiency in graph
editing tasks. Also, we conducted an experiment comparing three
interaction types: GUI Interaction, Textual Command, and Natural
Language. The study involved user updates to labeled knowledge
graphs with varied size and expected changes. Results show that
natural language enables effective data manipulation, offering ad-
vantages over traditional command formats and supporting more
accessible, efficient interaction.

2 BACKGROUND
2.1 Knowledge Graph Visualization

Knowledge graphs illustrate the connections between entities, en-
abling an understanding of relationships. Various visualization
formats support interpretation, with node-link diagrams being the
most common, using points (e.g., circles or boxes) for entities and

https://orcid.org/0009-0003-0196-2199
https://orcid.org/0000-0002-7192-3457
https://orcid.org/0000-0002-9139-6172
https://doi.org/10.1145/3731443.3771344
https://doi.org/10.1145/3731443.3771344

K-CAP 25, December 10-12, 2025, Dayton, OH, USA

Shabhriari et al.

1) Initial Graph) 2) User Command) 3) Final Graph
P2 @ o @9
QM—O o

o= © 2o /6;
S e e
e o7 °-

s

called energy source by isA.

L e®
Cat is an animal, not an object. Change blue node
connected to apple to green since apple can’'t be blue.
The car has four wheels despite the bicycle. Car
requires Fuel. Now connect that Fuel to a new node

Figure 1: Screenshot of the interface visualizing relationships from the ConceptNet [29] dataset.

lines for connections [18]. Another common representation is ad-
jacency matrix [18], where nodes are arranged along the vertical
and horizontal edges of a square, and connections are indicated by
flagging the cell at the intersection of two nodes. Moreover, multi-
ple tools [6, 11] combined these representations to allow a hybrid
representation of network data that can take advantage of multiple
representations. For instance, NodeTrix [11] combines node-link
diagrams and adjacency matrices into a single, cohesive represen-
tation to ease interpretation. Similarly, GraphTrail [6] integrates
various visualizations, such as bar charts, tag clouds, and node-link
diagrams, to analyze large multivariate networks. By allowing users
to pivot between different aggregates of nodes and edges based
on their attributes, GraphTrail supports dynamic exploration of
heterogeneous networks.

Different studies have applied various techniques [32, 33] to
achieve this balance. For example, Tominski et al. [32] presented
fisheye tree views for exploring hierarchical trees as well compos-
ite lenses combined with several lens techniques to facilitate the
exploration of local graph information. They found that these tools
provided enhance navigation of complex graph structures, with
their potential in visualizing clustered graphs. While past work
improved navigation and understanding of large graphs, more ef-
fective methods are still needed for editing, especially in knowledge
graphs with rich semantic information.

2.2 Editing Network Data

After visualizing a network data structure, it is important to keep
it current and accurate by incorporating new information and cor-
recting any errors. One approach is using direct manipulation, that
involves actions such as clicking, dragging, and dropping. These
interactions provide immediate feedback and enhance the user’s
sense of control [28]. The goal is to create interfaces that minimize
the need for complex command languages and intermediary steps
[28]. Optimizing interaction through direct manipulation required
further exploration of various aspects to understand the reasons be-
hind the usability or challenges that users encountered with these
interfaces. For example, Hutchins et al. [13] studied the cognitive as-
pects of direct manipulation to understand why these interfaces feel
natural and engaging to users and to identify potential issues. They
found that reducing the cognitive distance between what users
intend to do and how they interact with the system, along with
providing immediate feedback, are key factors in the effectiveness
of direct manipulation interfaces.

While direct manipulation relies on interfaces and immediate
feedback, natural language interaction (NLI) enables more conver-
sational interactions [15]. Voice-activated commands and chatbots
allow users to perform tasks through natural language, improving
accessibility and reducing the cognitive load of traditional graphi-
cal user interfaces (GUIs) [26]. By combining direct manipulation
and natural language processing, Cohen et al. [5] developed the
Shoptalk system, a prototype for information and decision making.
It allowed users to interact with databases and simulations us-
ing language alongside graphical actions like pointing and menus,
enabling object description, temporal reasoning, and large-scale
operations with immediate visual feedback.

2.3 Natural Language Interaction

While we mentioned different ways of editing network data and the
use of NLP, the next step is to analyze how these natural language
interactions occur within systems. One of the main benefits of NLI
is that it enables individuals to engage with machines using con-
versational language, eliminating the need to learn commands or
interfaces [19]. By taking advantage of NLI technology, researchers
examined data visualization interaction models based on natural
language [27, 34, 38]. For example, Yu et al. [38] developed a natural
language interface called FlowSense, enabling users to construct
and modify dataflow diagrams using natural language commands.

While studies such as those by Wang et al. [36] and Power et
al. [23] have demonstrated the overall efficiency of NLP in various
domains, it is essential to acknowledge that NLP techniques are
not without limitations and challenges. For instance, NLP models
often struggle with context ambiguity since the same phrase can
have multiple meanings. In particular, when dealing with complex
network graph data, these shortcomings can become even more
obvious due to the inherently interconnected nature of graphs.

