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Abstract— Virtual reality training systems are commonly used in a variety of domains, and it is important to understand how the 

realism of a training simulation influences training effectiveness. We conducted a controlled experiment to test the effects of 

display and scenario properties on training effectiveness for a visual scanning task in a simulated urban environment. The 

experiment varied the levels of field of view and visual complexity during a training phase and then evaluated scanning 

performance with the simulator’s highest levels of fidelity and scene complexity. To assess scanning performance, we measured 

target detection and adherence to a prescribed strategy. The results show that both field of view and visual complexity 

significantly affected target detection during training; higher field of view led to better performance and higher visual complexity 

worsened performance. Additionally, adherence to the prescribed visual scanning strategy during assessment was best when 

the level of visual complexity during training matched that of the assessment conditions, providing evidence that similar visual 

complexity was important for learning the technique. The results also demonstrate that task performance during training was not 

always a sufficient measure of mastery of an instructed technique. That is, if learning a prescribed strategy or skill is the goal of 

a training exercise, performance in a simulation may not be an appropriate indicator of effectiveness outside of training—

evaluation in a more realistic setting may be necessary. 

Index Terms— Artificial, augmented, and virtual realities; Graphical user interfaces.  

——————————      —————————— 

1 INTRODUCTION

RAINERS and educators in a variety of domains, in-
cluding military [e.g., 1], medicine [e.g., 2], and athlet-

ics [e.g., 3], have begun to use virtual reality (VR) systems 
for task training. This approach was pioneered in the 
flight simulation community decades ago [4], but now the 
use of VR has expanded to motor skills training, decision-
making / cognitive training, and psychological training 
in many domains. Common reasons for using VR include 
the following: 
 Complete control over the environment and task 

stimuli; flexibility 
 Repeatability 
 Safe simulations of dangerous situations 
 Ability to provide high levels of task and environment 

realism without exorbitant costs 
 Ability to “immerse” the trainee in the training envi-

ronment 

Despite its widespread use, however, it is still difficult 
to say when VR training really works, when VR should be 

chosen over other training alternatives, and what sorts of 
VR systems provide the most effective training. In this 
work, we are focused on the last of these questions. Re-
phrasing the question, we ask, “How do the characteris-
tics of VR training systems impact the effectiveness of 
those systems?” In particular, we focus on the effects of 
the realism, or fidelity, of the system. 

Fidelity is a general and useful concept for characteriz-
ing different VR systems, since a common goal for VR is 
to provide a high-fidelity experience—one similar to the 
real world. Using stereoscopic graphics, using head 
movements to control one’s view of the virtual environ-
ment, and using photorealistic textures are a few of the 
many ways that VR systems can provide high fidelity.  

For training systems, it is a reasonable belief that high-
er fidelity will result in greater effectiveness [5]. In other 
words, it is intuitively better to train in a more realistic 
simulation of the real-world scenario than to train in a 
poor facsimile of that scenario. But is this always true, or 
are there cases where somewhat lower fidelity might be 
acceptable or even helpful? Is the highest possible level of 
fidelity required, or can we achieve very similar training 
effectiveness with lower levels? Previous research has 
shown that higher overall fidelity is not always necessary 
or advantageous over lower-fidelity simulations [e.g., 6, 
7], and a better approach might be to ensure realism for 
certain elements of a simulation [8].  The challenge, then, 
becomes identifying which components need to be realis-
tic to be most beneficial for training effectiveness. 
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To address this challenge, we must be able to evaluate 
training effectiveness. The most common and straight-
forward approach is to look at training transfer, which is 
defined as the degree to which learned skills or 
knowledge can be applied to another situation [9]. Train-
ing effectiveness can be evaluated by assessing task per-
formance after a training program [10]. Thus, evaluations 
of training simulators are often done by evaluating per-
formance of the corresponding real-world task (i.e., 
whether success in the training system predicts success in 
the real world) after training with simulation [e.g., 2, 11].  

The goal of the research reported in this paper was to 
examine the effects of relevant components of fidelity on 
the effectiveness of a VR training system. The system is 
designed to train users in the task of visual scanning, a 
common task in many contexts. For example, military 
personnel need to visually scan the environment to iden-
tify threatening objects or people; factory workers need to 
scan for defects in products; and sea rescue personnel 
need to scan for victims in the water. Visual scanning is a 
type of visual search, with the special requirement that it 
is important to search the entire scene systematically, en-
suring that all target objects are found. Thus, having a 
well-defined visual scanning strategy is critical. 

We chose to study the effects of the training system’s 
field of view (FOV) and visual complexity for visual scan-
ning tasks. FOV refers to the angular size of the area of 
the scene that a user can see instantaneously. A wider 
FOV allows the user to see more of the scene at once and 
to use peripheral vision, while a narrower FOV may re-
duce distraction in the periphery and allow the user to 
focus on the region of interest in the scene. Common VR 
systems have a wide range of FOVs, from less than 30 
degrees (e.g., in some consumer-level head-mounted dis-
plays) to 180 degrees or more (the limitation of the human 
FOV; e.g., in surround-screen displays). 

We use the term visual complexity to refer to the 
amount of detail, clutter, and objects in a scene [12]. The 
level of visual complexity is related to the fidelity of a 
simulation. Simulations with low fidelity often use sim-
plified geometry and textures, and they may leave out 
some elements; this results in reduced visual complexity. 
High-fidelity graphical simulations can better replicate 
the visual richness and complexity of the real world. 
Training systems with low visual complexity may pro-
vide a scaffold for visual scanning, allowing trainees to 
learn the proper strategies in a simpler environment; on 
the other hand, systems with high visual complexity may 
provide more appropriate prepration for what users will 
encounter in the real world. 

In order to study the effects of these two variables in a 
controlled way, we employed the mixed reality (MR) 
simulation approach [13], in which a single high-end VR 
system is used to simulate systems with lower levels of 
fidelity. In this experiment, we also used the highest-
fidelity condition as a proxy for the real world so that we 
could study training transfer without loss of experimental 
control. 

The results of our experiment contribute a deep under-
standing of the effects of FOV and visual complexity on 

training effectiveness for visual scanning tasks and, as a 
side benefit, also teach us something about the effects of 
these variables on raw task performance. More im-
portantly, these results add to the growing body of litera-
ture on the effects of various components of fidelity [14, 
15], which is needed to enable effective VR system design 
for training and many other application domains.  

2 BACKGROUND 

In this section, we review related literature on the evalua-
tion of VR training systems and the impact of fidelity, and 
on the understanding of VR fidelity. 

2.1 Evaluating VR Training Effectiveness  

VR-based training spans a variety of applications, such as 
flight simulators [16], surgical simulators [2], and medical 
examination training [17]. Studies have evaluated the ef-
fectiveness of VR training systems in different contexts. 
For medical examination training, Johnsen et al. [17] 
showed a significant correlation between performance in 
interview/examination sessions with virtual patients and 
performance with live patient actors. 

