
Explainable Activity Recognition in Videos: Lessons Learned

Chiradeep Roy1 | Mahsan Nourani2 | Donald R. Honeycutt2 | Jeremy E. Block2 | Tahrima
Rahman1 | Eric D. Ragan2 | Nicholas Ruozzi1 | Vibhav Gogate1

1Department of Computer Science, The
University of Texas at Dallas, Texas, USA

2Department of Computer & Information
Science & Engineering, University of
Florida, Florida, USA
Correspondence
*Chiradeep Roy, The University of Texas at
Dallas. Email: chiradeep.roy@utdallas.edu
Present Address
The University of Texas at Dallas

Summary

We consider the following activity recognition task: given a video, infer the set of
activities being performed in the video and assign each frame to an activity. This task
can be solved using modern deep learning architectures based on neural networks or
conventional classifiers such as linear models and decision trees. While neural net-
works exhibit superior predictive performance as compared with decision trees and
linear models, they are also uninterpretable and less explainable. We address this
accuracy-explanability gap using a novel framework that feeds the output of a deep
neural network to an interpretable, tractable probabilistic model called dynamic cut-
set networks, and performs joint reasoning over the two to answer questions. The
neural network helps achieve high accuracy while dynamic cutset networks because
of their polytime probabilistic reasoning capabilities make the system more explain-
able. We demonstrate the efficacy of our approach by using it to build three prototype
systems that solve human-machine tasks having varying levels of difficulty using
cooking videos as an accessible domain. We describe high-level technical details and
key lessons learned in our human subjects evaluations of these systems.
KEYWORDS:
video activity recognition, cutset networks, temporal and time-series models, tractable probabilistic
models, debugging machine learning models, human–computer interaction

1 INTRODUCTION

Activity recognition in video, the task of inferring and assigning a predefined set of activities to frames or segments of a given
video, is an important sub-task in video content analysis with a myriad of applications including video surveillance, video
summarization, improving situational awareness (detecting dangerous situations) and home security. While this task is hard in
general, today, with advances in deep learning, especially given the remarkable predictive performance of deep models, the task
can be solved accurately when ample labeled (videos) training data is available. Unfortunately, despite high accuracy, deep neural
models are black-boxes: it is difficult to explain the reasoning behind their decisions and answers. This lack of explanability is
often undesirable, especially for solving interactive human-machine tasks25 where the user makes decisions with the aid of a
machine learning (ML) system. In such cases, the users need to trust the predictions of the system and be able to easily determine
when theML system is (typically) correct and when it is not. To facilitate this, the system should be such that both its functioning
and the reasoning behind its actions are clear to the users, i.e., the system should be explainable.
The purpose of this paper is to describe a probabilistic modeling framework for activity recognition that is accurate yet

interpretable and explainable, and to show that it helps improve the users’ trust and understanding of the system. We define
This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1002/ail2.59

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/ail2.59
http://dx.doi.org/10.1002/ail2.59

2

“explainable” here as the ability of our system to be able to compute the answers to probabilistic queries posed over videos
and provide justifications to its answers in the form of explanations (similar to the notion of explainability in the probabilistic
programming literature44,23,53). Since the explanations are generated directly from our joint model, they have high fidelity and
can be used by end-users to build a mental model of the system’s functioning by posing multiple queries to it.
At a high level, our model (referred to as “the model” in the remainder of the paper) has two layers. The top layer, with which

a user interacts, is a tractable, interpretable probabilistic model, specifically a cutset network48. Unlike conventional graphical
models such as Bayesian and Markov networks in which probabilistic inference is NP-hard in general and inaccurate in practice,
cutset networks have two desirable properties. First, they are tractable in that they provide linear-time reasoning capabilities.
Second, their predictive performance is substantially superior to Bayesian andMarkov networks48,47,52,27. While all probabilistic
models that represent a joint probability distribution over the variables of interest are capable of generating explanations, under
the assumption that an explanation is a query over the model, the use of tractable cutset networks ensures that explanations can be
computed both accurately and efficiently. The bottom layer of our model is a deep neural network that yields accurate estimates,
which are fed into the cutset network layer. A possible interpretation of this model is that the deep learning layer provides noisy
sensory inputs to the cutset network layer, which in turn removes the noise, makes decisions and generates explanations (for
the decisions) by performing fast, accurate inference. To model temporal aspects in video, we further refine this model, propose
a novel temporal probabilistic modeling framework called dynamic cutset networks, and show that it improves the estimation
accuracy.
We demonstrate the efficacy of our two-layer model by using it to build an explainable activity recognition system for an

accessible domain—cooking videos given in the Textually Annotated Cooking Scenes (TACoS) dataset50. Our system is set
up as a visual question-answering system where the user can ask the system a series of questions (e.g. “Did the person cut a
carrot?”) and the system provides answers to questions posed as probabilistic queries (e.g. “Yes”) as well as explanations for
these answers (e.g. “the activity took place between 00:12 to 00:45 with a probability of 0.72”). The system provides three types
of explanations that are relevant to the question and its answer: (1) visual explanations which show video segments; (2) ranked
explanations which show top-3 combinations of objects, locations and actions and (3) marginal explanations which show the
confidence in the detected objects, locations and actions. Note that the goal of this framework is not to provide low-level pixel
explanations for the deep learning model; rather, it is to build an activity recognition system that is explainable as a whole by
generating high-level explanations for each probabilistic query at the level of label probabilities. To this end, we hypothesize
that the three kinds of explanations that can be generated from our two-layer model for each probabilistic query should give end
users a good understanding of the strengths and the weaknesses of the entire system. For example, end users might notice that
the system is able to accurately predict an orange only when a knife and cutting board are present in the given frame. These
kinds of insights are either absent or very difficult to extract from pixel-level explanations.
We evaluated our system by using it to solve three human-machine tasks having varying levels of difficulty. The three tasks

were: (1) answering whether an activity was performed in a video by watching the video (Yes/No questions); (2) answering
whether a set of policies were followed or not in a collection of videos; and (3) debugging the model to find its error patterns.
We built novel interactive visual interfaces for each task and conducted human subjects studies. Our studies showed that when
the underlying (human-machine) task is relatively easy (yes/no questions) and the model is accurate, explanations helped in
improving time to completion, accuracy and trust in the system. However, on more involved tasks such as verifying policies
in a set of videos, we found that the effects of explanations are not universally beneficial. Specifically, if first impressions
of system outputs are skewed towards either system strengths or system weaknesses it can significantly affect users’ trust,
reliance and (mis-)understanding of the ML model, regardless of the presence of explanations. Additionally, we show how the
explanations generated by our system can be used in a visual analytics tool to support model debugging through identification
of both instance-level problems as well as global error patterns.

2 RELATEDWORK

2.1 HMMs and DBNs
There has been significant work in the past that have used state-space models such as Hidden Markov Models (HMMs)58,4,34,40
and Dynamic Bayesian Networks (DBNs)6,18,1,41 on top of low-level feature extractors to model persistence and dynamics.
However, HMMs typically make a lot of restrictive assumptions and inference complexity increases exponentially in the size
of the state space. The expressive power of DBNs, on the other hand, are offset by exact inference being NP-hard8 in these

3

networks. The model we use in this paper aims to bridge this expressiveness-tractability gap by extending cutset networks48
into the temporal domain (much like DBNs extend Bayesian Networks into the temporal domain). This formulation will help us
efficiently compute posterior probabilities which can be used as explanations for queries (which we explain in the later sections).