To contribute to the existing body of literature on visualization
and interaction techniques for networked data with a focus on
node-link diagrams, we integrated and compared direct manipula-
tion of graphs through click-based details on demand with more
advanced methods like natural language interaction by utilizing
LLMs to study the trade-offs and efficacy of each method. By com-
paring these forms of natural language interaction with traditional
GUI-based methods, we can better assess which approach is more
effective for different scenarios, such as making minor corrections
or managing multiple data entries.

Natural Language Interaction for Editing Visual Knowledge Graphs

3 EXPERIMENT
3.1 Research Goals

Existing literature has demonstrated the efficiency of natural lan-
guage interaction across various fields [34, 38], highlighting its
potential to simplify complex tasks. Building on this foundation,
our research aims to explore how natural language techniques can
enhance interaction within node-link or graph structures by com-
paring them to interaction through common GUI designs involving
cursor selection, menus, and individually editing items. The specific
research goals are as follows:

e RQ1: How does natural language input compare to GUI
interaction for graph editing?

e RQ2: How does method performance vary with graph size
and extent of changes?

e RQ3: How do command-style (e.g., “rename X to Y”) vs.
conversational text inputs (e.g., “it’s not an X, it’s a Y”) affect
editing?

To form our hypotheses, we considered the strengths and limita-
tions of each interaction technique. We expected natural language
to outperform GUI methods due to its lower learning curve and
ability to handle multiple edits in a single input, making it efficient
for complex or contextual updates. However, we also predicted
that GUI interaction might be more effective when only minimal
edits are needed, as it allows for direct, precise adjustments without
requiring detailed instructions.

Furthermore, we recognize that natural language can be used in
multiple ways. Users might either describe a scene more narratively
(e.g., “a person is holding a bottle”) or issue concise commands
(e.g., “add a person and a bottle node”). We expected that when
users encounter minor issues in the graph, they will likely prefer
command-like natural language inputs to fix specific elements (e.g.,
renaming a node or adjusting its properties) rather than describing
the entire scene again. This approach enables quicker, more targeted
corrections, combining the flexibility of natural language with the
precision of command-based interactions.

3.2 Graph Editing Task

To address our research goals through a user-study experiment, we
needed a graph-editing task that involved various types of graph
modifications at both the node and edge levels. Knowledge graphs
were chosen because they offer structured representations of graph
data, where entities (nodes) and their relationships (edges) are
clearly labeled and interconnected. These graphs are further en-
hanced with features like metadata labels, hierarchical structures,
and contextual information, making them ideal for modeling com-
plex relationships and data attributes. Knowledge can capture rich
semantic relationships that apply to a wide range of real-world
scenarios [10, 21, 31]. Interaction with knowledge graphs for data
review also enables users to address errors, fill in missing infor-
mation, and better connect related data, enhancing scalability and
supporting the addition of new features [22].

As the basis for graph editing in the experiment, the experimental
design required a way to encourage participants to make changes
to a graph. However, we also sought to avoid textual instructions

K-CAP °25, December 10-12, 2025, Dayton, OH, USA

for changes to prevent influencing the participants’ use of natu-
ral language input by adapting the given text from instructions.
Thus, we designed the experimental task for graph editing based
on an image prompt (Figure 1). To this end, we utilized the GQA
Dataset [12], a highly regarded resource for visual reasoning that in-
cludes real-world images alongside their corresponding knowledge
graphs that represent the objects and their spatial relationships.
Figure 3 shows an example from this dataset within the study inter-
face. Participants reviewed each image and its graph, then updated
the graph by adding or correcting connections based on the image
content. While they had flexibility in the level of detail, the image
simplicity encouraged consistent editing around primary objects.

3.3 Interaction Methods

The experiment compared three different interaction methods for
graph editing: GUI Interaction, Natural Language, and Textual Com-
mand. For all versions, the study used the same visual design in
the study application for displaying the graphs (Figure 3). To pro-
vide feedback to users after each input and help users easily see
changes, the most recent modification to the graph—such as adding
nodes or edges—were visually highlighted in red. However, the GUI
condition provided additional sub-task feedback (such as context
pop-up menus or node highlights to show selected nodes during
node-linking actions) to aid operations requiring multiple selec-
tions (Illustrated in Figure 2). The following subsections describe
the three interaction methods and explain their differences.

3.3.1 GUI Interaction. We implemented the GUI Interaction in-
teraction method (shown in Figure 2) as a standard method for
interacting with a graph by cursor selection and contextual pop-up
menus to select operations (i.e., add, remove, or rename) on the
selected nodes or edges. Users could also click on the white space
of the box to create and name a new node. Keyboard input was
used for naming or editing the textual labels of nodes or edges. For
this method, the interface also included a “Remove all” button to
delete all current nodes and edges in the graph. Additionally, an
“Undo” button was provided to revert the last action, whether it
involved adding, renaming, or deleting a node or edge.