As an example for flight simulators, Hart and Battiste 
[18] studied the effectiveness of simulation training 
games. The researchers compared flight school perfor-
mances of participants who trained with a specialized 
flight-training game or commercial flight simulator game 
to those who had no additional game training. The results 
demonstrated how system design can have major impacts 
on training effectiveness: participants who trained with 
the specialized game had the highest continuation rates 
through the flight program, while participants who 
trained with the commercial flight game had the largest 
number of non-continuing students. 

The effectiveness of VR simulators has also been 
demonstrated for surgical training, where a number of 
studies have shown significant gains in transfer of train-
ing and transfer effectiveness ratio for participants who 
trained in a simulator (as opposed to no additional train-
ing) before being assessed in real-world surgery [e.g., 2, 
19]. Training effectiveness of virtual reality has also been 
demonstrated in other application areas, including stroke 
rehabilitation [20], pedestrian safety [21] and post-
traumatic stress disorder treatment [22]. 

In a study of the effects of simulator fidelity on train-
ing effectiveness for a bicycle wheel-truing task, Baum et 
al. [23] compared a line-rendered graphics application 
with different physical props. Participants performed 
significantly better with more visually realistic props, but 
the fidelity of how well the props functioned did not 
make a difference. In a study with similar goals, Allen et 
al. [11] tested for effects of simulator fidelity on training 
transfer using an electromechanical-troubleshooting task. 
By manipulating the realism of the appearance and func-
tionality of the physical training system, the researchers 
found evidence of faster problem solving after training 
with higher-fidelity systems. 

Studying training for a real-world maze navigation 
task, Waller et al. [24] had participants prepare with ei-
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ther real-world navigation, a map of the environment, 
desktop VR, or immersive VR with a head-tracked HMD. 
Real-world training was the most effective overall, and 
immersive VR was only advantageous over the other 
non-real conditions after longer periods of training. 

2.2 Framework for Evaluating VR Fidelity  

The experiment presented in this paper is one of many 
possible experiments on the effects of fidelity in VR sys-
tems. We believe this to be a fundamental question in the 
field of VR since one of the goals of much VR research is 
to increase the level of fidelity. Ivan Sutherland presented 
this vision for VR in his seminal paper “The Ultimate 
Display” [25], which described a display system that was 
indistinguishable from the real world. Research and de-
velopment on such topics as high-resolution imaging [26], 
photorealistic computer graphics [27], and infinite walk-
ing through virtual environments [28] all point to the de-
sire for greater fidelity. It is critical, then, to understand 
what effects these ever-increasing levels of fidelity will 
have on task performance, presence, satisfaction, ac-
ceptance, engagement, training transfer, and other out-
comes. Even if we assume that higher levels of fidelity are 
usually better than lower levels, there is still a cost-benefit 
question to consider. 

To study fidelity’s effects, we must have a clear under-
standing of what fidelity is. Although we and others have 
been performing such studies for many years [e.g., 11, 29, 
30], we have done so with an evolving understanding and 
with evolving terminology (e.g., compare [14] and [30]). 
Recently, we developed a more systematic framework to 
understand, describe, and evaluate fidelity in VR systems 
[31]. We present an updated outline of this framework 
here as a secondary contribution of this paper and to pro-
vide a foundation for future experiments on VR fidelity. 

Consider the flow of information that occurs when a 
user interacts with a simulation. First, the user likely uses 
a piece of hardware or a tracked body part as an input 
device to generate some type of data. That data is then 
interpreted by software as some meaningful effect, which 
the simulation decides how to handle based on the phys-
ics and rules of the virtual world and the model data. 
Software then renders a representation of the current 
state of the simulated scenario, which is then displayed to 
the user through a hardware device. 

This loop allows us to define and separate three types 
of fidelity in VR systems. We associate the realism of the 
input devices and interpretation software with interaction 
fidelity, the objective degree of exactness with which real-
world interactions are reproduced in an interactive sys-
tem. Similarly, we associate the verisimilitude of the dis-
played output with display fidelity, the objective degree of 
exactness with which real-world sensory stimuli are re-
produced by a display system (note that display fidelity 
has also been referred to as immersion—see [32] for more 
details). Lastly, we refer to the realism of the simulated 
scenario and the associated model data as scenario fidelity, 
which we define as the objective degree of exactness with 
which behaviors, rules, and object properties are repro-
duced in a simulation as compared to the real or intended 

experience. The levels of fidelity for the interaction, dis-
play, and scenario categories can, in most cases, be as-
sessed independently, and the combination of the three 
levels determines the overall realism of the simulation. 

2.3 The Effects of Visual Fidelity and Complexity 

Substantial research efforts have sought to evaluate the 
effects of fidelity in VR. Some examples of visual compo-
nents of display fidelity include stereoscopy (the display 
of different images for each eye, providing additional 
depth cues), display resolution, FOV, field of regard 
(FOR; the range of the VE that can be viewed with physi-
cal head and body rotation), and refresh rate. Evaluating 
different components of display fidelity independently 
enables the understanding of what aspects of fidelity 
cause a benefit for particular applications. For example, in 
a previous study, we evaluated the effects of head track-
ing, stereoscopy, and FOR for a spatial judgment task 
[30]. The study found that performance was significantly 
better with head tracking or a wide FOR, and an interac-
tion effect showed faster task completion when head 
tracking was coupled with stereoscopy. 

Existing research has also provided evidence about the 
effects of varying visual complexity and FOV on search 
tasks. Lessels and Ruddle [33] investigated the effects of 
FOV (unrestricted vs. 20°x16°) for a task involving navi-
gation and searching in the real world. The study found 
no significant differences for performance metrics, though 
FOV did influence the types of search strategies used by 
participants. A second experiment evaluated the same 
search task in a virtual environment with two levels of 
visual fidelity (i.e., realistic textures and flat shading) and 
two travel techniques. The results showed that a con-
strained forward-only travel technique significantly out-
performed unrestricted movement, and high-fidelity vis-
uals led to significantly faster performance. These results 
suggest that, for a visual search task in a cluttered envi-
ronment, it may be better to have lower interaction fideli-
ty and higher visual realism.  

Also related to visual search, a study by Pausch et al. 
[34] compared a tracked HMD to a non-tracked HMD 
with reduced FOV for a visual search task, with the re-
sults showing that participants more quickly determined 
the absence of targets with the head tracking and greater 
FOV. Looking at another search task, Lee et al. [35] used 
the MR simulation approach to study differences in visual 
realism for virtual and augmented reality. Their study 
found minimal effects of visual realism on task perfor-
mance, but the authors explain that this may have been a 
side effect of the high difficulty of the task. 

For a different study that involved finding data pat-
terns in statistical analysis tasks, Arns et al. [36] compared 
a desktop display with a four-screen CAVE-like display 
with stereo and higher FOV. Results showed faster per-
formance with the CAVE conditions. 

