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ABSTRACT

In many types of dynamic interactive visualizations, it is often de-
sired to interact with moving objects. Stopping moving objects can
make selection easier, but pausing animated content can disrupt
perception and understanding of the visualization. To address such
problems, we explore selection techniques that only pause a subset
of all moving targets in the visualization. We present various designs
for controlling pause regions based on cursor trajectory or cursor
position. We then report a dual-task experiment that evaluates how
different techniques affect both target selection performance and
contextual awareness of the visualization. Our findings indicate
that all pause techniques significantly improved selection perfor-
mance as compared to the baseline method without pause, but the
results also show that pausing the entire visualization can interfere
with contextual awareness. However, the problem with reduced
contextual awareness was not observed with our new techniques
that only pause a limited region of the visualization. Thus, our
research provides evidence that region-limited pause techniques
can retain the advantages of selection in dynamic visualizations
without imposing a negative effect on contextual awareness.
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1 INTRODUCTION

In many types of interactive visualizations, it is often necessary to
select dynamic or moving objects. For example, interactive maps
often include animated elements representing moving people, vehi-
cles, or weather systems. Other examples of dynamic visualizations
include those focusing on streaming data—data that is continuously
updated from sensors or systems as soon as they are available (e.g.,
[13, 16, 19, 32]). Different types of stream visualizations are com-
monly used for financial data (e.g., [8, 40]), social media updates
(e.g., [11, 42]), or cyber security data (e.g., [32, 43]). In all of these
areas, animation is a common method for portraying the passage
of time [1, 27, 36], and selecting moving objects is often necessary
in order to inspect additional properties of items.

While many researchers have designed interaction techniques to
make selection easier in static scenarios (e.g., [4, 9, 18]), selection of
moving objects involves different challenges. One straightforward
approach for improving selection with moving targets is to pause
all motion before selection [22, 24]. While effective for improving
target selection, pausing animated content can disrupt the visu-
alization and the ability of the human to continually monitor it.
In the case of streaming data visualizations, for instance, one of
the primary purposes is to support monitoring incoming data as
it arrives and watching for patterns in real time [6, 20, 29]. If the
goal is to monitor the data to interpret and respond as quickly as
possible, pausing could cause users to miss or delay inspection of
new data coming in, or it could cause users to have to fast-forward
to “catch up” to real-time arriving data without missing anything.

Though researchers have designed selection techniques for mov-
ing targets, prior work has not tested how such techniques influence
perception and awareness of dynamic visualizations during selec-
tion. Rather than focusing solely on selection performance, our
study also considers awareness needs relevant to many visual anal-
ysis and monitoring scenarios. We studied a contextual awareness
task with a simple animated visualization chosen for its general-
izability to existing tools designed to support analysis of dynamic
and streaming data (e.g., 3, 21, 36]).

To address possible disruption from pausing techniques in dy-
namic visualizations, we also investigated alternative methods that
stop a subset of possible targets instead of stopping all targets.
By limiting the effects of pausing to only the region the user is
interested in, such techniques facilitate easier selection while re-
ducing the disruption to the visualization. Based on this concept,
we implemented several variations of local pause techniques, and
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we designed a study to assess how these techniques influence the
ability to maintain awareness of visual state during selection.

Our experiment evaluates both selection performance and the
ability to monitor the context of a visualization. We present a dual-
task study that required participants to select targets and also re-
member objects on the screen. The study of different pause tech-
niques also tests different visual cues that show the relationship
between paused targets and their uninterrupted animated posi-
tions in the visualizations. With these factors, our study provides
novel data about the trade-offs between selection performance and
contextual awareness of dynamic visualizations.

2 RELATED WORK

Our work builds on previous work on selection techniques and
visualizations for streaming and time-oriented data.