3.3.2 Textual Command. While GUI interaction relies on interfaces
and immediate feedback, natural language processing (NLP) enables
more conversational input [15]. We developed a technique that lets
users modify graphs through structured text commands for various
operations. For example, users can enter commands like “Rename
X to Y” or “Connect X to Y by Z” to rename nodes or add edges
(Figure 2). This method is limited to structured edits and excludes
scene descriptions, which are handled by the natural language
approach in Section 3.3.3. Commands are parsed to apply predefined
functions for adding, removing, or renaming graph elements.

To study the potential of this approach, we leveraged the Chat-
GPT API [20], specifically the “gpt-3.5-turbo” model, to implement
these features. Detailed instructions are then sent to the ChatGPT
API [20], explaining how to update the graph based on the user’s
input. These prompts break down all possible operations (e.g. add,
rename, delete, etc.) and include examples for each through few-
shot prompting [2], thereby enhancing the model’s performance
and accuracy in understanding and executing user commands.

K-CAP 25, December 10-12, 2025, Dayton, OH, USA

Clicks on empty Enters a name for
space new node

Clicks on person
node to add an edge

Shabhriari et al.

Selects Add Edge, then
clicks on poles node

Enters a name
for new edge

Final Updated Graph

0/ Y = 0/

o Pe
d J- Hé d=o 4"

Enters text:
“Connect person to
poles by holding"

Enters text:
"Add Poles"

P o

g S D
& 7 s

§ 4 g ¢o

Enters text:
“Person is holding poles”

I -

Figure 2: Screenshots of the interface before and after user commands: (A) GUI Interaction via clicking and menus, (B) Textual
Command using structured input, (C) Natural Language using free-form input.

Toxt Box

turallanguage to update the graph...(You can 'undo' f needed...

throwing

side

Figure 3: Screenshots of the study interface, including the
text box for the Natural Language method. In each trial, par-
ticipants updated the graph to match the image on the left.

To validate the model output before running the study, we con-
ducted multiple pilot studies and sessions with researchers who
tested the system using challenging and unconventional commands.
Through several iterations, the model demonstrated high accuracy
by effectively handling nearly all complex cases and natural lan-
guage inputs. Importantly, the analysis of the data logged for Natu-
ral language conditions (51 out of 76 participants) showed that only
a small number of trials (2.8%) had to issue undo commands to revert
the changes, indicating the system’s reliability and consistency.

In terms of performance metrics, the average processing time
for both natural language and textual commands was 2.43 seconds.
This rapid response time ensures a near-seamless user experience,
minimizing wait times to prevent potential user frustration or dis-
engagement. As described in data processing Section 3.6, we sub-
tracted the processing time for each trial to allow a solid comparison
without biasing the results, ensuring that performance metrics are
directly tied to the specific model’s capabilities.

3.3.3 Natural Language. This method is an expanded version of
the previously described Textual Command technique from Section
above (3.3.2). The Natural Language technique not only supports all
the command types, but it also allows users to describe entire scenes

using either a single command or multiple separate commands. For
example, users can issue commands like “person is holding poles”,

“person is wearing a hat”, and “person has a green jacket” either

sequentially or combined in a single statement, and the graph will
be updated accordingly (as shown in Figure 2). This approach can
accurately process any type of human-understandable text input
to reflect changes in the graph. To implement these features, we
leveraged models from the OpenAI API [20] (Section 3.3.2).

3.4 Experimental Design

In evaluating the different techniques for updating knowledge
graphs, we also aimed to assess their efficiency across different
scenarios and take into account variations in graph size and setup.
By comparing the number of changes made per unit of time or the
number of operations required to implement a number of changes,
we provide findings regarding the effectiveness of different methods
for updating graphs as well as their trade-offs. Moreover, partici-
pants reviewed an image alongside its corresponding knowledge
graph (Figure 3) and were tasked with adding or correcting infor-
mation based on their assigned experimental condition.

To further analyze the impact of each interaction method on the
graph, we divided the trials into two size groups for each partici-
pant, which we refer to as small and large. This division allows us
to observe the effects of interaction methods on graphs of different
complexities, helping to identify if certain methods are more effec-
tive based on the graph size. Graphs in the small group had 4 or 5
nodes and 3 or 4 edges, while graphs in the large group had 7 or 8
nodes and 6 or 7 edges.

Additionally, to evaluate the effectiveness of these methods in
scenarios with varying numbers of inaccuracies, we categorized the
trials into three graph setup: Major (50-60% inaccuracies), where
the task involves correcting a significant number of inaccuracies;
Minor (20-30% inaccuracies), where the task involves addressing a
relatively small number of inaccuracies; and Empty, where the task
requires starting from scratch and adding substantial new data to
an initially empty graph. It is important to note that we manually

Natural Language Interaction for Editing Visual Knowledge Graphs

randomized all within-subject trials to minimize potential random
effects and ensure a balanced distribution of conditions. This setup
allows us to assess how different interaction methods perform in
diverse contexts, from minor corrections to building a graph from
scratch. Therefore, the experiment followed a 3x2x3 mixed design
with three independent variables: 1) Interaction Method (between
subjects) and 2) Graph Size (within subjects), and 3) Graph Setup
(within subjects) as shown in Table 1.