Other studies have considered the effects of display fi-
delity and visual complexity on tasks involving spatial 
perception. Bacim et al. [37] studied different combina-
tions of visual clutter and display fidelity for several spa-
tial inspection tasks. The study found that higher display 
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fidelity (in this case, the addition of head tracking, stere-
oscopy, and display screens) was beneficial for spatial 
judgments regardless of the level of visual clutter. In oth-
er work, Mania et al. [38] found that lower visual com-
plexity (i.e., flat-shading, as compared to radiosity render-
ing) led to better spatial awareness of objects in a 3D envi-
ronment. From other research, evidence indicates that 
visual realism is not a factor in the known problem of 
distance underestimation in virtual environments [39], 
but FOV was shown to significantly affect distance esti-
mation [40]. Studies have also shown that limiting FOV 
can reduce the speed and accuracy in maneuvering 
through a real-world obstacle course [41] and reduce the 
underestimation of perceived image motion [42].  

In an initial investigation with visual scanning tasks in 
virtual environments, Kopper et al. [43] evaluated the 
effects of horizontal FOV and amplified head rotations. 
The study found that a narrow horizontal FOV of 30 de-
grees led to significantly worse performance than higher 
levels of 52 and 102 degrees in a visual scanning task sim-
ilar to the one presented in this paper. The study did not 
find a significant difference in performance between the 
medium and high levels of FOV. This may have been due 
to the fact that vertical FOV was constant at a high level 
for all trials. In the study presented in this paper, the as-
pect ratio of the display was kept constant, such that both 
the vertical and horizontal FOV varied consistently. 

Overall, these studies suggest that limited FOV can 
have negative effects on visuospatial perception and 
search, providing reason to expect a similar effect when 
training for visual scanning. The effects of visual com-
plexity on training effectiveness are less clear. Reduced 
complexity may simplify training, allowing better task 
performance during training and helping trainees to fo-
cus on learning strategies. On the other hand, training in 
conditions less like the real conditions where the skills are 
needed might not adequately prepare trainees for the real 
tasks. Our study investigates the effects of FOV and visu-
al complexity together in VR training systems. 

3 METHOD 

The primary goal of our experiment was to study the ef-
fects of fidelity on training effectiveness of a VR training 
system for an ecologically valid visual scanning task. The 
experiment measures how different levels of the FOV and 
visual complexity of the scenario affect performance and 
training transfer for a visual scanning task. Our design 
follows the assumption that the purpose of the training is 
to prepare for a real-world scenario that would have high 
visual complexity and unrestricted FOV. To this end, par-
ticipants trained in a VR system with a given combination 
of the FOV and complexity levels. Then, for a controlled 
comparison, they performed the task in a high-fidelity VR 
scenario with high visual complexity and high FOV (i.e., 
as close to the assumed real-world conditions that the 
simulator could provide). 

3.1 Hypotheses and Approach 

We studied how the variables affect: 1) how well a given 

visual scanning strategy can be learned, and 2) target de-
tection rate on the scanning task. The overarching hy-
pothesis was that training in a system that is more similar 
to the intended simulated scenario would be more benefi-
cial for training effectiveness. On a more specific level, 
our experiment tested the following hypotheses: 

H1. Training with higher FOV will improve target detec-
tion in a later high-fidelity scenario more than train-
ing with a lower FOV. 

H2. Training with higher FOV will lead to better adher-
ence to the prescribed visual scanning strategy in a 
later high-fidelity scenario. 

H3. Higher FOV will lead to better target detection dur-
ing a scanning task. 

H4. Training with higher visual complexity will lead to 
better target detection in a later high-fidelity scenar-
io with high complexity. 

H5. Training with higher visual complexity will lead to 
better adherence to the prescribed visual scanning 
strategy in a later high-fidelity scenario with high 
complexity. 

H6. Higher visual complexity will lead to worse target 
detection during a scanning task. 

In addition, to help investigate whether performance 
in a simulator might predict performance in a real-world 
setting, we tested hypotheses about the correlation be-
tween training performance and performance in the fol-
lowing high-fidelity scenario. 

H7. Target detection performance in a training environ-
ment will be significantly correlated with perfor-
mance in a later high-fidelity scenario. 

H8. Target detection performance in a training environ-
ment will be significantly correlated with correct use 
of visual scanning strategy during a later high-
fidelity scenario. 

To study these effects in a controlled way, we em-
ployed the MR simulation approach [13], which we have 
used in many prior experiments [e.g., 30, 32, 44]. MR sim-
ulation is an evaluation methodology that studies mixed 
reality systems (including VR and augmented reality) 
using a single high-fidelity VR system to simulate sys-
tems and experimental conditions with equal or lower 
levels of fidelity. Systematically studying the effects of 
fidelity using MR simulation, rather than comparing dif-
ferent MR technologies, provides knowledge of the effects 
of individual design components. MR simulation studies 
have also been shown to produce valid results [44], alt-
hough there have been exceptions [45].  

In order to evaluate training effectiveness, our experi-
ment contained three phases. The instruction phase was 
used to familiarize participants with the visual scanning 
task and the environment, and to teach them a prescribed 
scanning strategy. In the training phase, participants per-
formed the visual scanning task multiple times in a par-
ticular condition (combination of FOV and level of visual 
complexity). In the assessment phase, participants per-
formed the visual scanning task multiple times in the 
highest-fidelity condition. 
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3.2 Apparatus 

An nVis SX1111 head-mounted display (HMD) was used 
for the simulation. This HMD features dual displays (one 
per eye), each with a resolution of 1280x1024 pixels and a 
50° binocular overlap. The total horizontal FOV of the 
HMD is 102°, and the total vertical FOV is 64°. The total 
weight of the HMD is 1.3 kg. Head-tracked viewing (ori-
entation only) was enabled with a wired Intersense IS-900 
tracker2 on the HMD.  

Participants used a wireless tracked IS-900 wand con-
troller in the dominant hand. The wand was tracked so 
that participants could point at objects in the environ-
ment. Pointing position was shown with a virtual cross-
hair, and participants used the wand’s trigger button to 
indicate targets in a search task. Participants could freely 
turn their heads and bodies. 

The software for the experiment was written using the 
Vizard Virtual Reality Toolkit by WorldViz3, with plugins 
to interface with the IS-900 and SX111 HMD. The applica-
tion ran on a Microsoft Windows XP workstation with an 
Intel Core2 660 CPU at 2.40GHz and 2GB of RAM. The 
frame rate was approximately 50 frames per second for all 
conditions.  

3.3 Experimental Design 

The experiment followed a 3x3 between-participants de-
sign with FOV and visual complexity as the independent 
variables. This led to nine possible conditions, and each 
participant performed the experiment in one condition. 

For the FOV variable, both horizontal and vertical FOV 
were varied together to maintain the aspect ratio of the 
maximum FOV supported by the SX111 HMD (102° x 
64°). FOV was varied in three levels: high (102° x 64°; 
120.41° diagonal), medium (52° x 32.63°; 80.44° diagonal), 
and low (30° x 18.82°; 35.81° diagonal). The medium and 
low FOV levels were chosen to simulate those of mid- 
and low-end commercial head-mounted displays. Figure 
1 shows how the three levels of FOV affected the view of 
the environment. To control the medium and low levels, 
the FOV was limited by virtual black blinders.  