2.2 Models that use Black-boxes as Sensors
There has been research in the past that has attempted to combine black-box models with probabilistic models in various ways.
Some of the earlier attempts were the work of Pei et al.43, Morariu et al.29 and Brendel et al.5. The work by Pei et al. is a
grammar-based approach21,55,22,60 that uses an AND/OR graph to model the semantics of the video56. While this approach has
the advantage of providing a global overview of the functioning of the model (i.e. interpretability), it is unable to efficiently
compute action-level conditional probabilities over time such as the probability that a cutting activity over a carrot would take
place in the sixth interval given that a picking up knife activity took place in the first. It can only do this after enumerating all
possible combination of missing activities (i.e. inference is NP-hard). The latter works by Morariu et al. and Brendel et al. use
probabilistic relational logic to refine the probabilities of candidate event hypotheses. Although probabilistic relational models
work very well in situations where prior knowledge about the domain is known a-priori, learning these relations from data
is typically NP-hard16. Further, inference is also typically intractable without making some very restrictive assumptions (for
example, the work by Morariu restricts the treewidth of the MLN to make exact inference tractable). The model we propose in
this paper addresses all of these problems by formulating as a temporal multi-label classification (TMLC) problem where the
relations between labels are encoded into a compact representation of the joint probability distribution. Further, using tractable
prior and transition distributions in our Dynamic Conditional Cutset Network (DCCN) framework allows for both efficient and
accurate posterior estimates using particle filtering.

2.3 Explainable Systems and Trust
There have been a number of studies on how trust influences interactions between humans and automated systems, e.g., Muir
et al. (1994),31, Muir et al. (1996),30, Lee et al.26, and Hoffman et al.19. These studies examine factors that might affect the
trust of the user in the system, such as showing the past performance of the system and making the working of the system more
understandable26. The work by Hoffman et al.20 provides a more detailed taxonomy of such factors and explains how trust is
context-specific and dynamic. In other words, trust might vary with respect to specific contexts of automation and must also be
maintained over time. Our aim is to be able to measure and control user trust with respect to these systems in order to better
understand what kind of explanations influence the trust variable.

2.4 Activity Recognition and NLP
This work is closely related to the work of Rohrbach51 and Donahue13 on generating a semantic representation from videos
at an activity level using deep learning architectures. Instead of generating sentences in natural language however, we assign
a number of pre-defined labels divided into categories. Related efforts have considered the task of dense captioning24, i.e.,
generating summaries of texts from particular segments. Song et al.57 attempted to create captioning methods that require
minimum supervision on the TACoS dataset. Duan et al.15 attempted to combine caption generation and sentence localization
to feed off of each other to create a weakly supervised training model. While these works focus on constructing text summaries,
our work is different in that it aims to create a semantic representation for activities in each frame that can be used to both answer
queries easily as well as generate explanations (via probabilistic inference) that justify these answers.

3 XAI SYSTEM DESCRIPTION

3.1 The Explainable Activity Recognition Task for Cooking Videos
We evaluated and tailored our system to the Textually Annotated Cooking Scenes (TACoS) dataset51. Each frame in each video
in this dataset is labeled with an (action, object, location) triple; this triple defines an activity. The action component forms the
core part of the activity. These are usually verbs like wash, cut, slice, open, etc. The object component denotes the entities over
which the activity is performed. These are generally nouns such as apples, refrigerator, cutting board, knife, etc. Finally, the

4

location component tells us where the activity is taking place. These are generally location nouns such as kitchen, counter top,
sink, etc. but can also overlap with the nouns we use as objects. The dataset has 28 labels (our vocabulary) which includes 12
actions, 7 objects, 8 locations and a special label called ‘Nothing’ or ’None’.
Users interact with our system by posing so-called selection questions: “Did a particular activity defined by the triple (action,

object, location) happen in the video?” where object and location can be “None,” but action is not allowed to be “None.”
Examples of selection questions include: (1) “Did the person slice an orange on the counter?” where slice, orange, and counter
denote the action, object, and location respectively; and (2) “Did the person take out grapes from the refrigerator?” where take
out, grapes, and refrigerator denote the action, object, and location respectively.
Our goal is to build an explainable system that provides three types of explanations following an answer to a selection question:
1. Video Explanations:When the system answers “yes,” we want the system to highlight (possibly more than one) segments

of the video where the activity happened. For “no” answers, we want the system to highlight segments where a related
activity happened, e.g., carrots were cut in the video but not oranges. If no related activity is found in case of a “no answer,”
we want the system to output the most likely activity in the video.

2. Ranked (action, object, location) Triples:We want the system to display the top-k predicted activity triples in the video
that are relevant to the query.

3. Most Probable Entities:Wewant the system to display the most probable actions, objects and locations, along with their
likelihood that are relevant to the query.

3.2 System Architecture
Fig. 1 shows a high-level overview of the components of the system and the processing pipeline. Roughly speaking, the system
comprises the following two layers of models: (a) video classification layer which takes as input video frames and a vocabulary
file and assigns a set of labels from the vocabulary to each frame; and (b) explanation layer which takes the predicted labels
from the video classification layer as input, corrects them using a probabilistic model, and outputs (potentially more accurate)
labels and explanations.

3.3 Video Classification Layer
For this layer, we used GoogLeNet59, a 22-layer neural network that is pre-trained on the ImageNet dataset54. To tailor
GoogLeNet to our video dataset which has 28 labels, we replaced the topmost softmax layer in GoogLeNet with a fully-connected
layer with 28 nodes that uses sigmoid cross-entropy loss. The latter is used because it is a standard loss function for solving
multi-label classification problems; note that we are solving a multi-label classification task since each frame can have multiple
objects and locations. We used the backpropagation algorithm with stochastic gradient descent (SGD) and Adaptive Moment
Estimation (Adam) optimizers to further train the pre-trained model on the TaCOS dataset and found that Adam yields the best
performance.

3.4 Explanation Layer
In this section, we present dynamic conditional cutset networks (DCCNs), a new tractable temporal probabilistic representation.
We will use DCCNs in the explanation layer to: (a) correct errors in the labels predicted by the GoogLeNet at each frame;
(b) model the dynamics as well as persistence (activities do not change rapidly between frames) in the video; and (c) provide
explanations via poly-time probabilistic inference.

3.4.1 Conditional Cutset Networks
Tractable probabilistic models (TPMs)2,28,9 are probabilistic models which admit poly-time posterior marginal inference
(MAR)—the task of computing marginal probability distribution over each variable given evidence which is defined as an
assignment of values to a subset of variables—and maximum-a-posteriori (MAP) inference—the task of computing the most
likely assignment to all non-evidence variables given evidence. Examples of popular TPMs include cutset networks48, arith-
metic circuits9, sum-product networks45 and probabilistic sentential decision diagrams3. Although, TPMs are less expressive

5

than intractable (latent) probabilistic models and as a result have slightly poor generalization performance as compared to the lat-
ter, their accuracy at test time is often much higher than intractable models. This is because tractable models use exact inference
at prediction time while one has to use inaccurate approximate inference algorithms in intractable models.
Cutset networks48 are TPMs which represent multidimensional joint probability distributions using a rooted (directed) OR

tree10 with tree Bayesian networks at each leaf node of the OR tree (see Fig. 2). Each OR node in the OR tree is labeled with a
variable and just like in decision trees represents conditioning over the variable. Unlike decision trees however, the arcs in the
OR tree are labeled with conditional probability of the variable taking the corresponding value given an assignment of values
from the root node to the OR node. Tree Bayesian networks at each leaf l represent the conditional distribution P (X|patℎ(l))
1 where patℎ(l) denotes the assignment from the root to l and X is the subset of variables not assigned in patℎ(l). MAR and
MAP inference over cutset networks can be performed in linear time in the size of the network using cutset conditioning42,10.
However, unlike conventional cutset conditioning algorithms, cutset networks take advantage of context-specific independence,
dynamic variable orders and determinism. As a result, cutset networks can compactly represent and perform tractable inference
in probability distributions that admit high treewidth probabilistic graphical models11,12,47.
Recently, Rahman et al.49 proposed a new framework called conditional cutset networks (CCNs) that extends the cutset

networks framework to compactly represent and perform efficient reasoning over high-dimensional conditional probability dis-
tributions, namely distributions of the form P (Y |X) where bothX and Y are sets of random variables. To compactly represent
the (exponentially many) conditional joint distributions over the variables Y given each assignment X = x, CCNs use a cutset
network structure over Y whose conditional probability distributions P (Y |patℎ(n)) at each OR node n as well as those attached
to each variable in the Bayesian networks is replaced by calibrated probabilistic classifiers35. The latter takes an assignment x
toX and patℎ(n) as input and outputs a conditional probability distribution over Y , namely P (Y |X = x, patℎ(n)) by using only
polynomial (in |X|) number of parameters. For example, when we use logistic regression, we have P (Y = 1|X = x, patℎ(n)) =
�(w0 +