Table 1: Independent variables and their levels for the 3x2x3
mixed-design user study

Independent Variables Levels

1. GUI Interaction
2. Textual Command
3. Natural Language

Interaction Method
(between-subjects)

Graph Size 1. Small (4-5 nodes & 3-4 edges), 12 trials
(within-subjects) 2. Large (7-8 nodes & 6-7 edges), 12 trials

1. Major (50-60% inaccuracies), 8 trials
2. Minor (20-30% inaccuracies), 8 trials
3. Empty (start with an empty graph), 8 trials

Graph Setup
(within-subjects)

3.5 Procedure and Participants

The study was conducted online using a web application, allowing
participants to work at their own pace without researcher inter-
vention. Participation was voluntary, with extra credit offered. The
study was approved by the Institutional Review Board (IRB). Partici-
pants first provided informed consent and completed a demographic
questionnaire (age, gender, education). They were then randomly
assigned to one of three experimental conditions (Table 1). After a
tutorial and example trials, participants completed 24 image-graph
tasks, with unlimited time to finish. They were required to make
at least one change per graph to proceed. Interaction logs were
collected anonymously, and data quality was ensured by excluding
outliers and those who made few changes despite taking excessive
time. Eighty-nine participants took part, but after two rounds of
quality checks (Section 3.6.1), 76 were included in the analysis:
GUI Interaction (25), Textual Command (25), and Natural Language
(26). All participants were students in computer science or human-
centered computing courses, aged 18-40 (median 20). The final
group included 45 males, 29 females, and 2 non-binary individuals.

3.6 Measures

During the online experiment, we logged participants’ interactions
to evaluate each interaction method. For each image reviewed, we
recorded 1) user response time, 2) final version of the graph, and 3)
graph operation details. In addition to the final edited version of
the graph submitted by each participant, we also logged all the
graph operation details for each action. For the direct manipulation
method, this includes operations’ name such as adding, renaming,
deleting, or removing nodes or edges. For the natural language
methods, it includes the user commands or text used to edit the
graph, along with the processing time for each operation, which
indicates the time taken on the backend to process the results.

3.6.1 Data Processing. To fairly compare interaction methods, par-
ticularly the time taken to make graph changes, we subtracted back-
end processing time from the response time in natural language

K-CAP °25, December 10-12, 2025, Dayton, OH, USA

conditions. This adjustment accounts for system delays unrelated
to user performance and ensures comparability with direct manip-
ulation, which has no backend delay. Backend time was excluded
because it varies by model complexity. Also, we applied two quality
control steps: (1) participants with below 80% accuracy across trials
1, 8, 16, and 24 were excluded to ensure consistent engagement
(8 excluded); (2) trials with response time Z-scores above 2 were
removed (4.2% of trials), and participants with more than three such
trials were also excluded (5 more excluded), resulting in 13 total
exclusions from the 89 participants.

3.7 Metrics

After logging and filtering the data, we calculate the number of
changes made to each graph. This helps assess the speed and quality
of edits across interaction methods and graph types. We define two
metrics based on these changes to present our results.

3.7.1 Graph Changes Per Time. For each image reviewed, we cap-
tured 1) User completion time, 2) Final version of the graph, and 3)
Operation Details as explained in Section 3.6. Then, we detected
differences between the initial graph and final graph to determine
the number of changes each participant made for each image. The
graph changes per time metric was calculated by dividing the num-
ber of changes by the response time for each trial or image. This
metric allows us to compare the advantages and trade-offs of each
interaction method by quantifying how quickly and effectively
users can modify the graph.

3.7.2 Graph Changes Per Action. We used the graph changes heuris-
tic to determine the number of changes each participant made for
each image by comparing the initial and final graphs. The graph
changes per action metric was calculated by dividing the number
of changes by the number of actions for each trial or image. This
metric enables us to compare the advantages and trade-offs each
interaction method by determining whether one method allows
users to achieve their goals with fewer or more precise actions.

4 RESULTS

The experiment evaluated graph manipulation efficiency across
interaction methods, graph sizes, and setups. As the data violated
normality and homogeneity assumptions, we used ARTool [37] for
nonparametric factorial analysis via aligned rank transformation. A
three-way mixed ANOVA tested the effects of interaction method,
graph size, and setup. For significant main effects, we performed
post-hoc paired t-tests with Tukey correction using ARTool [7],
and report results with partial eta squared (1712,) as the effect size.