Visual complexity was also varied in three levels: high, 
medium, and low. The level of complexity was controlled 
by changing several components, including model-based 
factors and rendering factors (distance fog and skybox). 
The highest level of complexity had distance-based fog, a 
cloudy and detailed skybox, additional objects, more-
detailed geometry, and more realistic texturing than the 
lowest level of complexity. The medium level of complex-
ity was a balance between the high and low levels. Figure 
2 shows the three levels of visual complexity. 

As dependent variables, we measured target detection 
and adherence to the scanning strategy. Target detection 
was measured for both training and assessment trials. 
Adherence to the scanning strategy was assessed by sub-
jective ratings of how closely participants’ visual scanning 
techniques followed the technique that they were trained 

to use (see section 3.8 for further explanation of strategy 
ratings). Because we were primarily interested in study-
ing the transfer of the scanning strategy, strategy was 
evaluated only during the assessment trials. 

 

Figure 1. Representation of the three levels of FOV. 

 

Figure 2. Screen shots of the three levels of visual complexity. The 

top image shows low realism, the middle shows the medium level, 

and the bottom image shows the highest level of complexity. 

———————————————— 
1 http://nvisinc.com/product.php?id=48 
2 http://www.intersense.com/pages/20/14 
3 http://www.worldviz.com/products/vizard 
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3.4 Visual Scanning Task 

We consulted with experts to choose a single-user train-
ing task that was relevant to real-world activities and that 
was a reasonable target for a training system. In particu-
lar, we focused on the military domain. We found that it 
is common for military personnel to drive through urban 
streets to visually search for signs of dangerous activity 
and threatening individuals. This critical task requires 
great attention to detail and focus. We therefore chose 
visually scanning an urban environment for threats as the 
training task for our study. 

We designed the task so that participants had to search 
virtual city streets (see Figure 3). During each trial each 
participant was moved automatically down a single street 
at a steady rate of 11.67 miles per hour (18.78 kilometers 
per hour). Aside from the motion of the viewer, the scene 
was static; the objects of the virtual scene were not ani-
mated. The virtual streets included simple models of 
people, and the targets for the search task were any peo-
ple holding firearms. Figure 4 shows examples of the tar-
get and non-target models. Due to the variety of colors of 
character models, buildings, and background objects, all 
character models had to be inspected in order to deter-
mine whether they were targets. 

 

 

Figure 3. Example of a one-sided street used in the experiment. This 
image was taken from an out-of-simulation render to provide a clear 
overview of a street model.  

  

Figure 4. Examples of virtual human models from the visual scan-
ning task. The left image shows non-targets. The image on the right 
shows target models holding firearms. 

Participants were told to scan the right side of the 
street to find the targets (that is, participants did not need 
to turn more than 90 degrees to the left or right). We in-
formed participants that there were between 12 and 18 
targets in each trial (in fact, each trial had exactly 15 tar-
gets, but we concealed this fact to motivate participants to 
scan throughout the entire trial). We instructed partici-
pants to scan the environment using a particular strategy 
(described below) and to indicate each target found by 
pressing a button on a hand-held controller. 

Our consultation with experts in the field revealed no 

standardized protocol for visual scanning in urban envi-
ronments. Therefore, we developed our own prescribed 
visual scanning strategy. Our strategy is not necessarily 
the best method for scanning urban environments, but we 
confirmed with military experts that it was reasonable 
and would likely work well. 

The basic concept of the visual scanning strategy is for 
users to use vertical head movements to scan building 
faces with sweeping up-and-down motions as they move 
down the street. Figure 5 shows the general scanning di-
rections with red arrows on simple, non-textured build-
ings. Because participants moved down the street from 
their right to their left side, the strategy’s default scanning 
pattern had participants scan front-facing surfaces from 
the right side to the left as they swept up and down. 

 

 

Figure 5. Simplified view of a street intersection annotated to 
demonstration the prescribed scanning order. Building faces are 
simplified as white boxes. The circled numbers at the bottom of the 
image show the direction of the automatic movement down the 
street. The number labels on the building faces show which face the 
user should be scanning when the user is at the corresponding cir-
cled number along the street.  

The strategy changed slightly when participants ap-
proached the intersecting (perpendicular) side streets or 
alleys. Figure 5 shows the order that building faces were 
to be scanned (the white boxes represent buildings). The 
image shows a view looking straight down an intersect-
ing side street. Note that movement along the main street 
would be from the right side to the left in the figure. Fig-
ure 2 (bottom) shows a similar view of an intersecting 
street but with a detailed street model. We trained partic-
ipants to scan intersections by beginning with the left-
most face of the intersecting street (i.e., the face labeled 
with 2 in Figure 5—the first face that would be visible 
when moving from the right to the left), then by looking 
down through the intersection and sweeping across the 
furthest surface from the main street (i.e., surface 3 in 
Figure 5). Finally, the intersection scan finished by sweep-
ing the remaining side (i.e., the right side, or surface 4 in 
Figure 5) of the intersecting street. This strategy affords a 
strong perspective of the intersection because it allows 
viewing of building faces as soon as they are visible. 

After participants had passed by the intersection or al-
ley, they resumed the right-to-left, vertical scanning pat-
tern of buildings along the main street. The strategy train-
ing also instructed participants to avoid looking too far 
ahead (down the street in the direction of movement) or 
too far behind them (where they came from). 

Since we did not use eye tracking but wanted to keep 
track of the visual scanning strategy, we instructed partic-
ipants to point the crosshair where they were looking, 
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meaning that the location of the crosshair would match 
the current point of gaze. While this pointing method 
does not provide a perfect measure of gaze, the method 
was appropriate for our evaluation training transfer. That 
is, we trained participants to use a specific scanning tech-
nique, and pointing with the crosshair was a component 
of that technique. Consequently, crosshair movement 
provided an effective indicator of strategy adherence. 

3.5 Environment 

In this study, participants were automatically moved 
straight down an urban street environment. Participants 
scanned only one side of the street (because the view was 
controlled with head tracking, participants could physi-
cally turn 180° to look at the opposite side of the street, 
which was empty). Each street was 800 feet (243.84 m) 
long and had exactly three side streets, although the loca-
tions of the side streets varied between models.  

Different street models were created so that 1) each 
participant could complete multiple task trials and 2) dif-
ferent models fit the three levels of visual complexity. A 
total of 65 street models were created. All participants 
saw 25 street models throughout the study, but the mod-
els that participants scanned during the instruction and 
training phases depended on the level of visual complexi-
ty in the given experimental condition. Since the assess-
ment was always done in the highest-fidelity condition, 
all participants scanned the same high- complexity street 
models in the assessment phase. Table 1 shows the 
breakdown of street models, and the following subsec-
tions describe the model designs for the instruction, train-
ing, and assessment phases of the experiment. 

Level of Visual 
Complexity 

Instruction 
Models 

Training 
Models 

Assessment 
Models 

Low 5 15 0 

Medium 5 15 0 

High 5 15 5 

Total 15 45 5 

Table 1. Breakdown of street models created with different levels of 
visual complexity. 

3.5.1 Instruction Models 

During the instruction phase, each participant went 
through five instruction trials corresponding to the as-
signed level of visual complexity (therefore, there were a 
total of 15 instruction models). All five of the street mod-
els for each condition featured the same geometry and 
street layout, but environmental features were added in-
crementally as the instruction progressed. Additional 
details about the progression through the instruction 
phase are described in section 3.6. 