2.1 Stream Visualization and Analysis

Our study of the impact of selection techniques on contextual aware-
ness of dynamic visualization was motivated by information vi-
sualization for streaming and time-series data. The visualization
community has designed and evaluated a variety of visual represen-
tations for temporal data [1], but the preferred approach depends
on the specifics of the data and analysis goals (e.g., [37]). Animation
is a common method for visualizing changes over time [27], but it is
not always the best approach for all forms of temporal analysis. For
example, prior studies have found evidence that small-multiples
representations are better than animation for comparing periods
of time [35], while animation can offer advantages for detecting
patterns and change [3, 17, 37, 39].

Our work is motivated by visualization scenarios involving
streaming data where the task involves real-time monitoring data
that is continually arriving and updating. When visualizing data
in a dynamic, real-time fashion, it is important to simplify the pre-
sentation for the user. Fischer et al. [13] identified four criteria for
the design and evaluation of real-time data visualizations: interac-
tive exploration, updatability in real-time, locality of changes, and
preservation of temporal context. Interactive exploration is required
to explore data streams, which can be challenging when new data
is added during exploration. The goal of updatability is to enable
timely and accurate updates. By locality of changes, the arrival of
new data or changes to existing data should not distract the user
from exploration. Lastly, preservation of temporal context is impor-
tant because the visualization should maintain its historical and
current views. Based on these criteria, selection of moving targets
should, ideally, avoid interfering with exploration and inspection
of elements during real-time data analysis.

Further, visualizations designed for analysis of streaming data
are often designed to support two modes of analysis: real-time
monitoring of incoming data, and analysis of existing data for
context (e.g., [16, 20, 29, 32, 34]). To take advantage of real-time
updates, it is necessary to maintain situational awareness of the
trends and the current state of the system in order to respond
quickly and make appropriate real-world reactions. Continuous
monitoring and maintaining a sense of the environment is crucial
to such situational awareness [12] to be able to make fast real-
time decisions. When interacting with dynamic visualizations in
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such stream analysis scenarios, it is often important for a user to
continue to monitor the state of the data stream [34]. Woods [41]
discusses the cognitive challenges of monitoring alarm systems
and how it is necessary to maintain an understanding of the state
and the interplay among multiple types of signals evolving over
time. At times, a specific alarm or event may require more attention
for a specific signal, but interpreting that specific event requires
an understanding of the context in which the signal was found.
For example, in network monitoring for cyber security, when an
analyst moves from continuous monitoring to a deep analysis of
an event, she needs to continue to keep abreast of new updates
that may be even more important than the current focus of her
analysis [15].

Such issues are prevalent in various task domains that employ
animated visualizations to help monitor and analyze dynamic data
sets in real time (e.g., [21, 28, 36]). For example, Sigovan et al. [36]
used animated scatterplots for live performance monitoring of high-
performance computing systems. In other work, Harrison et al. [21]
presented a cyber security tool that used multiple animated scatter-
plots to support situation awareness and monitoring of network
traffic and cyber alerts. Air traffic control is yet another example,
as controllers use 2D radar visualizations when making decisions
about flight recommendations [5].

For our research of dynamic visualizations, we chose a basic
visualization similar to animated scatterplots for two primary rea-
sons: (1) for the simplicity and generalizability to various visual
analysis scenarios requiring contextual awareness (e.g., [21, 36]),
and (2) to maintain similarity and comparability to existing studies
of selection techniques (e.g., [2, 22]).

2.2 Modified Selection Techniques

Many researchers have designed and studied modified techniques
to make it easier to select targets. While selection by direct pointing
is perhaps the most commonly used approach for selection of static
targets, the selection of small targets or selection in dense environ-
ments can be challenging because users must slow down to avoid
errors. This trade-off between speed and accuracy is described by
Fitts’ law, which is commonly used to model and compare selection
techniques [14, 30].

Numerous selection techniques aim to reduce this effect by in-
creasing the target size or cursor size, or by decreasing movement
distance (e.g, [4, 26, 31]). One well-known example is bubble cursor
[18], which dynamically re-sizes the cursor’s activation area based
on its nearest target. Bubble cursor targets one object at a time
based on the cursor’s position, and it resizes the cursor based on its
distance to the nearest target. A related technique is DynaSpot [9],
a technique with a dynamic activation area based on the cursor’s
movement speed. The area can increase up to a given maximum
size at high speeds, and the size shrinks when stopped. Implicit
fan cursor [38] is another cursor technique that takes the cursor’s
movement direction into account. With this technique, a fan-like
selection region grows in the direction of movement with a size
based on cursor speed.