4.1 Changes Per Time

The study’s results highlight findings regarding how different in-
teraction methods for editing graphs impact the average changes
per time for the varied sizes and expected amount of changes in
each graph (Figure 4, Table 5). The test detected a significant main
effect of the interaction method on changes per time. Post-hoc tests
revealed that Natural Language resulted in significantly higher
changes per time compared to both GUI Interaction (p < 0.001, Co-
hen’s d = 2.31) and Textual Command (p < 0.05, Cohen’s d = 0.9),
indicating it is a more effective interaction method for making faster

K-CAP 25, December 10-12, 2025, Dayton, OH, USA

Shabhriari et al.

Changes Per Time p-value Effect Size
Changes Per Time Main Effect of Interaction Method
1.25 : . o1 @ 4 2 P
Interaction Method F(2,73) = 21.61 < 0.001% 77 =0.37
== . Post-hoc results
— GUl Interaction Natural Language > GUI Interaction < 0.001%* d = 2.31
-8 BE Textual Command Textual Command > GUI Interaction < 0.001* d=1.41
g 1.00 E3 Natural Language Natural Language > Textual Command 0.03* d = 0.90
é ! Main Effect of Graph Setup
@ F(2,146) = 1.08 0.34 nz = 0.01
£ t { Post-hoc results
i~ 0.75 . * Major > Empty 0.31 d=0.19
o] o Minor > Empty 0.80 d = 0.08
% Major > Minor 0.69 d=0.11
% * * Main Effect of Graph Size
0.50 ? . .
s Y F(1,73) = 18.90 <0.001% n2=0.21
6 'y Post-hoc results
Py Large > Small < 0.001* d = 0.45
% 025 s Interaction Effects
£ 0. .
g . Interaction Method x Graph Setup
< F(4,146) = 15.66 < 0.001% 72 = 0.30
é Interaction Method x Graph Size
0.00 F(2,73) = 10.14 <0.001% 72 =0.22
"""""""""""""""""""""""" DA Graph Setup x Graph Size
Empty ;. Minor Major F(2,146) = 37.88 <0.001% 72 =0.34
Graph Setup Interaction Method x Graph Setup x Graph Size
F(4,146) = 4.64 <0.01* 72=0.11

Figure 4: Average changes per time. Natural Language is Figure 5: ANOVA and Posthoc Tukey HSD test results for
significantly faster than all methods, and Textual Com- Interaction Method differences on changes per time (*
mand outperforms GUI Interaction except in empty graph. indicates a statistically significant difference at p < 0.05)

changes. Also, Textual Command had significant higher changes
per time than GUI Interaction (p < 0.001, Cohen’s d = 1.41).

Additionally, the results also show a significant interaction effect
between interaction method and graph setup (Figure 5), indicating
that the impact of interaction methods on performance varies with
the type of graph setup. For example, in the case of an empty
graph setup, the test did not detect a significant interaction effect
between the GUI Interaction and Textual Command. However, in
the case of minor and major graph setup, the interaction effect
was significant. Under these conditions, the Textual Command
method significantly outperformed GUI Interaction, showing an
advantage for relying on text commands when addressing major
graph inaccuracies. Specifically, for both the small graph size (p <
0.001, d = 1.46) and the large graph size (p < 0.01, d = 1.86)
in the major inaccuracies graph setup, Textual Command yielded
significantly higher changes per time.

Although no significant difference was found between Natural
Language and Textual Command in the minor and major graph
setup with large graph size, a significant difference emerged for
the empty graph setup, where Natural Language showed higher
changes per time (p < 0.01, d = 1.63).

This interaction effect highlights the advantages of each method
depending on the nature of the task. GUI Interaction proves more
efficient for adding new information to the graph, as it allows
for quicker visual adjustments without the need for multiple text
commands, which can be cumbersome when dealing with repetitive
inputs. However, for correcting major inaccuracies or modifying
existing details, Textual Commands enable faster edits by letting
users describe changes directly, avoiding manual selection, pop-up
menus, and switching between keyboard and mouse.

4.2 Changes Per Action

The results for changes per action (Figures 6 and 7) show a significant
main effect of interaction method, indicating clear differences in the
number of changes achieved per action across methods. Post-hoc
tests revealed that Natural Language resulted in significantly higher
changes per action compared to both GUI Interaction (p < 0.001,
Cohen’s d = 5.48) and Textual Command (p < 0.001, Cohen’s
d = 2.15). This suggests that the Natural Language method enables
users to accomplish more modifications per action, likely due to the
ability to describe or command multiple changes at once rather than
performing single, discrete actions as required in GUI Interaction.
Furthermore, the Textual Command method also showed higher
changes per action than the GUI Interaction method (p < 0.001,
Cohen’s d = 3.33). This indicates that Textual Command allows
users to input several commands to modify the graph, whereas GUI
Interaction typically involves more granular, individual actions.

Additionally, the analysis for changes per action found a signifi-
cant interaction effect between interaction method and graph setup
(F(4,365) = 23.38, 77?, = 0.2). This effect indicates that the influence
of interaction methods on performance varies depending on the
type of graph setup. This is similar as what described for changes
per time with the fact that it can be seen both for minor inaccura-
cies graph setup (p < 0.001, d = 2.99) as well as major inaccuracies
(p < 0.001, d = 2.81) graph setup but only for large graph size.