3.5.2 Training Models 

During the training phase, each participant went through 
15 trials with street models corresponding to the assigned 
visual complexity condition (therefore, there were a total 
of 45 training models). Instead of creating 15 unique lay-
outs for each condition, we created three base layouts, 
with five variations of each having different building col-
or and texture. People, vehicles, plants, other elements, 
and 15 targets were distributed throughout each of the 

models for that condition. The targets were dispersed so 
there were always five at street level, five in windows or 
on balconies, and five on building rooftops. 

3.5.3 Assessment Models 

During the assessment phase, each participant went 
through five trials in the highest-fidelity condition. All 
participants used the same five high-complexity assess-
ment models. The assessment models featured unique 
street layouts but used the buildings from the training 
models. The textures and colors of the buildings were 
changed, and the locations of people, vehicles, plants, and 
other elements varied among models. The 15 targets were 
dispersed throughout the models according to the same 
structure as the training models—five targets at street 
level, five in windows or on balconies, and five on top of 
rooftops. 

3.5.4 Three Levels of Visual Complexity 

Since the level of visual complexity was varied between 
participants, we needed three separate groups of models 
for low, medium, and high levels. Figure 2 shows repre-
sentative screenshots of the different levels of complexity. 

We developed the high-complexity models first and 
then developed the medium- and low-complexity models 
by simplifying the high-complexity versions. Thus, each 
set of three models shared a similar street layout and 
building architecture, and the ordering of three levels of 
complexity was guaranteed for each set. Side streets were 
always in the same places, and the overall skyline (build-
ing height and layout) was comparable (but not identical) 
between the three models in each set. Variations between 
the models required modifications to the width/depth of 
some buildings and removal or merging of others. 

The people, vehicles, plants, and other elements were 
also systematically simplified from the initial high com-
plexity models. Details on the exact differences between 
the three levels of visual complexity are show in Table 2.  

Street Model 
Details 

Low  
Complexity 

Medium 
Complexity 

High  
Complexity 

Number of 
targets 

15 15 15 

Number of 
side streets 

3 3 3 

Street length 800 feet 800 feet 800 feet 
Number of 
alleys 

0 3-4 5-8 

Depth of 
side streets 
and alleys 

50 feet 75 feet 100 feet 

Building 
complexity 

Flat faced and 
at street level 
(no recessed 
buildings), flat 
textures, no 
balconies 

Combination of flat 
and complex tex-
tures, some re-
cessed buildings, 
some balconies 

All complex 
textures, many 
recessed/varied 
shaped build-
ings, many 
balconies 

Vehicles 10-14 15-24 20-29 
People (non-
targets) 

11-17 16-32 24-39 

Sky Solid blue Textured blue with 
some clouds 

Textured with 
many clouds 

Plants No plants Some plants Many plants 
Additional 
elements 

No street 
lights, power 
lines, benches, 
dumpsters, or 
patio furniture 

Some street lights, 
power lines, 
benches, dump-
sters, and patio 
furniture 

Many street 
lights, power 
lines, benches, 
dumpsters, and 
patio furniture 

Table 2. Differences between levels of visual complexity for models. 

3.6 Procedure 

The study was approved as required by the Institutional 
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Review Board at our university. Upon arrival, partici-
pants were given an informed consent form to read and 
sign. They then completed a background questionnaire to 
provide basic information about education and experi-
ence with technology. After that, they were given an Ishi-
hara Color Test [46] to detect color blindness. Color-blind 
participants were dismissed.  

Participants were then briefed on the environment and 
task. We showed them images (shown in Figure 4) to help 
explain which models represented targets (people with 
firearms) and which were non-targets. They were then 
shown a diagram of the scanning strategy they needed to 
use to sweep the environment (similar to Figure 5). Partic-
ipants were instructed to follow their gaze with the cross-
hair and to try to stick to the visual scanning strategy at 
all times.  

After participants acknowledged that they understood 
the task and scanning strategy, they were introduced to 
the HMD and guided through five instruction trials. 
These trials were displayed at the level of FOV and visual 
complexity for the assigned experimental condition. In 
the first instruction trial, buildings were textured with 
arrows representing the scanning strategy (see Figure 5), 
and an automatic moving spotlight guided the partici-
pant’s eyes to demonstrate the strategy. Additionally, the 
first trial was paused periodically to give the experiment-
er time to slowly explain the scanning strategy in action.  

The second trial still used the spotlight guide, but used 
the standard building textures instead of arrows. For the 
third trial, the spotlight scaffold was removed and addi-
tional objects were added (but no targets were present). 

In the fourth instruction environment, targets were 
added. The participant viewed an automatically moving 
ideal scanning trial, which stopped at each target to en-
sure the participant saw it. Participants practiced clicking 
the trigger to indicate when they identified a target. The 
fifth instruction model was the same as the fourth but 
with objects and targets in different locations. This trial 
allowed the participant to practice scanning and identify-
ing targets in the same conditions that would be used in 
the following training trials.  

After the last instruction trial, the experimenter imme-
diately scored target detection and strategy performances 
with the participant and provided feedback. Throughout 
the instruction series, the experimenter watched the par-
ticipant’s performance and provided critique to encour-
age participants to follow the strategy and align the 
crosshair with gaze direction. Participants were then giv-
en a five-minute break to conclude the instruction phase.  

After the break, participants performed 15 training tri-
als with the same combination of FOV and visual com-
plexity level as in the instruction phase. After each train-
ing trial, participants reviewed the trial and received per-
formance feedback to help them improve their adherence 
to the prescribed strategy. Participants were asked to 
watch a replay of the trial in the HMD. The experimenter 
reviewed the trial with the participant at the same time 
(using a separate monitor). The replays paused at each 
point where the trigger was clicked, and the experimenter 
would determine whether or not a target was correctly 

identified. The experimenter could manipulate the angle 
and zoom of the environment when necessary so that 
both experimenter and participant could determine 
whether the identified elements were in fact characters 
with firearms. The experimenter provided feedback on 
how well the participant was following the prescribed 
strategy and made recommendations for improvement (if 
necessary). At the end of the replay, the experimenter 
provided the participant with a performance summary of 
the number of targets found and the number missed. 

Participants had a five-minute break after the seventh 
training trial and another five-minute break after the final 
training trial. Finally, participants performed five assess-
ment trials in the condition with the highest FOV and 
visual complexity. During the assessment phase, replays 
were not reviewed and the experimenter did not provide 
feedback on the participant’s performance or strategy. 

Participant sessions took approximately 90 minutes. 

3.7 Participants 

We recruited a total of 51 participants, but six did not 
complete the entire experiment either because of simula-
tor sickness effects or dismissal due to color blindness. 
Thus, 45 participants completed the study (5 per each of 
the 9 conditions). All but one were students; 13 were 
graduate students, 30 were undergraduates, and one did 
not specify. Students were from a variety of disciplines—
the most common of which were computer science (13) 
and psychology (10). Participant age ranged from 18 to 37 
years, with a median age of 21. Seventeen participants 
were female. The majority (all but six) of participants re-
ported that they had experience with video game systems 
that used motion tracking. Thirty-two participants re-
ported playing first-person shooter video games. 