∑

xi∈x
wixi) where wi’s are the weights (parameters) and � denotes the sigmoid function. We learn the parameters of

the calibrated classifier (e.g., logistic regression) using a subset of the data that is consistent with patℎ(n). CCNs are condition-
ally tractable in that given an assignment X = x, each (probabilistic) classifier yields a probability distribution over the (class)
variable Y and thus given X = x, a CCN yields a (tractable) cutset network. (see Fig. 3 for an example).
The structure of CCNs is learnt using the top-down induction algorithm detailed in Rahman et al.’s49 paper. The base case

occurs when the dataset contains either (a) a very small number of examples/records or (b) a very small number of variables.
In such a situation, a simple tree-structured Bayesian network is powerful enough to represent the data distribution and can be
learned using the Chow-Liu algorithm7. If the base condition is not satisfied, then the algorithmwill recursively and heuristically
select a single variable from the set of all currently available variables and then condition on it. For example, in a dataset defined
over variables Y = {Y1, Y2, Y3, Y4, Y5}, the algorithm might find that Y1 leads to the largest information gain in the data and
choose to condition over it (such as in the CCN in Fig. ??). It will keep recursively doing this until it reaches the base case. After
the structure is learned, the branch probability functions at each OR node in the CCN as well as each tree-structured Bayesian
Network at the leaves is learned using calibrated classifiers such as logistic regression and neural networks with a sigmoid layer
on top (see Fig. 3). The best calibrated classifier is chosen via cross-validation.
To use CCNs in our framework, we feed the output of GoogLeNet to the CCN. More formally, let Y denote the set of output

nodes of GoogLeNet and X denote the set of true labels at a frame. We use the CCN to model P (X|Y) and learn its structure
and parameters using a dataset constructed as follows. Each frame in each video is a training example and is composed of true
labels (X) and labels predicted by GoogleNet (Y) with the pixels in the frame as input. At test time, at each frame, we instantiate
all the classifiers in the CCN using the predicted labels to yield a cutset network and then perform inference over the cutset
network to yield the final set of labels. In other words, the CCN treats the output of the neural network as a noisy sensor (see
Fig. 1) and computes a conditional joint probability distribution over the true labels given the predicted (noisy) labels.
We now describe how the compactness and tractability of CCNs can be leveraged to model the temporal dynamics in videos.

3.4.2 Dynamic Conditional Cutset Networks
An issue with CCNs is that they are static and do not explicitly model temporal aspects of video. For instance, we can use
persistence, namely objects do not change their position rapidly between subsequent frames to correct prediction errors at a
frame by using data from neighboring frames. To address this issue, we propose a novel framework called dynamic conditional

1We denote random variables as uppercase letters e.g. X, Y etc., sets of random variables as bold uppercase letters e.g. X, Y etc. and assignment of values to all the
variables in a set as bold lowercase letters, e.g. x, y etc.

6

cutset networks (DCCNs). Formally, let a video consist of n frames, let Y t and Xt be the set of true labels and predicted labels
(evidence) at frame t. Then, the DCCN represents the following probability distribution:

P (y1∶n|x1∶n) = P (y1|x1)
n
∏

i=2
P (yi|y1∶i,x1∶i−1), (1)

where the notation x1∶n (similarly y1∶n) denotes an assignment of values to all predicted (true) labels in frames 1 to n. We will
use the notation X1∶n to denote the set⋃n

i=1 Xi.
The representation given in Eq. (1) is not compact as n increases. To circumvent this issue, we use two standard assumptions

widely used in temporal or dynamic probabilisticmodels—the 1-Markov and stationarity assumptions46. Specifically, we assume
that each frame is conditionally independent of all frames before it given the previous frame (1-Markov) and all conditional
distributions are identical (stationarity). With these assumptions, we can represent P (y1∶n|x1∶n) using

P (y1∶n|x1∶n) = P (y1|x1)
n
∏

i=2
P (yi|xi, yi−1), (2)

where P (Y 1|X1) and P (Y i|Xi, Y i−1) are conditional cutset networks and P (Y i|Xi, Y i−1) is the same for all i.
We learn DCCNs using the following approach. The prior model P (Y 1|X1) is the same as the CCN described in the previous

section. To learn the structure and parameters of P (Y i|Xi, Y i−1), we construct the dataset as follows. Each frame in each video
is a training example and is composed of true labels at frame i (Y i), true labels at frame i − 1 (Y i−1) and labels predicted by
GoogleNet at frame i (Xi) using the pixels in the frame as input.
Inference over DCCNs can be performed using sequential sampling approaches such as particle filtering and smoothing14.

Here, we generate k assignments (y(1)
1 ,… , y(k)

1) uniformly at random from P (Y 1|x1), then for each assignment y(i)
1 we sample

one assignment from P (Y 2|x2, y
(i)
1), and so on. At the end of the sampling process, we will have k particles from P (Y 1∶n|x1∶n).

The main virtue of DCCNs is that unlike widely used temporal models such as dynamic Bayesian networks32, the particles in
DCCNs are generated from the posterior distribution P (yi|xi, yi−1) at each frame. As a result, issues such as particle degener-
acy—particles vanish because their weights become too low as i increases—that typical sequential sampling algorithms suffer
from will be less severe in DCCNs.
The three explanation types (see section 3.1) can be computed by performingMAP andMAR inference in CCNs and DCCNs.

To compute video explanations, we use an ontology that models relationships between activities and objects (e.g., ‘chef’s knife’
is related to ‘kitchen knife’, ‘slice’ is related to ‘cut’, etc.) and display video segments in which the marginal probability of
the queried activity or activities related to it (recall that activity is a (action, object, location) triple) is larger than a threshold.
Ranked triples over each segment in video explanations are computed by performing k-best MAP inference. Again, the key
advantage of CCNs and DCCNs is that k-best MAP inference is linear in k and the number of parameters at each frame. Most
probable entities in each highlighted segment are derived as follows. We compute the marginal probability of each entity in
each highlighted segment given evidence (via MAR inference) and display the top kmost likely ones according to the marginal
probability. Note that these inferences are not possible on GoogLeNet or recurrent deep architectures13 unless we treat the labels
as independent entities.

3.5 Video Compilation and Query Processing
In this section, we explain how each video is individually processed and compiled when it becomes available to the system and
how this compiled knowledge is later used for answering queries and providing explanations. We call this the compilation and
query processing pipeline (for an example, see Fig. 4). The pipeline has the following two phases:

• Compilation Phase:When a new video becomes available to the system, relevant information about the video is compiled
and stored in a database. The database is then used to answer queries in real-time. More specifically:
1. Each frame t of the video is passed through GoogleNet which infers a set of noisy labels xt.
2. All the frames are then passed to the dynamic cutset network which finds the top-k activities in each frame t by

constructing and inferring over the posterior distribution P (yt|x1∶t) where yt denotes the true labels associated with
frame t and x1∶t denotes the noisy labels from frame 1 to frame t.