5 DISCUSSION

5.1 Interpretation of Results

The study aimed to evaluate the trade-offs of different interac-
tion methods with graph data across various graph complexity
and graph setups. The results revealed that the Natural Language
method consistently outperformed other approaches, particularly
in terms of speed and the efficiency of implementing changes over

Natural Language Interaction for Editing Visual Knowledge Graphs

Changes Per Action

15 .
Interaction Method
B3 GUI Interaction

B Textual Command
E2 Natural Language

10

Average Changes Per Action

B Empty Mrinorrr Mrajorrr
Graph Setup

K-CAP °25, December 10-12, 2025, Dayton, OH, USA

Changes Per Action p-value Effect Size
Main Effect of Interaction Method

F(2,73) = 135.80 < 0.001%* ng = 0.79
Post-hoc results

Natural Language > GUI Interaction < 0.001*

Textual Command > GUI Interaction < 0.001%*

Natural Language > Textual Command < 0.001*
Main Effect of Graph Setup

F(2,146) = 9.93 <0.001* 72 =0.12
Post-hoc results

Empty < Major < 0.001* d = 0.62

Empty < Minor < 0.001* d=0.61

Major < Minor 0.99 = 0.02
Main Effect of Graph Size

F(1,73) = 49.02 <0.001* 72 =0.40
Post-hoc results

Large > Small < 0.001* d = 0.69
Interaction Effects
Interaction Method x Graph Setup

F(4,146) = 17.46 < 0.001* 2 =0.32
Interaction Method x Graph Size

F(2,73) = 14.65 < 0.001* 7]?1 =0.29
Graph Setup x Graph Size

F(2,146) = 58.89 <0.001% 72 =0.45
Interaction Method x Graph Setup x Graph Size

F(4,146) = 20.50 <0.001* 72 =0.36

Figure 6: Average changes per action. Natural Language Figure 7: ANOVA and Tukey HSD results for interaction
requires less effort, and Textual Command achieves more method differences in changes per action (* indicates
changes per action than GUI Interaction in all cases. Higher p < 0.05). GUI actions include each operation (e.g., add
values reflect more graph changes per action, such as re- node/edge); for other methods, actions refer to each

naming in GUI or text inputs in other methods.

time. It is important to note that, although this was an online study,
we conducted several iterations of quality checks and outlier re-
moval, as detailed in Section 3.6.1, to ensure that the recorded time
was logical and minimally affected by the inherent interruptions of
online studies. As shown in Figure 4 and 5, which present the aver-
age number of changes over time, the Natural Language method en-
abled significantly faster modifications compared to other methods.
This was especially evident when the graph was empty, indicating
scenarios where new information needed to be added. Additionally,
for graphs with minor and major inaccuracies, where the goal was
to edit errors in addition to adding new information, the Natural
Language method still achieved a higher rate of changes over time.
However, the performance gap between Natural Language and
other methods was narrower in these cases.

Figure 6 and 7, which display the average number of changes
per action, highlight the relative difficulty users encounter when
modifying the graph by taking advantage of multiple actions such
as clicking or submitting text entry. The Natural Language and
Textual Command particularly excelled in graphs with minor and
major inaccuracies due to the efficiency of implementing multiple
changes in each input. For example, a single input can include multi-
ple operations and many details, which is not possible with a single
execution through GUI Interaction. In contrast, for empty graphs,
where users begin from scratch, no significant difference was ob-
served between GUI Interaction and Textual Command. Nonethe-
less, the Natural Language method consistently outperformed both
GUI Interaction and Textual Command across all scenarios.

Notably, after analysis of user inputs for the Natural Language
method based on a manual review of all inputs logged from partici-
pants, we found that an average of 51% of inputs were text-based

text input submitted.

commands. Participants, despite having the flexibility to use various
types of text input, frequently opted for Textual Commands when
tasks involved editing information. Figures 4 and 6 illustrate this
pattern, showing that while Natural Language usage is significantly
higher than Textual Commands in the empty graph setup, the gap
narrows in both the minor and major graph setup, reinforcing the
observation. This supports use of text-based commands for editing
purposes. The preference for Textual Commands likely stems from
allowing precise edits without re-describing the entire scene. On
the other hand, Natural Language allows them to describe their
thoughts with the freedom of language they are comfortable with,
resulting in an advantage when combined with textual commands.

5.2 Natural Language Use Cases in Different
Application Domains

Considering the strong performance of natural language for editing
knowledge graphs, this method has potential for broader applica-
tions. Integrating natural language interaction into data visualiza-
tion [27, 35] marks a shift from traditional GUI-based approaches.
While tools like [6, 11] enable flexible exploration, they often require
navigating complex menus, switching visual forms, and mastering
techniques like zooming or filtering. Natural language offers a sim-
plified alternative by letting users issue commands such as “Show
me a bar chart of sales data grouped by region” or “Highlight the
most connected nodes.” This reduces the effort needed to generate
visualizations, making them more accessible to users. Additionally,
natural language supports features like interactive annotations, al-
lowing users to label visual elements with contextual information
[30]. These annotations can also be interactive, enabling dynamic
exploration and reinforcing feedback loops during data updates.