Rather than changing the cursor’s activation area based on cursor
movement, another approach is to dynamically expand the size of
targets as the cursor moves toward them, as done by McGuffin and
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Balakrishnan [31]. Alternatively, Drag-and-Pop [4] moves potential
targets closer to the cursor when it is dragging an object, thus
allowing faster drag-and-drop functionality by reducing distance
the between the target and cursor.

While empirical studies have shown evidence that many varia-
tions of specialized selection techniques can work well for static
targets, moving targets introduce additional challenges.

2.3 Selection of Dynamic Targets

Selection becomes more difficult when the targets are moving, and
such scenarios are not captured well by Fitts’ law. As an alternative
model, Jagacinski et al. [25] proposed a formulation based on a
target’s velocity, width, and distance from the cursor. Other models
include that of Port and Lee [33], which addresses target prediction
and interception strategies.

Researchers have begun exploring various ways to make the se-
lection of moving targets easier. For example, Haan et al. [10] used
a volumetric cursor and a method that first calculates a ranking of
objects inside the volume based on time and proximity to its center.
Then, the cursor snaps to the highest ranking object. Perhaps a
more common approach for selection of dynamic targets is the use
of pause. For instance, Click-to-Pause [2, 24] aids in the selection of
moving targets by pausing an entire visualization, thereby reducing
the task to that of static target selection. In this technique, depress-
ing the mouse button causes the screen to pause, then selection is
triggered when the mouse button is released over a target. While
effective and straightforward, stopping the entire visualization can
disrupt the experience or result in a loss of temporal information.

Hasan etl al. [22] presented two techniques to partially address
this issue: Target Ghost and Comet. Target Ghost follows the same
principle of pausing all moving objects to facilitate easier selection,
but it also shows how movement would continue if the object had
not stopped. When targets are stopped with Target Ghost, static
proxy targets are left in place for selection while dimmed versions
(“ghosts”) of the original objects continue to move along their tra-
jectories. The other technique, Comet [22], renders a selectable trail
behind each target. The length of the trail is proportional to the
object’s speed, so target size is increased for faster-moving targets.
While the Comet technique makes target acquisition easier, the
trails of nearby objects can overlap, making them difficult to select.
In addition, the added visuals can clutter the visualization.

Such previous work has demonstrated useful ways of selecting
moving data, but further investigation is required to understand
their implications for disruptions and the ability to maintain con-
textual awareness of dynamic content.

3 TECHNIQUE DETERMINATION

To enable the evaluation of the effects of pausing selection tech-
niques on contextual awareness in dynamic visualizations, we im-
plemented several techniques.

3.1 Pausing Selection Techniques

Here, we describe multiple variations of techniques used to pause
subsets of targets. Figure 1 shows visual representations of how
different designs work, demonstrating how pause regions limit
the amount of objects that are paused. For all of the pause region
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techniques, a gray background is drawn to explicitly show the
region where the data is paused.

3.1.1  Whole Screen Pausing. Perhaps the most straightforward
method for pausing dynamic visualizations is simply to pause the
entire view, stopping all items on the screen on key press. After
pausing, users can use the cursor normally to select the desired tar-
get. This method was previously demonstrated in Target Ghost [22]
but was not evaluated for potential effects on contextual awareness
for monitoring dynamic information.

3.1.2  Cursor Proximity Pausing. Rather than pausing all moving
targets, we implemented a cursor proximity technique to stop only
the targets in a circular area surrounding the cursor. Once targets in
the proximity radius are paused, they can then be selected normally
with the cursor. The biggest advantage of the cursor proximity
method is it is easy to understand. Users can move the cursor
towards the intended target per usual, and once the cursor is close,
items can be stopped to make selection easier.