3. All consecutive frames with the same top explanation are then grouped into a segment. In addition, the dynamic
cutset network also computes the component-wise marginal probabilities and these are averaged over each segment.

7

4. Finally, the explanations and marginal probabilities are stored in a database for fast retrieval.
• Query Phase: In this phase, the user poses a selection query to the system. These queries are in the form of whether

a given combination of action, object and location exists in the video. The system then searches over all the compiled
segments (stored in a database) for matches on the most probable activity for each segment. If at least one completematch
is found, then the system answers “Yes” and returns all the segments that match the query, along with their explanations.
Otherwise, the system answers “No” and as explanations displays all segments with partial matches. For example, if the
query is asking if the person cuts a carrot on a cutting board (cut, carrot, cutting board) and there are no exact matches,
then the system might return segments where the person is cutting a carrot, but on a plate (cut, carrot, plate) or washing
a carrot in the sink (wash, carrot, sink).

3.6 Interactive Explanatory Interface
We originally sought after an interactive interface that allowed users to load videos, ask queries, and review the model output
along with the explanations. The goal for the interface design was to limit the amount of model information presented to the
users in order to avoid overwhelming them with information. To this end, we first designed the interface with a predefined list
of queries which users were able to select and explore the model outputs for, and later, sought after a new design where users
were allowed to build their own queries. Fig. 5 and Fig. 6 show the resulting interfaces respectively.
Initially, the queries were in form of yes/no questions that consisted at least two of the three combinations of particular actions,

objects, and locations that defined an activity. An example query (as seen in Fig. 5) is “Does the person peel an onion?” However,
later-on, we opted for a query building tool where users could choose an action, an object, and a location from a list of potential
vocabulary. Unlike the first approach, this method allowed users to search by selecting as little as one activity component. With
this approach, people could form they query implicitly in their minds and by looking at the selected activity components. For
example, one possible query is (peel, any object, cutting board), which can be mapped to the natural-language question: “Does
the person peel anything on the cutting board?”
The model then attempted to answer the query. For the initial interface, it was a simple response of yes or no. This was under

the assumption that the video was already loaded, i.e., the person could see and select a query from the list of predefined queries
for the loaded video. However, with the query building tool, we wanted to allow a user to show the model response to all the
videos before deciding which video to inspect. Because of this, we designed the interface to organize the videos into two groups,
based on whether model found a video was a match for the query or not.
With both of the designs, we showed the same interface elements for the explanations. These explanations comprised the video

segments that were most relevant to finding the answer to the query, and for each of these segments, the top three activities found
in the query as well as the model’s confidence in observing individual activity components (i.e., actions, objects, or locations).
This information was always visible per video, i.e., they were local explanations. Thus, for the initial interface (as seen in Fig.5),
users always accessed the information while for the second interface, this information would pop-up when a video was selected
(in interface shown in Fig. 6).
Upon selecting a query (and choosing a video in the second interface), the video player highlights the most relevant segments

of the video through visual annotations added under the video play bar (shown as light and dark blue under the video in Fig. 5).
The video player will also automatically jump to the appropriate segment to help users see the video frames most important
for determining the output. For each selected video segment, the detected combination of components showed the top three
detected activities within this segment (in form of a table), as well as the individually-detected activity components. To help
users to quickly judge these component scores, graphical bars are shown underneath detected components to visually represent
the values of the component scores. Users can select different video segments to view the corresponding component scores and
combinations from different portions of the video. The selected segment was represented with a darker color.
One of our main goals when designing these interfaces (particularly, second design) was supporting users to build better

mental models of the model strengths and weaknesses (i.e., errors). However, both of the interfaces we described gave greater
attention to false positives while giving less attention to false negative errors. In other words, it was easier/faster to discover and
pay attention to false positive errors as opposed to their counterparts. Since it is important to understand both these types of
errors to 1) build a more accurate mental model of the system and 2) be able to fix the errors with the model when designing an
algorithm, we aimed to design yet another exploratory interface to provide more support for both of the tasks.
We hypothesized that the addition of holistic explanations to provide broader model-level information will increase user’s

ability to equally pay attention to and identify false negative and false positive errors, as well as higher-level model-based

8

problems across multiple videos.We refer to these more holistic representations as “global explanations” as they provide insights
about themodel’s logic by displayingmultiple possible outputs at once with overall system performance indicators (i.e. accuracy,
precision, recall, etc.). This view was designed to aid user understanding of higher-level model-based problems across multiple
videos rather than focusing on problem identification on a per-video basis.
Figure 7 shows the visual design for the global view of the interface. In the video selection panel, each video shows a list of

the top five components the system detected alongside an estimated rate of false positives and false negatives for the video. With
each video, a set of temporal heat maps are provided, representing the model’s detection confidence for each component in the
system’s vocabulary over the video’s duration. Additionally, a global information panel is included to provide general system
performance information. This includes an estimation of the overall system detection accuracy, false positive rate, and false
negative rate. Finally, this panel contains a bar chart for both false positive and false negative rates per each object in the system.

4 EVALUATION

4.1 Machine Learning Evaluation
We selected 60313 frames for training and 9355 frames for testing distributed over 17 videos in the TACoS dataset. For each set,
we selected a set of ground labels and used the video classification layer to generate the predicted labels. We performed exact
inference over CCNs and used particle filtering with 100 particles for inference in DCCNs. We performed the following ablation
study: (1) Our system in which the explanation layer is removed (GoogLeNet); (2) Our system which uses (static) conditional
cutset networks in the explanation layer (CCNs); and (3) the full system (dynamic CCNs).
Table 1 outlines the accuracy scores for correct activity recognition according to various evaluation metrics. Since predicting

each activity correctly is amultilabel classification task, we useK-Groupmeasures to calculate the overall percentage of instances
where K labels out of the total number of labels were predicted correctly. We report K-1, K-2, and K-3 since each activity
comprises of action, object and location. In addition, we also use standard measures such as the Hamming Loss and the Jaccard
Index. We notice that the full system that uses the dynamic CCNs yields the best scores. This is expected, since the dynamic
CCN encodes both the error distribution of the labels predicted by the neural network at each given frame as well as the transition
distribution of how labels evolve over time.

4.2 Human Evaluations
To evaluate the effectiveness of the explanations with user interactions, we conducted a series of studies that focused on human
performance. These experiments aimed to study various human factors with explainable AI systems, specifically, in the context of
decision-support systems, human-AI collaboration, and video activity recognition. In this section, we rely on a brief description
for these studies and refer the audience to the full manuscripts to learn more about the details of each study38,36,37.