3.8 Assessment of Scanning Strategy 

To study the transfer of the prescribed scanning strategy 
to the assessment environment, we developed scoring 
criteria to measure how closely participants’ scanning 
techniques in the assessment trials followed the pre-
scribed technique, and independent raters scored each 
assessment trial’s adherence to the strategy. Trials were 
recorded from the participant’s point of view. Because 
participants were instructed to move the crosshair to fol-
low their gazes, the movement of the crosshair made it 
possible to observe their scanning patterns. 

Though the criteria for strategy analysis was well de-
fined, perception of how well participants adhered to the 
strategy was still somewhat subjective. Thus, scanning 
strategies were analyzed by a team of three raters who 
each reviewed all five assessment trials for all 45 partici-
pants. The entire list of 225 assessment trials was random-
ly ordered (with different orderings for each rater), and 
an anonymized identification code was assigned to each 
trial. Because all assessment trials used the high-
complexity models with the highest FOV, the raters had 
no information about which conditions the participants 
had trained with. One of the raters was a member of the 
research team who had not overseen the experimental 
trials and had no knowledge of the viewing order. The 
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other two raters were external to the research team. 

3.8.1 Rating Procedure 

Prior to scoring the assessment trials, all raters went 
through a training session to demonstrate the prescribed 
scanning strategy. First, to demonstrate the technique, the 
session included the explanation that all participants 
went through at the start of the experiment. Next, raters 
were instructed on how to score trials using trial playback 
software and paper scoring sheets. The playback software 
allowed raters to view the anonymized trials, pause play-
back, rewind playback, and choose between real-time and 
half-time playback speeds. Scoring sheets showed the 
building layouts for each of the five models used in the 
assessment trials, showing outlines of the building faces 
that were to be scanned. 

Strategies for each assessment trial were scored in two 
ways: component surface scoring and summary scoring. 
For component surface scoring, raters provided a strategy 
score (with values from 0 to 3) for each individual surface 
(i.e., face of a building). A score of 0 meant that the sur-
face had not been scanned at all, as judged by the position 
of the crosshair. A score of 1 indicated minimal scanning 
coverage of a surface, but not in adherence to the in-
structed strategy. A score of 2 meant a reasonable level of 
surface scanning while following the prescribed strategy, 
while a score of 3 indicated that the surface was scanned 
in perfect accordance to the instructed strategy. Total sur-
face scores could then be calculated for each street model 
by summing the scores for the individual faces. Thus, this 
method provided a metric for strategy adherence that 
took each individual scanning surface into account. 

The second method of scoring was summary scoring, 
which assigned a holistic rating of the overall quality of 
the strategy used over the entire trial (a single street mod-
el). Values for summary scores ranged from 1 to 10 (inclu-
sive) as a single number corresponding to how well the 
participant’s strategy followed the instructed strategy. 

The scoring sheets provided locations for raters to rec-
ord both summary scores and component surface scores. 
Once raters understood the scoring criteria, they viewed 
examples of fabricated trials that demonstrated different 
levels of adherence to the instructed strategy. These trials 
allowed for practice using the playback software and 
scoring the trials, and a member of the research team was 
present to answer any questions about the process or 
scoring. Following the practice, raters viewed and scored 
the participant assessment trials. To account for the pos-
sibility of raters adjusting their scoring sensitivities with 
more exposure to trials, the batch of all trials included 
five extra trials at the beginning of the set. These first tri-
als provided additional practice and gave raters a chance 
to establish a baseline for the subjective component of the 
strategy scoring. Raters then scored the 225 trials in their 
given random orders. 

3.8.2 Inter-rater Reliability 

Due to the subjective nature of the strategy scoring, we 
tested for inter-rater reliability to check consistency of 
ratings. We judged the individual surface and component 

ratings to be ordinal measures due to the possibility of 
subjective interpretations between score values. For our 
analysis, it was important that raters were consistent in 
the assignment of high or low scores (relative to each 
rater), but the raters did not have to agree in terms of ex-
act score values (i.e., we were not concerned with inter-
rater agreement). To this end, we used Spearman correla-
tions to judge inter-rater consistency (following the ra-
tionale provided by Stemler and Tsai [47]), and we tested 
for correlations among the three combinations of the three 
raters (as done by others, such as [48]) for all scored trials 
(n = 225). All correlations were significant with p < 0.001 
(Spearman’s ρ values ranged between 0.5 and 0.9). These 
results show high inter-rater reliability for both compo-
nent surface scoring and summary scoring.  

We also tested for intraclass correlation (ICC) among 
raters using two-way mixed averages measures for con-
sistency, following Shrout and Fleiss [49]. The test yielded 
ICC(3, 3) = 0.868, showing  strong reliability (note that 0.8 
is often used as a high standard for reliability; see [50] for 
further explanation). 

4 RESULTS 

We tested for the effects of FOV and visual complexity on 
both target detection and scanning strategy performance. 
We tested for effects due to FOV and visual separately, 
and we also tested for interactions between the two vari-
ables. Only significant effects are reported for ANOVA 
tests and posthoc analyses. For all statistical tests, n = 45. 

4.1 Target Detection Results 

Detection performance on the scanning task depended on 
the correct identification of targets and the number of 
false identifications. Note that target detection was as-
sessed separately from scanning strategy ratings. We pre-
sent the hit detection rate (the percentage of correct iden-
tifications out of the total number of targets) and error 
rate (the percentage of false-positive identifications of 
non-target characters out of the total number of non-
target characters). Detection was analyzed separately for 
training trials (with the experimental levels of FOV and 
visual complexity) and for the assessment trials (all hav-
ing the highest levels of FOV and complexity). 

Hit rate data were judged to be normally distributed, 
with the results of Shapiro-Wilk tests detecting no evi-
dence to the contrary, and Levene’s tests showing homo-
geneity of variance across conditions. Thus, two-way in-
dependent factorial ANOVA tests were used for statistical 
analyses of the effects of FOV and visual complexity on 
hit rate. In contrast, false-positive rates were positively 
skewed, so the data were transformed with the square 
root function to meet the assumptions of two-way factori-
al ANOVAs. 

4.1.1 Detection Performance in Training Phase 

The overall hit rate during the training phase had M = 
63.43 and SD = 17.86. As expected, overall target detection 
rate significantly improved as the training progressed 
(significant Pearson’s correlation yielded r = 0.56 and p = 
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0.016). 
Figure 6 shows training detection means and standard 

error broken down by FOV and visual complexity. The 
ANOVA found a significant effect of FOV on target detec-
tion in the training phase, with F(2, 36) = 10.58, p < 0.001, 
and ηp2 = 0.37. Bonferroni-corrected post-hoc tests 
showed high FOV was significantly better than low with 
p < 0.001 and Cohen’s d = 0.84, and medium was signifi-
cantly better than low with p < 0.01 and d = 0.62.  