The size of the proximity radius can depend on the size and
density of available targets. Radius size could also be dynamic, as
with modified cursors such as Bubble Cursor, Dynaspot, or Implicit
Fan Cursor. However, from pilot testing, we found it important that
users understand when targets are pausing; otherwise, dynamic
pausing can be distracting and confusing. In addition to using a
static radius, we also explored a nearest-neighbor region similar
to the Bubble Cursor [18], where the pause region was centered
around the target closest to the cursor rather than around the cursor
itself. The technique takes advantage of nearby targets to predict an
area to pause before the cursor moves to that location, but our pilot
testing, found participants grew frustrated with the pause region
“snapping” to different targets.

To avoid such frustration or confusion with the more advanced
variations of proximity techniques, our experiment only tested a
simple implementation cursor proximity with a constant radius.

3.1.3  Trajectory Pausing. This technique is similar to the implicit
fan cursor [38] but for creating a pause region instead of a selection
region. Trajectory pausing uses an angular pause region that reaches
in the direction of the cursor’s movement. To facilitate selection
of far-away targets, the pause region extends to the edge of the
window along the cursor trajectory. Though the angle of the pause
region could be dynamic, our experiences suggested that technique
consistency was important, so we opted for a fixed angle in our
final design. The angular region always starts behind the cursor in
order to maintain a persistent pause region around the cursor. This
design mitigates target overshooting and adds base functionality
provided by cursor proximity pausing.

While trajectory pausing provides the benefit of more-easily
pausing distant targets, the technique is more complex than cursor
proximity due to the dynamically changing trajectory regions. Tra-
jectory pausing can also stop more targets at a time, which could
cause further disruption to awareness of the visualization space.

3.2 Context Trails

Simply pausing a target makes it difficult to keep track of where the
target would have been if it maintained its original movement. The
Target Ghost technique [22] is one approach to address this issue
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Figure 1: Representation of pause techniques that stop tar-
get movement within regions. Moving objects are shown as
green circles, and paused objects are shown in purple. On the
right, the gray background areas denote the pause region.
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Figure 2: Visual representation of contextual cues that indi-
cate movement of targets when they are paused for selection.
Progression of time is shown in the sequence of images from
the left to the right. The darker circles are paused, so their
positions do not move in each frame, but ghosts and trails
show continued movement over time.

by pausing moving targets as a selectable static proxy target while
dimmed versions of the original items continue to move normally.
However, in dense data sets, it can be difficult to match a paused
target proxy to its corresponding moving ghost. To address this
concern, we tested techniques with and without ghosting. We also
implemented context trails as an additional visual cue to augment
target ghosting. Context trails were dashed lines that connected the
dynamic ghosted object to the paused target. When the ghosted
object moved beyond the screen, its trail was removed, which helped
to represent stale data in the visualization. This approach can help
to match the static proxy and the moving object.

4 EXPERIMENT

We ran a controlled experiment with variations of selection tech-
niques to test for trade-offs between selection performance and the
ability to maintain contextual awareness of the visualization.

Figure 3: Appearance of study application with no ghost.
Cursor Proximity Pausing is shown on the left, and Trajec-
tory Pausing is shown on the right.

4.1 Goals and Hypotheses

Pausing techniques can support faster and easier selection of mov-
ing targets, but they can also interfere with perception of animated
content. With new pausing techniques designed to limit the amount
of targets that are stopped, we hypothesized we could retain the
benefits of pausing while reducing visual disruption or distraction.
Thus, hypothesized techniques with limited pause regions would
make it easier to monitor the context of a dynamic visualization
but at the cost of reduced selection performance.

We also hypothesized the addition of contextual cues with pause
techniques (such as “ghosts” or “trails”) can make the techniques
easier to understand and enable continued awareness of the context
of the visualization during pausing. However, because such methods
add clutter that could exacerbate distraction, we expected them to
negatively influence the ability to maintain contextual awareness
during a selection task.

4.2 Task

We designed the task for to study the effects of pause techniques in
scenarios requiring contextual awareness while both monitoring
and interacting with an interactive visualization. The visual basis
for the task was an animated field of circles, which was chosen
to retain similarity to other researchers’ prior work on selection
techniques (e.g., [2, 22]). The design is also similar to an animated
scatterplot, a common and fundamental representation that others
have used for visualizations of streaming data (e.g., [21, 23, 36]).