4.2.1 Evaluating Human-Machine Query Verification
A primary goal in this study was to measure the degree to which the explanations generated by our system would benefit the end
users with little to no understanding of howML systems work.We hypothesized that the presence of explanations would improve
both the speed and the accuracy of decision-making. We also hypothesized that user agreement with the system’s outputs would
significantly increase with explanations. A user’s answer is said to ‘agree’ with the system’s when they are the same.
To test our hypotheses, we designed a user study where participants were set to review the model’s responses and explanations

to a set of queries about videos, using a similar design from interface shown in Fig. 5. More detailed study description, other
findings and results, and discussions from this study is available in our previous paper37. The query-review task was designed
to assess the participants’ ability to accurately determine the correct answer to queries with the aid of the system. To clarify,
we define a “correct” answer here as the actual answer (or ground truth) of a given query. This is different from “agreement”
(defined above) where the user’s answer matches the one from the system. For example, there could be cases where both the user
and the system agree on the same (incorrect) answer; however, this might be different from the actual, “correct” answer. Through
a between-subjects user study, we divided the participants into two groups: with and without explanations. Participants from
both groups had access to the video player and the system’s answer to each question. However, while those with explanations
were provided with the interface seen in Fig. 5, their counterparts did not see any explanations (i.e. they were only able to view

9

the system’s answers and not the video segments, the detected combination of components,and the component scores). Overall,
each participant reviewed 20 unique queries with a ratio of 16–4 correct–incorrect system answers.
The experiment was completed online by 80 AMT workers. Of these participants, 40 of them were shown explanations while

the other 40 were not. After pre-processing the data and removing outliers that did not fall within 1.5 × IQR, we analyzed
results from 38 participants for the with explanations category and 40 for the without explanations category. We analyzed
the results using the Kruskal-Wallis non-parametric test to measure the difference between the two groups. We observed a
significant difference on error per trial (�2(1, 76) = 5.63, p < 0.05

), showing that the participants with explanations had
significantly less error than those without explanations. Our experiment also detected a significant difference on average time
per trial (�2(1, 76) = 28.1, p < 0.001

). Participants with explanations were significantly faster. Additionally, the results from
the user agreement with the system show that participants with explanations significantly agreed with the system more than
their counterparts (�2(1, 76) = 8.00, p < 0.01

). Fig. 8a shows average participant error per trial.
Overall, these results support our hypothesis that the addition of these explanations significantly improves user task-

performance in our system. Through this study, we learned that providing more information (through post-hoc explanations) can
support user understanding of the system and judge when it is correct. It would seem that the explanations encouraged the users
to correctly trust its output. Since the with explanations category also had significantly better performance results, this suggests
that the higher rate of agreement was not simply blind trust or automation bias17, where humans tend to trust an intelligent sys-
tem by virtue of its ‘intelligence’ alone. However, it is to be noted that our study was not designed to specifically focus on the
potential effects of explanations on automation bias.

4.2.2 Evaluating Open-ended Human-Machine Video Review
In the first evaluation, we designed a task where users reviewed and answered queries about activities and objects in designated
videos. Building on these results, we used the same underlying algorithm, to explore how users attempt to understand model
competencies and weaknesses when given the freedom to explore. Additionally, we also wanted to understand the role of first
impressions on users’ mental model formation. We performed a user study based on the interface described in Section 3.6 and
seen in Fig. 6, and the results of this work were recently published38,36. We will therefore briefly describe the study and key
findings here and advice those who seek to learn about the study in more detail to refer to our prior work.
We designed a policy-verification task, where participants were asked to verify whether a set of kitchen guidelines and poli-

cies are being followed by the people performing cooking activities by utilizing the query-building system. The policies were
designed such that half were in reference to known system weaknesses while the others exposed system competencies. Assum-
ing that most users began from the top of the list and worked their way down, we changed the order of the policy sets and
compared how participants experienced the system. As an additional variable, half of the participants were provided explana-
tions while others were not. After a brief video tutorial, users freely explored how the tool classified different combination of
detected components as they tried to verify system policies before being asked about their impressions of the system. We ulti-
mately asked 110 participants to review the system, 54 observed explanations: 28 of whom saw policies that exposed model
capabilities first and another 26 observed those that exposed model weaknesses early-on. Of those provided no explanations,
the number of participants were 29 and 27, with the respective order.
First, we measured the proportion of policies that were answered correctly (user-task error). Our results indicate that partici-

pants who saw system strengths early-on made significantly more errors in the policy-verification task compared to those who
encountered weaknesses first, with F (1, 106) = 6.55, p < 0.05, �2p = 0.058. This indicates that encountering strengths earlier
can lead to over-reliance on the model outcomes (i.e., automation bias), while seeing weaknesses in the beginning can prevent
this problem. Fig. 8b shows the distribution of the task-error results across the conditions.
After completing the policy-review task, participants were asked to estimate the model’s detection accuracy (percentage) for

several activity components in the system’s vocabulary that corresponded to both system strengths and weaknesses. For each
participant, we calculated the error in their estimated accuracy for that component. For components that corresponded to system
strengths, participants who observed weaknesses first significantly underestimated the model’s detection accuracy compared to
their counterparts, with F (1, 106) = 6.24, p < 0.05, �2p = 0.056. Additionally, those who observed weaknesses early-on were
significantly less confident about their estimations, with F (1, 106) = 3.94, p < 0.05, �2p = 0.036.
This shows that participants who observed system weaknesses first had problems forming their mental models of the system

competencies and strengths. They significantly underestimated the system capabilities while also having less confidence in their
estimations. These users were skeptical of system strengths yet showed hesitancy in their skepticism because their earlier negative
observations obscured their judgment of the system capabilities. With a negative first impressions of the system capabilities,

10

users tended to rely more on their own abilities and focused less on how the model performed. Since they were more focused
on completing the task themselves, questions about their impressions of the system capabilities may have been unexpected—
leading to the confusion reported in our results. On the other hand, users who experienced system strengths first tended to exhibit
behaviors related to overconfidence. Their performance on the policy review task was significantly worse than their weakness
first counterparts. They appear to develop a false sense of security (i.e. automation bias) early on, showing that when they looked
at the later policies, they generally continued to rely on the system, even when it made mistakes. Having overconfidence in
system capabilities had no influence on completion time. Yet, if users took about the same amount of time to complete the policy
review task, it appears that being overconfident had the undesired effect of decreasing user’s critical review of system outputs.
Overall, these results suggest an additional nuance to the findings from the previous user study described in Section 4.2.1.

While the prior study found the addition of explanations significantly improved human verification performance, the second
study demonstrates that explanations cannot be assumed to be universally beneficial. Even more notable is the knowledge that
explanations might increase the likelihood that users will develop unfounded knowledge of the model (i.e., they think they
understand how the model works when, in fact, they do not). In safety critical applications, these impression effects can have
disastrous consequences. In this study, we found evidence to support that early impressions of a machine learning model is
fundamental for users to establish their assessment of model capabilities. When introducing end-users to XAI systems, attention
should be given to how to expose users to both system weaknesses and strengths in a balanced way early on to help ensure
accurate mental models are developed and maintained by users.

4.2.3 Using Global Explanations to Debug the Model
While the previously described user studies focused on human-machine performance for video review and inspection user tasks,
the third evaluation—using the interface described in Section 3.6 and seen in Fig. 7—addresses a different use case involving
developers debugging a model. To demonstrate the utility of the tool for deeper, more detailed model inspection, we present
case studies using two datasets in which an experienced machine learning designer from the research team used the global
explanation view to identify various types of errors and problem patterns in the underlying model for debugging purposes. The
first case study was based on the activity recognition model created with the previously described TACoS video corpus50 of
kitchen activities. For the second case study, we chose a set of six videos from the Wet Lab dataset33, which consists of videos
of laboratory experiments involving chemical and biological testing. While we performed and included a comprehensive case
study in a prior work39, we will only briefly touch upon the case studies in the current paper and refer those interested to learn
more about the details on the system design goals and choices, usability user evaluation, and the two case studies to read our
past paper39.
Our interface from Fig. 7 provides possibilities to pay attention to both false positive and false negative errors, equally, as

demonstrated by both of our case studies. To achieve this, the subject examined which video to explore by referring to the objects
that have the highest False Positive (FP) and False Negative (FN) rates using the bar charts in the global information panel.
Once he decided to explore a specific object, e.g., object X, he could use the top-five components to identify which video highly
includes object X. By comparing the heat maps based on their colors and (i.e., the model’s detection confidence per object, per
second) using the blue bar, he could explore many scenarios where X is a FP or FN individually, or may compare various heat
maps against X to find cases where X (or other components) are FP or FN in the same activity. This information can then be used
to penalize the model parameters proportional to the observed probability of the error to ensure the final model learnt will make
fewer errors of each type. This is one approach to use this exploratory tool, and allows a model designer to navigate and find
various types of errors (with or without combinations) or even find the sources of a problem by comparing similar combinations
or individual components with errors across multiple videos to find similar global error patterns. For example, a debugger might
notice that a given video has a high number of false positives. After clicking on the video, the global information panel might
show that the false positive rate for “plate” is 20%. The debugger can then browse through the sections in the video that have
high confidence scores for plate by looking at the heat map (see Fig. 7) and notice that the probability for plate goes up whenever
there is a frying pan in the frame. More technical details of these findings and a more detailed walk-through of the case studies
are available in our prior paper39.
Through our case studies, we learnt that providing higher-level explanations that are not limited to a query or specific activity

can support identification of various specific types of model errors and allows more experienced model architects to explore the
model to find high-level, global error patterns as well as instance-level problems. This can be used to alleviate the bias towards
focusing primarily on false positive errors that we observed with AI-assisted querying.

