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ABSTRACT

Analysis of streaming data often involves both real-time monitoring
of incoming data as well as contextual awareness of data history. A
focus-plus-context approach can support both goals, with variable
levels of visual aggregation making it possible to provide a high
level of detail for incoming and recent data while providing contex-
tual information about recent history. Visual aggregation reduces
data resolution in order to show the context of data over large
periods of time within a limited display space. With a controlled
experiment, we evaluated the effectiveness of different types of
aggregation for four types of stream-analysis tasks. Overall, the
results show that a focus-plus-context design has little negative
impact on the ability to successfully monitor and analyze stream-
ing data, making it possible to show longer periods of time than
other approaches. However, visual aggregation can be problematic
for trend recognition tasks. This research demonstrates how the
effectiveness of the visualization depends on the specifics of the
analysis task.
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1 INTRODUCTION

Across a wide variety of domains, it is becoming possible—and nec-
essary—to monitor and respond to events in real-time. Real-time
fraud detection of financial accounts, intrusion detection in cyber
security, monitoring of critical sensors within critical infrastruc-
ture, and monitoring social media for intelligence analysis are just
a few examples of domains that require the timely analysis of com-
plex data. Streaming solutions are becoming popular for processing
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high-volume, high-velocity data (e.g., [20, 26, 29]). Streaming ana-
lytics are attractive to reduce latency in identifying insights while
reducing the volume of data that needs to be stored.

In some cases, reacting to events in streaming data can be a
completely autonomous process, but often human intervention is
desirable or required [11]. For example, automated response to
streaming data can lead to undesirable effects; in cyber security, for
example, automated response can lead to denial-of-service attacks
that can effectively shut down a server. Some actions are simply
too important to take without some kind of human supervision,
such as decisions to shut down energy systems or to divert defense
operations. Other times, uncertainty exists in the data or analysis
that makes automated response infeasible, such as automatically
denying a customer’s credit card payment because of an anomalous,
but legitimate, charge. In such cases, humans need tools to rapidly
make sense of the events in the data streams.

Visualization has been shown to be effective for supporting
analysis of time-based data (e.g., [10, 15]), but streaming data in-
troduces unique challenges for visualization and interaction [16].
Effective real-time visualization and analysis of streaming data re-
quires methods that allow analysts to examine dynamic data sets
and monitor new data. Such methods should emphasize recent
events while providing contextual awareness over longer time pe-
riods. One approach for supporting such contextual awareness is
visual aggregation, which reduces data resolution in order to be
able to show large periods of time within a limited display space. A
focus-plus-context approach [4] varies levels of aggregation: more
recent data can be shown in higher detail (i.e., for focus) while
older data can be aggregated (i.e., for context). Aggregation allows
visualizations to scale to cover large volumes of data over extended
periods of time, but empirical evidence of how perceptual design
options affect human interpretation of data is lacking.

This paper presents a controlled experiment testing how differ-
ent visual aggregation designs can influence stream analysis for
different visual analysis tasks. The study serves as a foundation
for visualization research of the perception and understanding of
streaming data, and it demonstrates how the effectiveness of focus-
plus-context methods for working with streaming data can depend
on specifics of the analysis task.

2 RELATED WORK

Many researchers have studied visualizations for temporal data (e.g.,
[1,3, 14, 27]). As a type of temporal data, streaming data is dynamic
and continually added over time. For some types of time-based
data analysis, small-multiple visualizations that show temporal
change through a series of “snapshots” are sometimes preferred
over animated designs (e.g., [22]), but which approach is best may
depend on whether the goal is to monitor for changes or to compare
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specific temporal snapshots [24]. Some studies show evidence that
animated visualizations are superior for detecting temporal changes
and patterns [12, 24, 25]. In the case of streaming data, analysis
often includes monitoring the continually updating the state of
the data [11, 21]. Thus, for stream visualization, animated designs
prioritize updating incoming data as quickly as possible when it
arrives and helping to show changes as they happen.