We used a dual task setup to simulate a monitoring scenario that
required users to maintain awareness of the overall visual state of
the visualization while selecting specific targets. To this end, the
primary task was presented as a selection task: participants were
asked to continually select red targets from a field of white and blue
circles during a brief timed period. At the end of the period, the
visualization was hidden, and participants were immediately asked
to estimate the number of blue circles that were on the screen when
the period ended. With this design, participants were encouraged
to pay attention to or recall the visual state of the application so
they could complete the secondary counting task.

In the application, white and blue circles continually moved
from the right side of the screen to the left. The number of white
circles on the screen was dependent on the density level of the
experimental condition (independent variables are explained in the
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following section). The number of blue circles on screen at any
given time ranged from 4 to 16 blue dots, with the count being
independent of experimental condition.

Users selected circles by using a mouse to move a crosshair (point
cursor) over a circle and clicking. All circles were outlined with a
black stroke that thickened when the user hovered over the circle
to indicate target acquisition for selection.

Figure 3 shows the application with examples using the ghost
contextual cue for paused objects. As part of the experimental task,
the field of white and blue circles contained one red circle at any
given time. Participants were instructed to select as many red circles
as possible before they ran out of time. When clicked, the red circle
turned white, and a different white circle on the screen would turn
red and become the new target. The new target was randomly
selected from the white circles on the screen.

If the red target moved beyond the edge of the screen before
it was selected, then a new target was created from an existing
white circle. However, in trials with target ghosts or contextual
trails, it was possible for a selectable proxy to remain paused on
the screen after a ghosted red dot exited the screen. In such cases,
the application provided a two second window to select the proxy
target before a new target was chosen.

Each trial lasted 5-10 seconds. The exact time varied per trial to
prevent participants from getting used to counting the blue circles
right before time expired. At the end of the time period, the screen
immediately changed from the field of moving circles to a new
screen asking how many blue circles were on the screen at the end
of the trial. Participants answered by clicking on a number from a
list of numerical buttons ranging from 0 to 20.

Participants were instructed to prioritize correct target selection
were reminded to do so throughout the experiment.

4.3 Experimental Design

The experiment controlled four independent variables: pause tech-
nique, contextual cue, target speed, and target density. The varia-
tions of pause techniques provided different mechanisms for deter-
mining the pause region. The four pause techniques tested in the
final experiment were:

e Whole Screen Pausing: All items on the screen could be
paused.

o Cursor Proximity Pausing: The pause region was a 2.2 cm
(70 px) radius area around the cursor. The pause region was
visibly shown to users as a transparent gray overlay.

e Trajectory Pausing: The pause region was a 50 degree angu-
lar area that extended from behind the position of the cursor
towards the direction of the cursor’s movement trajectory.
The pause region was shown with a transparent gray overlay.
In the implementation for the experiment, the trajectory re-
gion started 1.5 cm (48 px) behind the cursor. To smooth the
movement of the trajectory, we used a Catmull-Rom spline
and defined the trajectory based on the four most recent
positions of the cursor from the mouse polling.

e Baseline (No Pause): No pausing technique was available to
aid selection.

For the experiment, all techniques were provided with manual
control of pausing. Participants could click the shift key of the
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keyboard to active pausing at the time of key press. Pressing shift
again cancelled the previous pause effect and update a new pause.
Participants could also clear all pausing by using the C key. With
this design, participants could use the left hand to control the pause
functionality and the right hand to control the mouse (all partici-
pants were right handed).

In addition to the pause techniques, three types of contextual
cues were tested with the pause techniques:

e Ghost: When targets were paused, a dimmed “ghost” version
of the object continued moving along its path, as done in the
Target Ghost technique [22].

e Ghost+Trail: With this cue enabled, paused targets had the
ghost cue, and an additional dashed line was rendered to
connect the moving ghost to the paused target.

e No Ghost: When targets were paused, no ghosted version
was shown.