11

5 CONCLUSION

In this paper, we presented the technical details of our proposed approach that seeks to address the following accuracy-
explainability gap in existing machine learning technology: deep neural networks yield accurate predictions but are not
explainable while conventional classifiers such as linear models and decision trees are explainable but substantially less accurate.
The key idea in our approach is to compose neural networks with explainable, tractable probabilistic logic representations. We
presented a version of this general approach in which we first used a neural network to yield accurate estimates over the labels (or
classes), then used these estimates as soft evidence in a probabilistic model called dynamic cutset networks, and finally derived
decisions and explanations by performing reasoning over the latter. The main virtue of dynamic cutset networks is that they are
tractable. Therefore, they can answer reasoning queries—both decision and explanation queries—accurately and often in linear
time in the size of the model. We showed that for the task of activity recognition in cooking videos derived from the TACoS
dataset, an XAI system based on our approach not only has better predictive performance than the one based on neural networks
alone but also has superior explanatory power. The two main lessons learned from building this explainable system were:

• Lesson 1: To build models that are both accurate and explainable, compose a neural network defined over low-level
features with probabilistic models that offer superior reasoning capabilities (and thus better explanations via reasoning).

• Lesson 2: In order to ensure that explanations are accurate, generated in real-time and faithful to the model used to make
decisions, use tractable models.

We evaluated our explainable video activity recognition system by using it to solve three human-machine tasks: (1) answering
yes/no questions posed over a given video; (2) answering whether a set of policies were followed or not in a given collection
of videos; and (3) debugging the XAI model. We built novel interactive visual interfaces for each task and conducted human
subjects studies. The lessons learned from these studies were:

• Lesson 3: If the XAI system for solving a human-machine task is highly accurate and the task is relatively easy, provide
detailed explanations. Explanations significantly and justifiably improve the task completion time and the user’s trust and
reliance in the system, and reduce the gap between the user’s perceived accuracy and the system’s actual accuracy. On
the other hand, if the XAI system for solving a human-machine task is not accurate, explanations wrongly amplify the
automation bias in that they increase the gap between the user’s perceived accuracy and the system’s actual accuracy by
increasing the former.

• Lesson 4: When the XAI system is used for solving relatively harder human-machine tasks (e.g., in safety-critical appli-
cations) and has known weaknesses, provide a balanced, detailed view of the system’s strengths and weaknesses when the
user begins to use the system. These early impressions play a critical role in establishing the user’s assessment of model
capabilities and developing an accurate mental model.

• Lesson 5: For expert users of the XAI system, develop novel visual exploratory tools that clearly depict not only local
explanations specific to a query but also more global, higher-level explanations that can support identification of various
types of model errors. These global views can help alleviate various biases such as automation bias, anchoring bias and
bias towards focusing on false-positive errors, and help the expert user find high-level, global error patterns as well as
instance-level problems.

6 ACKNOWLEDGEMENTS

This work was supported by the DARPA Explainable Artificial Intelligence (XAI) Program under contract number N66001-17-
2-4032.

References

1. M. Al-Hames and G. Rigoll. A multi-modal mixed-state dynamic bayesian network for robust meeting event recognition
from disturbed data. In IEEE International Conference on Multimedia and Expo (ICME), pages 45–48, 2005.

12

2. F. R. Bach and M. I. Jordan. Thin junction trees. In Advances in Neural Information Processing Systems (NeurIPS), pages
569–576, 2002.

3. J. Bekker, J. Davis, A. Choi, A. Darwiche, and G. Van den Broeck. Tractable learning for complex probability queries. In
Advances in Neural Information Processing Systems (NeurIPS), pages 2242–2250, 2015.

4. A. F. Bobick and A. D. Wilson. A state-based approach to the representation and recognition of gesture. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 19(12):1325–1337, 1997.

5. W. Brendel, A. Fern, and S. Todorovic. Probabilistic event logic for interval-based event recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3329–3336, 2011.

6. H. Buxton and S. Gong. Visual surveillance in a dynamic and uncertain world. Artificial Intelligence, 78(1-2):431–459,
1995.

7. C. K. Chow and C. N Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on
Information Theory, 14:462–467, 1968.

8. Gregory F Cooper. The computational complexity of probabilistic inference using bayesian belief networks. Artificial
intelligence, 42(2-3):393–405, 1990.

9. A. Darwiche. A differential approach to inference in Bayesian networks. In Proceedings of the Sixteenth Conference on
Uncertainty in Artifical Intelligence (UAI), pages 123–132, 2000.

10. R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artificial Intelligence, 171:73–106, 2007.
11. N. Di Mauro, A. Vergari, and T. M. A. Basile. Learning Bayesian random cutset forests. In Foundations of Intelligent
Systems - 22nd International Symposium, pages 122–132, 2015.

12. N. Di Mauro, A. Vergari, and F. Esposito. Learning accurate cutset networks by exploiting decomposability. In The
Fourteenth International Conference of the Italian Association for Artificial Intelligence, pages 221–232, 2015.

13. J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term
recurrent convolutional networks for visual recognition and description. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2625–2634, 2015.

14. A. Doucet, N. de Freitas, K. P. Murphy, and S. J. Russell. Rao-Blackwellised particle filtering for dynamic Bayesian
networks. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI), pages 176–183, 2000.

15. X. Duan, W. Huang, C. Gan, J. Wang, W. Zhu, and J. Huang. Weakly supervised dense event captioning in videos. In
Advances in Neural Information Processing Systems (NeurIPS), pages 3063–3073, 2018.

16. N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI), pages 1300–1309, 1999.

17. K. Goddard, A. Roudsari, and J. C. Wyatt. Automation bias: a systematic review of frequency, effect mediators, and
mitigators. Journal of the American Medical Informatics Association, 19(1):121–127, 2012.

18. S. Gong and T. Xiang. Recognition of group activities using dynamic probabilistic networks. In IEEE International
Conference on Computer Vision (ICCV), pages 742–749, 2003.

19. K. A. Hoff and M. Bashir. Trust in automation: Integrating empirical evidence on factors that influence trust. Human
Factors, 57(3), 2015.

20. R. R. Hoffman. A taxonomy of emergent trusting in the human–machine relationship. Cognitive Systems Engineering: The
Future for a Changing World, pages 137–164, 2017.

21. Y. A. Ivanov and A. F. Bobick. Recognition of visual activities and interactions by stochastic parsing. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 22(8):852–872, 2000.

13

22. S.W. Joo and R. Chellappa. Recognition of multi-object events using attribute grammars. In IEEE International Conference
on Image Processing (ICIP), pages 2897–2900, 2006.