The ANOVA for hit rate also found a significant effect 
of visual complexity, with F(2, 36) = 57.62, p < 0.0001, and 
ηp2 = 0.76. Bonferroni-corrected post-hoc tests showed 
significant differences between all levels of complexity 
with p < 0.001, with lower levels better than higher levels. 
Effect sizes were notably large, with Cohen’s d = 3.03 be-
tween low and high complexity, d = 1.56 between low 
and medium, and d = 1.99 between medium and high. 
Errors (i.e., false positives) were more common in condi-
tions with higher visual complexity due to larger num-
bers of non-targets (see Table 2), and the total error count 
with high complexity was greater than with or medium. 

To account for differents number of non-targets in 
conditions, we tested error rate (i.e., percentage of errors 
out of total non-targets). Error rates were low across all 
conditions (percentage was M = 1.16 with SD = 1.11). The 
ANOVA for error rates was significant for FOV with F(2, 
36) = 3.32, p = 0.047, and ηp2 = 0.16. The post-hoc Bonfer-
roni tests only found high FOV (M = 0.82, SD = 1.00) had 
significantly lower error rate than medium FOV (M = 
1.48, SD = 1.20) with p = 0.043 and d = 0.33. The ANOVA 
also detected a significant effect for complexity with F(2, 
36) = 4.00, p = 0.027, and ηp2 = 0.18. The post-hoc test 
found high complexity (M = 1.60, SD = 1.07) had signifi-
cantly worse error rate than the medium level (M =0.83, 
SD = 0.78) with p = 0.040 and d = 0.81. 

 

 

Figure 6. Mean target detection performance scores in training. Error 
bars show standard error.  

4.1.2 Detection Performance in Assessment Phase 

After training with the assigned combination of FOV and 
visual complexity, the assessment phase always had high 
FOV and high complexity for all participants. Overall hit 
detection rate was M = 40.71 and SD = 9.05 during assess-
ment. We tested for effects of different levels of FOV and 
visual complexity used in training on detection perfor-

mance during the assessment trials. The ANOVA for as-
sessment hit detection rate did not detect significant effects 
for FOV, visual complexity, or the interaction between the 
two. Similarly, no significant effects were found for error 
rate during assessment. Error rates were low (overall, M = 
1.16 and SD = 1.11). 

 These results suggest that the differences in experi-
mental training conditions did not, in fact, cause any dif-
ferences in target detection performance during the as-
sessment trials. Though the different levels of visual com-
plexity did significantly affect scanning strategies (see sec-
tion 4.2), these differences were not detectable by consider-
ing performance alone in the assessment trials. To further 
test this result, we conducted a one-tailed Pearson’s corre-
lation test between training performance and assessment 
performance scores. The test did not find a significant cor-
relation, yielding r = 0.200 and p = 0.094.  

4.2 Strategy Transfer 

To produce the final strategy metrics, we summed the 
scores for the three raters and calculated the percentages of 
the maximum possible scores. We analyzed the effects of 
FOV and visual complexity on both types of strategy 
scores using two-way independent factorial ANOVA tests. 
We note that the experimental design satisfied the assump-
tions for parametric testing. Both surface scores and sum-
mary scores met the conditions of normality and homoge-
neity of variance (by Shapiro-Wilk and Levene’s tests). 

Figure 7 shows strategy scores by FOV conditions. The 
ANOVAs failed to detect a significant main effect of FOV 
on strategy summary scores or surface scores. Also, the test 
did not detect a significant interaction between FOV and 
visual complexity. 

Figure 8 shows strategy scores broken down by level of 
visual complexity. Strategy adherence was better for par-
ticipants who trained with higher complexity. The ANO-
VA found a significant effect of visual complexity on sur-
face scores, with F(2, 36) = 6.076, p = 0.005, and ηp2 = 0.252. 
The Bonferroni-corrected post-hoc test only showed high 
complexity to be significantly better than low complexity 
(p = 0.005) with Cohen’s d = 1.22, showing a large effect. 
The ANOVA for strategy summary scores also yielded a 
significant main effect of complexity on strategy, with F(2, 
36) = 5.44, p = 0.009, and ηp2 = 0.232. Post-hoc Bonferroni t-
tests showed high complexity to have significantly better 
performance than low (p = 0.015, d = 1.07), and high was 
significantly better than medium (p = 0.030, d = 0.94). 

We also analyzed the effects of the independent varia-
bles on strategy surface scores and found similar results as 
with the summary scores.  

We also tested for correlations between target detection 
performance during training and strategy adherence dur-
ing assessment. Two-tailed Pearson correlations indicated 
significant negative correlations between training scores 
and strategies for both surface scores (r = -0.414 and p = 
0.005) and summary scores (r = -0.457 and p = 0.002). Par-
ticipants who found more targets during training demon-
strated worse strategies in the assessment phase. 
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Figure 7. Mean strategy scores from assessment trials by varying 
levels of training FOV. Error bars show standard error. 

 

Figure 8. Mean strategy scores from assessment trials by level of 
visual complexity in training. Error bars show standard error. 

Additionally, we found that strategy ratings failed to 
predict target detection in the assessment. A one-tailed 
Pearson’s correlation test between strategy surface scores 
and assessment performance scores did not find a signifi-
cant correlation, with r = 0.057 and p = 0.356. Likewise, 
assessment performance was not significantly correlated 
with strategy summary scores. 

To account for the influence of FOV and complexity, we 
also compared both types of strategy scores to ranked de-
tection results (i.e., ranked by performance within condi-
tion) with Spearman correlations. Again, there was no evi-
dence of correlation. 

5 DISCUSSION 

The experiment provided interesting insight into the ef-
fects of FOV and visual complexity on VR training system 
effectiveness and resulted in some unexpected findings. 

5.1 Effects of FOV 

The level of FOV used during training did not have a sig-
nificant effect on either assessment target detection or as-
sessment strategy usage, so we did not find evidence to 
support H1 or H2. We did find a highly significant effect of 
FOV on detection performance during training, with high-
er FOVs leading to better training trial detection, which 
supports H3.  

Taken together, these results show that while FOV can 
have a measurable effect on task performance, the size of 
the FOV during training does not appear to affect strategy 
learning or training transfer. We believe that FOV affected 
detection performance during training because a wider 
FOV allowed users to look ahead, anticipate upcoming 

parts of the environment, and plan the visual scanning 
pattern. It may also be that the wider FOV allowed users to 
notice targets in the periphery and modify the visual scan-
ning pattern to catch them. 

It is not clear from our results why the FOV of the train-
ing system had no measurable effect on training transfer. 
Participants who trained with different FOV levels had 
approximately the same detection performance and strate-
gy transfer scores during the assessment. It is possible that 
FOV had multiple competing effects. For example, training 
with a narrow FOV may have helped users focus on the 
task and the correct strategy, but the much wider view in 
the assessment environment may have distracted the users, 
negating these gains. Alternatively, it could be that training 
with a wide FOV made the training task easier, such that 
users did not focus enough mental effort on the training, 
resulting in lower-than-expected scores during assessment. 
Finally, it may be that our assessment trials were too diffi-
cult, washing out any effects of training (more on this be-
low). Future work is needed to examine some of these hy-
potheses. 