Relevant to understanding animated designs, Cottam et al. [8]
presented a taxonomy (using Bertin’s spatial and retinal factors;
see [5]) to describe different ways that animations and data pre-
sentations can be designed in dynamic visualizations. Specific to
stream analysis, analysts and operators aim to respond to the most
recent events quickly while preserving awareness of past events.
Operators maintain this situation awareness [9] in order to put new
events into context and to look for longer-term patterns.

To this end, many stream visualizations include methods for
temporal aggregation and try to address the need to support both
monitoring of incoming data as well as contextualizing a history of
older data [21]. Using computing performance data as an example,
Hao et al. [13] presented a design that balanced views from two
periods of time. The design also provided data views with variable
temporal resolutions to support temporal aggregation. Another tool,
StreamSqueeze, presents events in a color-coded list with screen
space prioritized by recency [18]. The list view shows more details
for incoming events, and older events get reduced levels of detail.

Other examples are common for network monitoring and the
cyber security domain (e.g., [6, 19]). LiveRAC [19] and CLIQUE (6]
both use small-multiple views of line charts to show current and
past network information, and both provide aggregate views by
compressing chart sizes and using color coding to indicate den-
sity of combined items. Traffic Circle uses a circular interface that
allows temporal aggregation of network flow data by expanding
or zooming into periods of time [6]. Such examples demonstrate
the common design approach of prioritizing detail in more recent
streaming data while reducing granularity for older events through
visual or semantic compression. While this basic design is employed
in many applications (e.g., [6, 18, 19]), empirical knowledge of how
such approaches impact fundamental stream analysis tasks is lack-
ing, thus motivating our experiment.

3 EXPERIMENT

We conducted a controlled experiment to empirically study the
effectiveness and limitations of focus-plus-context designs using
visual and temporal aggregation for different stream-analysis tasks.
While temporal aggregation and focus-plus-context designs offer
the advantage of scalability with regard to the amount of time
shown within limited screen space, it raises questions about how
increased levels of aggregation affect performance on common
analysis and interpretation tasks.

To facilitate an empirical study of a generalized version of the
temporal aggregation approach used by many stream visualizations,
the study tests the aggregation concept applied to a scatterplot
representation. Scatterplots are commonly used and easily under-
stood, and using one axis to represent time makes a straightforward
design for temporal visualization. Visually encoding data values
as positions provide high accuracy for graphical perception [7],
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and having an individual mark for each data point works well for
displaying each new data point as discrete events arriving in a
streaming scenario.

Because we wanted to explore how performance might be en-
hanced or constrained by display size in streaming tasks, we in-
clude two differently-sized scatterplots for baseline comparisons.
We also tested a scatterplot with a power-scale on the horizontal
axis. Finally, we included a hybrid heatmap/scatterplot design as
an example of a focus-plus-context plot in alignment with existing
stream visualizations (e.g., [6, 18, 19]).

3.1 Visualization Conditions

For the primary independent variable of our experiment, we com-
pared four visualization designs (shown in Figure 1) for visual anal-
ysis of streaming data. The designs present different approaches
to visual aggregation of scatterplot data. Each design in Figure 1
shows the same data at the same starting time. All designs were
animated so that data points moved from the right to the left in ac-
cordance with the passage of time, and the horizontal axis updated
accordingly. None of the visualization types in the experiment were
interactive.

The short linear-scale scatterplot design (Figure 1A) was an ani-
mated version of a standard linear scatterplot. This representation
provides a highly detailed view of each data point but has limited
scalability due to the one-to-one mapping between time and lo-
cation. With a linear-scale x-axis, the length of the visualization
would have to grow linearly to match the length of the period of
time. The size of the short linear-scale scatterplot was restricted to
show 40 seconds of data at once, which was chosen as a baseline to
restrict the width to match that of other conditions with an equal
amount of screen space.

The long linear-scale scatterplot (Figure 1B) followed the same
design as the short linear-scale scatterplot but was long enough to
show 85 seconds of data. As the only visualization type that was
wider than the three others, the long linear-scale scatterplot was
included to demonstrate how much screen space would be needed
to cover the same amount of time as the types with aggregation
with a linear scale.