23. A. Kimmig, B. Demoen, L. De Raedt, V. S. Costa, and R. Rocha. On the implementation of the probabilistic logic
programming language problog. Theory and Practice of Logic Programming, 11(2-3):235–262, 2011.

24. R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles. Dense-captioning events in videos. In IEEE International
Conference on Computer Vision (ICCV), pages 706–715, 2017.

25. T. Kulesza, M. Burnett, W. Wong, and S. Stumpf. Principles of explanatory debugging to personalize interactive machine
learning. In Proceedings of the Twentieth International Conference on Intelligent User Interfaces (IUI), 2015.

26. J. D. Lee and K. A. See. Trust in automation: Designing for appropriate reliance. Human factors, 46(1):50–80, 2004.
27. Y. Liang, J. Bekker, and G. Van den Broeck. Learning the structure of probabilistic sentential decision diagrams. In
Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

28. D. Lowd and P.M. Domingos. Learning arithmetic circuits. In Proceedings of the Twenty-Fourth Conference in Uncertainty
in Artificial Intelligence (UAI), pages 383–392, 2008.

29. V.I. Morariu and L.S. Davis. Multi-agent event recognition in structured scenarios. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3289–3296, 2011.

30. B. M. Muir and N. Moray. Trust in automation. part ii. experimental studies of trust and human intervention in a process
control simulation. Ergonomics, 39(3):429–460, 1996.

31. B. M.Muir. Trust in automation: Part i. theoretical issues in the study of trust and human intervention in automated systems.
Ergonomics, 37(11):1905–1922, 1994.

32. K. P. Murphy. Dynamic Bayesian networks: representation, inference and learning. PhD thesis, University of California,
Berkeley, 2002.

33. I. Naim, Y. Song, Q. Liu, H. Kautz, J. Luo, and D. Gildea. Unsupervised alignment of natural language instructions with
video segments. Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pages 1558–1564, 2014.

34. P. Natarajan and R. Nevatia. Coupled hidden semi markov models for activity recognition. In IEEE Workshop on Motion
and Video Computing (WMVC), pages 10–10, 2007.

35. A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised learning. In Proceedings of the
Twenty-Second International Conference on Machine Learning (ICML), pages 625–632, 2005.

36. M. Nourani, D.R. Honeycutt, J.E Block, C. Roy, T. Rahman, E.D. Ragan, and V. Gogate. Investigating the importance of
first impressions and explainable ai with interactive video analysis. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems Extended Abstracts, pages 1–8, 2020.

37. M. Nourani, C. Roy, T. Rahman, E. D. Ragan, N. Ruozzi, and V. Gogate. Don’t explain without verifying veracity: An
evaluation of explainable ai with video activity recognition. arXiv preprint arXiv:2005.02335, 2020.

38. M. Nourani, C. Roy, J.E. Block, D. R. Honeycutt, T. Rahman, E. D. Ragan, and V. Gogate. Anchoring bias affects mental
models and user reliance in explainable ai systems. In Proceedings of the Twenty-Sixth International Conference on Intelligent
User Interfaces (IUI), 2021.

39. M. Nourani, C. Roy, D. R. Honeycutt, E. D. Ragan, and V. Gogate. Detoxer: A visual debugging tool with multi-scope
explanations for temporal multi-label classification models. In Manuscript submitted and under-review, 2021.

40. N. M. Oliver, B. Rosario, and A. P. Pentland. A bayesian computer vision system for modeling human interactions. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(8):831–843, 2000.

41. K. Otsuka, J. Yamato, Y. Takemae, and H. Murase. Conversation scene analysis with dynamic bayesian network basedon
visual head tracking. In IEEE International Conference on Multimedia and Expo (ICME), pages 949–952, 2006.

14

42. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988.
43. M. Pei, Y. Jia, and S.C. Zhu. Parsing video events with goal inference and intent prediction. In IEEE International Conference
on Computer Vision (ICCV), pages 487–494, 2011.

44. D. Poole. Probabilistic horn abduction and bayesian networks. Artificial intelligence, 64(1):81–129, 1993.
45. H. Poon and P. Domingos. Sum-Product Networks: A New Deep Architecture. In Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence (UAI), pages 337–346, 2011.

46. L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the
IEEE, 77(2):257–286, 1989.

47. T. Rahman and V. Gogate. Learning ensembles of cutset networks. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 3301–3307, 2016.

48. T. Rahman, P. Kothalkar, and V. Gogate. Cutset networks: A simple, tractable, and scalable approach for improving the
accuracy of chow-liu trees. In Proceedings of the 2014 Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML PKDD), pages 630–645, 2014.

49. T. Rahman, S. Jin, and V. Gogate. Cutset Bayesian Networks: A New Representation for Learning Rao-Blackwellised
Graphical Models. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI),
pages 5751–5757, 2019.

50. M. Regneri, M. Rohrbach, D. Wetzel, S. Thater, B. Schiele, and M. Pinkal. Grounding action descriptions in videos.
Transactions of the Association for Computational Linguistics (TACL), 1:25–36, 2013.

51. A. Rohrbach, M. Rohrbach, W. Qiu, A. Friedrich, M. Pinkal, and B. Schiele. Coherent multi-sentence video description
with variable level of detail. In The Thirty-Sixth German conference on Pattern Recognition, pages 184–195, 2014.

52. A. Rooshenas and D. Lowd. Learning sum-product networks with direct and indirect variable interactions. In Proceedings
of the Thirty-First International Conference on Machine Learning (ICML), pages 710–718, 2014.

53. S. Roy and D. Suciu. A formal approach to finding explanations for database queries. In ACM SIGMOD International
Conference on Management of Data (MOD), pages 1579–1590, 2014.

54. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.
Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3), 2015.

55. M. S. Ryoo and J. K. Aggarwal. Recognition of composite human activities through context-free grammar based
representation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1709–1718, 2006.

56. Z. Si, M. Pei, B. Yao, and S.C. Zhu. Unsupervised learning of event and-or grammar and semantics from video. In IEEE
International Conference on Computer Vision (ICCV), pages 41–48, 2011.

57. Y. C. Song, I. Naim, A. Al Mamun, K. Kulkarni, P. Singla, J. Luo, D. Gildea, and H. A. Kautz. Unsupervised alignment
of actions in video with text descriptions. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence (IJCAI), pages 2025–2031, 2016.

58. T. Starner and A. Pentland. Real-time american sign language recognition from video using hidden markov models. In
Motion-based recognition, pages 227–243. Springer, 1997.

59. C. Szegedy,W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

60. Z. Zhang, T. Tan, and K. Huang. An extended grammar system for learning and recognizing complex visual events. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 33(2):240–255, 2010.

15

Metric GoogLeNet CCNs Dynamic CCNs
K-1 0.9335 0.9677 0.9687
K-2 0.8557 0.8998 0.9197
K-3 0.7918 0.7962 0.8168

Jaccard Index 0.8608 0.8559 0.8674
Hamming Loss 0.1392 0.1286 0.1160

TABLE 1 Accuracy for Activity Recognition on Test Videos. Bold results indicate the best performing model.

Video

Ground
Labels

Predicted
Labels

}
Modified GoogleNet

Dynamic Cutset
Networks

Set Query Nodes to Evidence
and Generate Explanations?

Answer Query
and Generate
Explanations

Video Classification Layer

Explanation
Layer

FIGURE 1 High-level Architecture and Data Processing Pipeline. Our system has two layers: a video classification layer based
on a deep learning model whose output is fed to an explanation layer which is based on cutset networks48, an interpretable,
tractable probabilistic model. During the learning phase, the classification layer uses the video frames and the ground truth
activities (labels) as input and learns a mapping from frames to object, action and location. On the other hand, during the learning
phase, the explanation layer uses the labels predicted by the classification layer and ground truth as input and learns a mapping
from predicted labels to the ground truth. During the query phase, the system answers questions by performing inference over
the cutset network (in the explanation layer).