K-CAP 25, December 10-12, 2025, Dayton, OH, USA

This aligns with our research goal of streamlining data interaction
through natural and intuitive modalities.

Natural language interfaces are especially valuable in HITL ap-
plications, where users provide feedback to improve model perfor-
mance [4, 8, 14]. These interfaces offer a way for users to update
data or provide input without navigating complex interfaces. For
example, users can request dataset updates or corrections as new
information becomes available. Since our study used graph data
from GQA dataset [12], commonly used in visual reasoning, it
demonstrates how natural language interaction can support HITL
tasks like data correction and annotation. Similar approaches can
be extended to other data sources or Al-powered systems.

6 CONCLUSION

This paper demonstrates that natural language input offers an ef-
fective alternative to GUI-based graph editing, enabling flexible
interaction with node-link visualizations. A user study confirms
the benefits of supporting descriptive input. However, one limita-
tion is that NL efficiency may be inflated due to design differences,
as users could perform combined actions in a single input, unlike
the step-by-step process required in the GUI (Figure 2). Also, the
study was limited in the range of graph sizes and editing tasks
due to the constraints of an online setting. Future work should
explore larger graphs and diverse visual representations in addition
to node-link diagrams.

ACKNOWLEDGMENTS
This was supported by the DARPA ECOLE Program HR00112390063.

REFERENCES

[1] Tyler Bikaun, Michael Stewart, and Wei Liu. 2024. CleanGraph: Human-
in-the-loop Knowledge Graph Refinement and Completion. arXiv preprint
arXiv:2405.03932 (2024).

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural

information processing systems 33 (2020), 1877-1901.

Michael Burch, Kiet Bennema Ten Brinke, Adrien Castella, Ghassen Karray Se-

bastiaan Peters, Vasil Shteriyanov, and Rinse Vlasvinkel. 2021. Dynamic graph

exploration by interactively linked node-link diagrams and matrix visualizations.

Visual Computing for Industry, Biomedicine, and Art 4 (2021), 1-14.

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern

Chan, Samuel R Bowman, Kyunghyun Cho, and Ethan Perez. 2024. Learning

from Natural Language Feedback. Transactions on Machine Learning Research

(2024).

[5] Philip R Cohen. 1992. The role of natural language in a multimodal interface.
In Proceedings of the 5th annual ACM symposium on User interface software and
technology. 143-149.

[6] Cody Dunne, Nathalie Henry Riche, Bongshin Lee, Ronald Metoyer, and George
Robertson. 2012. GraphTrail: Analyzing large multivariate, heterogeneous net-
works while supporting exploration history. In Proceedings of the SIGCHI confer-
ence on human factors in computing systems. 1663-1672.

[7] Lisa A Elkin, Matthew Kay, James J Higgins, and Jacob O Wobbrock. 2021. An
aligned rank transform procedure for multifactor contrast tests. In The 34th
annual ACM symposium on user interface software and technology. 754-768.

[8] Alex Endert, M Shahriar Hossain, Naren Ramakrishnan, Chris North, Patrick
Fiaux, and Christopher Andrews. 2014. The human is the loop: new directions
for visual analytics. Journal of intelligent information systems 43 (2014), 411-435.

[9] Zuohui Fu, Yikun Xian, Yaxin Zhu, Shuyuan Xu, Zelong Li, Gerard De Melo,

and Yongfeng Zhang. 2021. Hoops: Human-in-the-loop graph reasoning for

conversational recommendation. In Proceedings of the 44th International ACM

SIGIR Conference on Research and Development in Information Retrieval. 2415—

2421.

Nicolas Heist, Sven Hertling, Daniel Ringler, and Heiko Paulheim. 2020. Knowl-

edge Graphs on the Web-An Overview. Knowledge Graphs for eXplainable Artifi-

cial Intelligence (2020), 3-22.

(3

=

[4

=

[10

[11

[12

[13

(14

[up—
&S

[23

[24

[25

[26

&
=

[28

[29

(30]

[31

@
&,

[33

[34

(35

[36

(37]

(38]

Shabhriari et al.

Nathalie Henry, Jean-Daniel Fekete, and Michael] McGuffin. 2007. Nodetrix: a
hybrid visualization of social networks. IEEE transactions on visualization and
computer graphics 13, 6 (2007), 1302-1309.

Drew A Hudson and Christopher D Manning. 2019. Gqa: A new dataset for real-
world visual reasoning and compositional question answering. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 6700-6709.
Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manipu-
lation interfaces. Human—computer interaction 1, 4 (1985), 311-338.

Jiwei Li, Alexander H Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Ja-
son Weston. 2016. Dialogue learning with human-in-the-loop. arXiv preprint
arXiv:1611.09823 (2016).