The power-scale scatterplot (Figure 1C) was similar to the design
of the linear scatterplots, but the scale for the horizontal axis fol-
lowed a power scale instead of a linear scale. Using a power scale
allows a larger period of time to be shown without requiring a linear
increase in chart width. This type of representation could support a
broader temporal view at the cost of reduced spatial resolution for
older data points. This design supports of one the primary goals
for visualizing streaming data: emphasizing the most recent values
and changes. The size of the power-scale scatterplot was the same
width as the short scatterplot, and it showed the same time period
(85 seconds) as the long scatterplot.

The focus-plus-context plot (Figure 1D) uses a scatterplot of in-
dividual events for the most recent data, and older data are aggre-
gated into a heatmap to increase scalability. For the experiment, the
heatmap’s bins used glyph size to encode the item count in each
bin. The scale of the horizontal axis is non-linear in the heatmap,
so events that are oldest are aggregated the most. From right to
left, the each column of bins covers a period of 5, 10, 20, and 40
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Figure 1: Subfigures A-D show the four visualization types tested: (A) short linear scatterplot, (B) long linear scale scatterplot,
(C) power scale scatterplot, and (D) focus-plus-context plot. Image E shows an xample of an average estimation task with a

small linear-scale scatterplot.

seconds, respectively. The practical benefit of this design is that
aggregating older data into a heatmap allows the visualization to
show longer periods of time. Because aggregation occurs in both
the horizontal and vertical dimensions, spatial resolution of older
data is lost; however, by adjusting the value ranges of the bins, it
could be possible for the bins to provide a simple, easy-to-interpret
overview of older events. For controlled comparison with the other
visualization types in this study, the size of the focus-plus-context
implementation was kept the same as the short linear-scale scatter-
plot and power-scale scatterplot. This visualization also showed 85
seconds—the same amount of time as the power-scale scatterplot
and the long linear-scale scatterplot.

3.2 Analysis Tasks

Different types of visualization designs can be better suited for
different types of analysis tasks. Therefore, we also studied different
types of analysis tasks in our experiment. We rely on a subset
of common analysis tasks and user objectives characterized by
others for visual data analysis [2, 23, 28] and temporal data analysis
[1, 17]. The study included four distinct types of tasks: average
estimation, comparison of averages, outlier comparison, and trend
recognition. In addition, two versions of each type of analysis task
were created—short time scope and long time scope versions—with
the difference being the length of time analyzed in the task.

The average estimation task asked to estimate the average value
of data in a highlighted region of the visualization (see Figure ??).
Participants could select the closest integer value from a dropdown
list where values range from 0-100, the minimum and maximum
values of the vertical axis. The highlighted period was 5 seconds in
the short time scope version of this task and 15 seconds in the long
time scope version.

In the comparison of averages task, the plot showed five high-
lighted periods of time. Participants had to pick which of the later
four periods has an average value that is closest to that of the first
highlighted period. In the short time scope version of the comparison
of averages task, the highlighted periods were each five seconds
long, and the periods were separated by five seconds. In the long
time scope version, the highlighted periods were also five seconds
long, but they were separated by 15 seconds.

In the outlier comparison task, the plot showed four highlighted
periods. The participant had to choose the highlighted period with
the greatest outlier from four options. The highlighted periods were
each five seconds long for both the short time scope and long time
scope versions of the outlier comparison task. The difference was
that the highlighted periods were separated by five seconds for the
short time scope and 15 seconds for the long time scope version.

The purpose of the trend recognition task was to interpret the
general shape or trend of the data stream. This task presented four
multiple choice icons that showed general shape and fluctuations of
data values over the entire period of time for the trial. Participants
were asked to select the icon with the shape that most closely
matches the data. For this task, the short time scope version covered
50 seconds, while the long time scope version covered 100 seconds.

3.3 Experimental Design

The experiment followed a 4x4x2 mixed design. The independent
variables were visualization type, analysis task type, and time scope.
The four visualization types were varied between subjects, while
the four analysis task types and the two time scopes were both
controlled within subjects. The order in which the analysis task
types were presented was determined by a Latin square design with
four orderings possible. Trials used synthesized data sets comprised
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Average Comparison Outlier Trend

$3) 5.80 5.75 0.09  9.08

P 0.12 0.12 0.99 *0.03
Table 1: Kruskal-Wallis omnibus tests for each task type on
the effects of visualization type on correct responses.

of x and y pairs. New data was streamed at a constant rate of one
new event every 200 milliseconds.