How to cite this article: C. Roy, M. Nourani, D. Honeycutt, J. Block, T. Rahman, E. Ragan, N. Ruozzi, and V. Gogate (2021),
Explainable Activity Recognition in Videos: Lessons Learned, Applied AI Journal, 2021;00:1–10.

16

X1

X3X2

X4

0.2

0.3

X3 → X4 → X5

0.
7

X3 → X5 X5 → X3

0.
4 0.6

0.8

X4 ← X2 → X5

0.
35

X5

0.65

X2 → X4 X4 → X2

0.
1 0.9

(a)

X1

X3X2

X4

0.2

0.3

X3 → X4 → X5

0.
7

X3 → X5 X5 → X3

0.
4 0.6

0.8

X4 ← X2 → X5

0.
35

X5

0.65

X2 → X4 X4 → X2

0.
1 0.9

(b)

FIGURE 2 (a) A cutset network over 5 variables {X1,… , X5}. Each variable takes a value from the binary domain
{true, false}. OR nodes are denoted by circles. X1 is the root node of the OR tree. Left and right arcs emanating from
an OR node labeled by Xi indicate conditioning over true and false values of Xi respectively. Arcs emanating from OR
nodes are labeled with conditional probabilities. For example, the arc labeled with 0.4 denotes the conditional probability
P (X4 = true|X1 = true,X2 = false). The leaf nodes are denoted by dashed rectangles and contain tree Bayesian networks over
the remaining variables not appearing on the path to the leaf. (b) The nodes, arcs and leaves activated during the computation
of the query P (X1 = true,X2 = false,X3 = false,X4 = true,X5 = false).

Y1

Y2Y3

Y2

σ1
(x

)

σ2
(x

)

Y3 → Y4 → Y5

Y4 → Y5 Y5 → Y4

σ
3
(x

)

1
−

σ
3
(x

)

1− σ
1 (x)

Y4 ← Y3 → Y5

1−
σ
5 (x

)

Y5

σ 5
(x
)

Y2 → Y4 Y4 → Y2

1−
σ
2 (x)

σ
4
(x

)

1−
σ
4 (x

)

(a)

W1 = [0.22, 0.3,−0.2, 0.1]
W2 = [1, 0.7, 0.5, 0.1]

W3 = [2.0,−0.33,−0.89, 0.9]
W4 = [−0.3,−2.0,−1.0, 1.0]
W5 = [0.01, 0.4, 0.8, 0.1]

(b)

Y1

Y2Y3

Y2

0.5
8

0.
90

Y3 → Y4 → Y5

Y4 → Y5 Y5 → Y4

0
.6
8

0
.3
2

.42

Y4 ← Y3 → Y5

0.23

Y5

0.
77

Y2 → Y4 Y4 → Y2

0.10

0
.0
4

0
.9
6

(c)

FIGURE 3 (a) A conditional cutset network (CCN) representing P (Y1,… , Y5|X1, X2, X3). Arcs emanating from OR nodes are
labeled with sigmoid functions �1 through �5. For brevity, we omit showing sigmoid functions for the conditional probability
distributions in the tree Bayesian networks at the leaves. (b) Each W i is the parameter vector of the corresponding sigmoid
function �i(x). (c) Given the assignment (X1 = true,X2 = true,X3 = false), the CCN yields a cutset network having the same
structure as the one given in (a) except that the parameters will be computed using the classifiers denoted by �i(x).

17

GoogleNet

Dynamic Cutset Network

0 1 1 0 1 0 0 0 1 1 0 0 1 0 1

0.1 0.9 1.0 0.0 1.0 0.8 0.0 1.0 1.0 0.9 0.1 0.7 1.0 0.2 0.9

Video

Noisy Labels

0.87 cut, carrot

0.10 eat, carrot
0.75 cut, carrot

0.17 cut, None
0.91 cut, carrot

0.07 cut, None

0.79 eat, carrot

0.08 cut, carrot
0.82 eat, carrot

0.05 cut, None

Segment Grouping

Top-k Explanations

Marginal Component Probabilities

Knowledge Compiler

Query Engine(eat, carrot)?

1.0 0.2 0.8
1 eat, carrot

2 cut, carrot
Explanations

Yes

Video Explanations

Ranked

Activities

Most Probable

Entities

eat cut carrot eat cut carrot eat cut carrot eat cut carrot eat cut carrot

eat cut carrot eat cut carrot eat cut carrot eat cut carrot eat cut carrot

eat cut carrot

FIGURE 4 An example of a dummy video with five frames being passed through the compilation and query pipeline over three
labels – eat, cut and carrot. For brevity, an activity is treated as a pair instead of a triple and comprises of only action and object.
The frames are first individually passed through GoogleNet which assigns noisy labels to them. They are then passed through
the Dynamic Cutset Network that groups the video into segments based on the top most likely activity given the noisy labels.
In addition, it also computes the marginal component probabilities and other top-k explanations and stores them. Finally, when
a query is posed to the system, the query engine searches for a segment that completelymatches the query on all components. If
such a segment exists, then it answers “Yes” (otherwise it answers “No” and the partial matches are shown as explanations). It
then fetches the explanations and shows them to the user by highlighting the segment of the video that is matched and showing
the ranked activities and most probable entities averaged over the entire segment.

18

FIGURE 5 The interactive visual interface allows users to load videos and ask queries. The interface shows the ML system’s
answer along with explanatory elements for the output. The most relevant portions of the video play time are shown by colored
bars beneath the video, and the right side shows detected video components and combinations of components relevant to the
video and query. A similar version of this system was used in one of our previous user studies37.

FIGURE 6 The overview of the query selection interface—as discussed in more detail in our previous work38—used in the
policy-verification task, where users were able to query the model and find all the relevant videos. Upon clicking each video (or
the View Explanations Bottom), a similar interface to Fig. 5 would pop-up.

19

FIGURE 7 The overview of the interface that included the global representations of the model as well as instance-level outputs.
This interactive interface is not dependent on specific queries like those demonstrated in Fig. 5 and Fig. 6.

0

25

50

75

100

No Exp With Exp

Condition

No Exp
With Exp

Average Error per Trial (%)

(a) Experiment 1: Human-Machine Query Verification
0

25

50

75

100

Strong First Weak First

Exp Type

No Exp
With Exp

Task Performance Error (%)

(b) Experiment 2: Open-ended Video Review
0

25

50

75

100

Strong First Weak First

Exp Type

No Exp
With Exp

Task Performance Error (%)

FIGURE 8 (a) Participant error on the policy task (Percentage) from experiment 1 (See Section 4.2.1). (b) Average participant
error per trial (Percentage) from experiment 2 (See Section 4.2.2).

	Explainable Activity Recognition in Videos: Lessons Learned
	Abstract
	Introduction
	Related Work
	HMMs and DBNs
	Models that use Black-boxes as Sensors
	Explainable Systems and Trust
	Activity Recognition and NLP

	XAI System Description
	The Explainable Activity Recognition Task for Cooking Videos
	System Architecture
	Video Classification Layer
	Explanation Layer
	Conditional Cutset Networks
	Dynamic Conditional Cutset Networks

	Video Compilation and Query Processing
	Interactive Explanatory Interface

	Evaluation
	Machine Learning Evaluation
	Human Evaluations
	Evaluating Human-Machine Query Verification
	Evaluating Open-ended Human-Machine Video Review
	Using Global Explanations to Debug the Model

	Conclusion
	Acknowledgements
	References