Elizabeth D Liddy. 2001. Natural language processing. (2001).

Michael] McGuffin and Igor Jurisica. 2009. Interaction techniques for selecting
and manipulating subgraphs in network visualizations. IEEE transactions on
visualization and computer graphics 15, 6 (2009), 937-944.

Robert Munro Monarch. 2021. Human-in-the-Loop Machine Learning: Active
learning and annotation for human-centered AL Simon and Schuster.

Tamara Munzner. 2014. Visualization analysis and design. CRC press.

William C Ogden and Philip Bernick. 1997. Using natural language interfaces. In
Handbook of human-computer interaction. Elsevier, 137-161.

OpenAl 2024. ChatGPT. https://www.openai.com Large language model.
Fabrizio Orlandi, Jeremy Debattista, Islam A Hassan, Clare Conran, Majid Lat-
ifi, Matthew Nicholson, Fahim A Salim, Daniel Turner, Owen Conlan, Declan
O’sullivan, et al. 2018. Leveraging knowledge graphs of movies and their content
for web-scale analysis. In 2018 14th International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS). IEEE, 609-616.

Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic web 8, 3 (2017), 489-508.

Richard Power, Donia Scott, and Roger Evans. 1998. What you see is what you
meant: direct knowledge editing with natural language feedback.. In ECAL Vol. 98.
677-681.

Krithi Ramamritham. 1993. Real-time databases. Distributed and parallel databases
1(1993), 199-226.

Krithi Ramamritham, Sang H Son, and Lisa Cingiser DiPippo. 2004. Real-time
databases and data services. Real-time systems 28 (2004), 179-215.

Johanna Schmidhuber, Stephan Schlégl, and Christian Ploder. 2021. Cognitive
load and productivity implications in human-chatbot interaction. In 2021 IEEE
2nd International Conference on Human-Machine Systems (ICHMS). IEEE, 1-6.
Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2022. Towards natural language interfaces
for data visualization: A survey. IEEE transactions on visualization and computer
graphics 29, 6 (2022), 3121-3144.

Ben Shneiderman. 1983. Direct manipulation: A step beyond programming
languages. Computer 16, 08 (1983), 57-69.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open
multilingual graph of general knowledge. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 31.

Arjun Srinivasan, Steven M Drucker, Alex Endert, and John Stasko. 2018. Aug-
menting visualizations with interactive data facts to facilitate interpretation and
communication. IEEE transactions on visualization and computer graphics 25, 1
(2018), 672-681.

Athanasios Theocharidis, Stjin Van Dongen, Anton J Enright, and Tom C Freeman.
2009. Network visualization and analysis of gene expression data using BioLayout
Express 3D. Nature protocols 4, 10 (2009), 1535-1550.

Christian Tominski, James Abello, Frank Van Ham, and Heidrun Schumann.
2006. Fisheye tree views and lenses for graph visualization. In Tenth International
Conference on Information Visualisation (IV°06). IEEE, 17-24.

Frank Van Ham and Jarke J Van Wijk. 2004. Interactive visualization of small
world graphs. In IEEE Symposium on Information Visualization. IEEE, 199-206.
Bryan Wang, Gang Li, and Yang Li. 2023. Enabling conversational interaction with
mobile ui using large language models. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. 1-17.

Yun Wang, Zhitao Hou, Leixian Shen, Tongshuang Wu, Jiagi Wang, He Huang,
Haidong Zhang, and Dongmei Zhang. 2022. Towards natural language-based
visualization authoring. IEEE Transactions on Visualization and Computer Graphics
29, 1(2022), 1222-1232.

Zijie] Wang, Dongjin Choi, Shenyu Xu, and Diyi Yang. 2021. Putting humans in
the natural language processing loop: A survey. arXiv preprint arXiv:2103.04044
(2021).

Jacob O Wobbrock, Leah Findlater, Darren Gergle, and James J Higgins. 2011. The
aligned rank transform for nonparametric factorial analyses using only anova
procedures. In Proceedings of the SIGCHI conference on human factors in computing
systems. 143-146.

Bowen Yu and Claudio T Silva. 2019. FlowSense: A natural language inter-
face for visual data exploration within a dataflow system. IEEE transactions on
visualization and computer graphics 26, 1 (2019), 1-11.

https://www.openai.com

	Abstract
	1 Introduction
	2 Background
	2.1 Knowledge Graph Visualization
	2.2 Editing Network Data
	2.3 Natural Language Interaction

	3 Experiment
	3.1 Research Goals
	3.2 Graph Editing Task
	3.3 Interaction Methods
	3.4 Experimental Design
	3.5 Procedure and Participants
	3.6 Measures
	3.7 Metrics

	4 Results
	4.1 Changes Per Time
	4.2 Changes Per Action

	5 Discussion
	5.1 Interpretation of Results
	5.2 Natural Language Use Cases in Different Application Domains

	6 Conclusion
	Acknowledgments
	References