5.2 Effects of Visual Complexity 

We did not find a significant effect of visual complexity on 
target detection performance in the assessment phase of 
the experiment, so H4 was not supported. However, the 
analysis did find a significant effect of complexity on both 
strategy transfer and training task performance, supporting 
hypotheses H5 and H6, respectively. 

The ultimate goal of any task-training system is to im-
prove real-world task performance, so we might be tempt-
ed to take the lack of support for H4 (effect of visual com-
plexity on assessment target detection) as an indication 
that the level of visual complexity in the training system is 
not critical for training transfer. However, we see a more 
nuanced picture when combining the results for H5 and 
H6 (effects of visual complexity on strategy adherence and 
on detection performance in training, respectively). During 
the training trials, participants scored much higher with 
the lower levels of complexity; the simpler the environ-
ment was, the easier it was to pick out the targets. In the 
assessment trials, on the other hand, participants who 
trained with the low and medium levels of complexity 
demonstrated the worst use of the prescribed visual scan-
ning strategy. We speculate that these participants were 
not forced to work hard in the training phase—they could 
score well without following the prescribed strategy, so 
they did not learn the strategy very well despite constant 
reinforcement of the strategy by the experimenter. Pure 
performance is not the only factor of importance to training 
system designers; learning of correct procedures, strategies, 
and skills (which are assumed to be critical for good real-
world task performance) is also essential. 

Thus, our results indicate that training systems for visu-
al scanning and similar tasks should, when possible, use a 
level of visual complexity that is as close to the real envi-
ronment as possible in order to ensure good transfer. 
Strengthening this result is the fact that the posthoc analy-
sis of strategy results did not show a significant benefit of 
the moderate level of complexity over the low level, which 
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further demonstrates the importance of matching the visu-
al complexity of the training to that of the actual scenario. 
In this study, a moderate increase of complexity was not 
sufficient for significantly improving transfer outcomes. 

However, visual complexity in our study was deter-
mined by an amalgam of factors (e.g., textures, fog, num-
ber of objects, geometric complexity). It is probable that 
different tasks are affected differently by various factors, 
which is why it is important to investigate the effects and 
differences under varying circumstances. For the type of 
visual scanning task used in this study, it could be interest-
ing to further separate elements of visual complex for a 
deeper understanding of which elements might be most 
important for the design of training systems. 

5.3 Correlations between Training and Assessment 
Task Performances 

A common assumption in training system design is that 
training system task performance can be used to predict 
real-world performance. That is, if a trainee performs well 
in the training system after a certain amount of training, it 
is assumed that the trainee is well trained and will per-
form well on the corresponding real-world task. We test-
ed these assumptions about our VR training conditions 
by considering the high-fidelity assessment phase to serve 
as the role of the “real” scenario that participants were 
training for. We correlated training system performance 
with assessment performance. Surprisingly, we found no 
significant correlation. Hence, H7 was not supported.  

Combined with the results showing no effects of FOV 
or visual complexity on assessment detection perfor-
mance, this suggests that other factors besides the train-
ing condition determined participants’ performance in 
the assessment trials. We might speculate that only the 
FOV and visual complexity of the assessment condition 
(both at the highest level) determined performance, rather 
than the FOV and complexity of the training environ-
ment. This would be consistent with our finding that the 
training condition had significant effects on training per-
formance.  

We note that the level of performance scores in the as-
sessment were in the 35 to 40 percent range, which is 
quite a bit lower than the training performance scores, 
which varied between 42 and 80 percent depending on 
the condition. It may be that it was simply difficult to per-
form the visual scanning task in the high visual complexi-
ty condition and that this dominated the effects of train-
ing condition during the assessment trials. Based on the 
significant performance improvement over the progres-
sion of training trials, we do not attribute the worse as-
sessment performance to fatigue. 

In the end, this study does not allow us to draw any 
conclusions about assessment performance (which was 
our proxy for real-world task performance) because there 
are no significant effects of the independent variables on 
assessment detection performance and no correlations of 
other measures with assessment detection performance.  

On the other hand, we designed our VR training sys-
tem to teach a specific visual scanning strategy and found 
that visual complexity had a significant effect on strategy 

transfer. But we also found that detection performance 
during the training phase was inversely correlated with 
strategy use during assessment, showing that training 
performance was not enough to judge mastery of the 
scanning strategy. Thus, we reject H8. To explain the ob-
served result, we hypothesize that if participants per-
formed well during training without using the prescribed 
strategy, then they lacked the incentive to revise the cho-
sen strategy. This result demonstrates that training per-
formance is not always a sufficient indicator of technique. 
If learning a prescribed strategy (or procedure or skill) is 
the goal of a training exercise, performance may not be an 
appropriate indicator of effectiveness. 

Additionally, the fact that we did not detect a correla-
tion between strategy adherence and target detection 
suggests the possibility that the prescribed strategy was 
not optimal for the scanning task. This possibility should 
have little bearing on the training transfer results, as the 
important outcome was that participants were following 
the instructed method. But poor appropriateness of the 
scanning strategy for the task could explain deviation 
from the strategy. 

We still think that the sweeping strategy is generally 
appropriate for the task; the method promoted thorough 
and consistent scanning of building faces as soon as they 
were available. However, it is possible that detection per-
formance may have sometimes benefitted from “greedy” 
deviations from the instructed strategy. For example, we 
sometimes observed participants departing from the in-
structed scanning pattern to inspect character models as 
soon as they were noticed, rather than at the expected 
point in the sweeping pattern. Despite receiving feedback 
in the instruction phase about prioritizing strategy adher-
ence, participants may have opted to deviate from the 
prescribed strategy if they felt they were more successful 
with other methods. This could be an alternative explana-
tion for the lack of correlation between detection perfor-
mance and strategy. 

6 CONCLUSIONS AND FUTURE WORK 

VR training is broadly applicable to a wide variety of 
domains, so it is important to understand the effects of 
various VR system characteristics on training effective-
ness. In particular, we focus on the effects of fidelity, a 
fundamental property impacting many design decisions 
for VR systems. The experiment reported in this paper 
studied the impact of FOV and visual complexity in the 
context of a visual scanning task. Both factors influenced 
task performance during training, and visual complexity 
of the training condition significantly affected partici-
pants’ learning of the prescribed scanning strategy. 

This research contributes a better understanding of the 
influence of display fidelity and visual realism in VR 
training system design. In particular, we conclude that 
designers of VR training systems should use a high level 
of visual realism for tasks that involve visual scanning or 
visual search in visually complex environments. Addi-
tionally, we contribute evidence that the direct measure-
ment of learning is a better measure of training effective-
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ness than raw task performance. 
Our future work will continue to explore how the fi-

delity of VR training systems impacts training effective-
ness. We have identified several open questions about 
FOV and visual complexity above. We will also examine 
other components of fidelity for visual scanning tasks. For 
example, an upcoming experiment will investigate 
whether amplifying the user’s head rotations in a training 
system leads to disorientation and negative training 
transfer. Finally, we will look at other variants of visual 
search tasks and at other categories of training tasks. 
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