The dependent variable was task correctness, which as binary for
the multiple-choice responses. Since the average estimation tasks
involved a numerical answer, the trial was judged to be correct if
the selected answer was within five units from the correct answer.

The experiment was conducted as an online study taking ap-
proximately 20 minutes. For each condition, participants were first
shown instructions and a practice trial before the trials for the four
main analysis tasks. Eighty-one participants completed the entire
study procedure, and data from 76 participants (21 female) were
included in the results analysis after quality and outlier filtering.

4 RESULTS

To provide an approximate analysis of the effects of visualization
type on task performance, we summed the number of correct re-
sponses for each task type to derive a numerical measure of accu-
racy. We performed a Kruskal-Wallis rank sum test for each task
type to task for effect of visualization type on correct responses.
Test outputs are shown in Table 1. The only significant main effect
was for the trend recognition task; the test yielded y%(3) = 9.08
and p = 0.03. A post-hoc Dunn test with Holm-Sidak correction
for the trend recognition task found significant pairwise differences
between the short linear-scale scatterplot and the focus-plus-context
plot (p = 0.02) and between the power-scale scatterplot and the bin-
focus-plus-context plot (p = 0.04). In addition, the difference was
near significant between the long linear-scale scatterplot and the
focus-plus-context plot (p = 0.08). Overall, these results indicate
that performance was significantly negatively influenced for the
trend recognition task with the focus-plus-context plot. No other
differences were detected for the other tasks.

To better understand effects due to differences among the task
types, we also used Pearson’s chi-square tests to detect differences
in the frequency of correct responses across visualizations types
for each trial (i.e., each combination of task type and time scope).
The test for the long time scope version of the trend recognition
task detected a significant effect with y%(3) = 9.93 and p = 0.02.
Inspection of frequencies by visualization types reveals that the
frequency of correct responses was clearly lower for the focus-plus-
context condition (0.53) than for the other visualizations for this
task (ranging 0.79 to 0.89).

5 DISCUSSION AND CONCLUSION

Temporal aggregation is appealing due to its ability to provide
contextual history over extended periods of time without linearly
increasing the amount of screen space. When supporting streaming
data, greater aggregation can provide analysts with a longer tem-
poral window for more context to help interpret the most recent
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events. The focus-plus-context plot provided the highest level of vi-
sual aggregation of the visualization alternatives we tested. Results
indicate that the only significant penalty of the increased aggrega-
tion in the focus-plus-context plot was for the trend recognition
task with the long time scope.

The lack of detected differences for the other task types (ie.,
average estimation, average comparison, and outlier comparison)
suggests that the visualization types were similarly effective for
determining approximate values and comparing values in different
periods of time. The analysis does provide evidence that high levels
of aggregation can make it difficult to recognize temporal patterns
in data. The results are promising for the use of the focus-plus-
context and power-scale designs due to their use of aggregation to
show contextual information in a relatively small visual area. An
intuitive interpretation of the response accuracy results is that no
analysis penalties were detected for the power-scale design, and
performance with the focus-plus-context design only suffered for
the long time-scope version of the trend recognition task.

The focus-plus-context scatterplot can emphasize attention to
recent events while also providing context to older events. In some
domains, such as cyber security, this contextual awareness is crucial
to interpreting the meaning of the visualization, and more context
is typically better. The poor performance of participants in trend
detection tasks over longer periods of time may be mitigated by
complementary visualizations. The ability to scale the focus-plus-
context plot to larger time spans than non-aggregated approaches
and the good performance by participants in nearly all of the task
types is promising. In future research, we will investigate alternative
visual aggregation approaches that enable visual scalability and
emphasize recent events while preserving context.

With data collection at an all time high, an increasing effort will
be placed on both static and real-time data analysis. This trend
is currently visible in research, government, and industry across
a variety of domains. Though most data analysis tasks involve
systems and algorithms to collect, aggregate, and filter data, all of
this work is done to support human efforts and curiosity about data;
thus, research like our study of stream visualization is important
for providing guidelines of the best way to present data for human
audiences and analysts.
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