As another independent variable, the target density of circles
in the application was varied with two levels: high and low. The
distribution of circles was generated with 0.36 cm (11.7 px) be-
tween circles in the low density variation and with 0.15 cm (4.7
px) between circles for high density. Low density conditions had
approximately 77 circles on screen at once, and high density condi-
tions had approximately 194 circles at once.

Two target speeds were also tested: slow and fast. Circles moved
at a speed of 1.41 cm/second (45 px/second) with the slow setting,
and they moved at 3.7 cm/second (119 px/second) on the fast setting.

The experiment followed a within-subjects design so all partici-
pants used all combinations of the variations. If all combinations
of all treatment levels were possible, the experiment would have
a 4x3x2x2 design. However, the baseline technique did not allow
pausing and therefore did not have ghost or ghost+trail variations.

For condition ordering, all variations of each pause technique
were completed together. We used a Latin square design to balance
the orderings of the four pause techniques for each participant.
For each pause technique, the ordering of the three contextual
cues was randomly determined at run time. The exception was the
baseline technique with no pause functionality and only the no ghost
version. Thus, the combinations of pause technique and contextual
cue yielded a total of 10 technique configurations (3x3+1). Within
each configuration, a random ordering was determined for the
four combinations (2x2) of speed and density. For each condition,
participants completed the task five times, yielding a total of 200
trials per participant (not including practice trials).

Assessment of selection performance used the rate of successful
selections from the number of targets selected per second. We
similarly recorded the rate of selection errors; an error was any
selection attempt that did not select the red target. An error was also
counted if the target moved off the screen and could not be selected
(that is, the target was not paused at the time). To assess contextual
awareness, we measured the error of the estimated number of blue
circles as compared to the actual count.

4.4 Apparatus and Implementation

We ran our tests using a mouse and keyboard setup with a 27-inch
monitor with 1920x1080 screen resolution. Participants used a Dell
MS111-P corded mouse with 1000 DPI (dot per inch) and mouse
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acceleration set to zero. The experiment was created using the D3
JavaScript library [7], which ran in Chrome Stable. The experiment
application ran inside a 28x11 cm (900x360 px) SVG window. Target
graphics were presented as circles with a radius of 0.15 cm (5 px).

4.5 Procedure

The study was approved by the Institutional Review Board (IRB) at
our organization. At the beginning of the study, participants were
asked to complete a short questionnaire about their age, gender,
education, occupation, computer usage, and video game experience.
We then provided instructions and explained the goal was to prior-
itize selecting red targets, but they would also be asked to estimate
how many blue objects were on the screen when time expired.

Before each new combination of pause technique and contextual
cue, participants were required to practice with the technique to get
used to performing the tasks. The first practice trial was one minute
long with randomly selected levels of speed and density. Then, four
more mandatory practice trials followed; each was 5-10 seconds
long with a random ordering of the four possible combinations of
speeds and target densities. Following these five mandatory practice
trials, participants were permitted to complete additional practice
trials, but they were not required to do so.

Participants then completed 20 trials for the combination of
technique and contextual cue (five trials for the each of the 2x2
speed and density combinations). Participants were also required
to take at least two breaks during the study. Break periods were
scheduled for before the beginning of each new pause technique
(excluding the block of baseline trials). After finishing all trials for
each combination of technique and contextual cue, participants
were asked to complete a brief questionnaire to provide feedback
about each technique. The average amount of time for an entire
participant session was approximately 80 minutes.

4.6 Participants

The experiment had 20 participants (16 males, 4 females). Ages
ranged from 20 to 30 with mean age and median age both being
24 years. Participants were students in varying undergraduate and
graduate degree programs. Academic disciplines included a wide
range of fields, but the most common area (50%) involved graphic
and animation. Eleven participants were gamers, and six reported
regularly playing video games using a mouse each week.

5 RESULTS

We used statistical testing and graphical analysis to interpret the
results of the experiment. In the following sections, we prioritize
reporting statistically significant effects and differences. We also
note that in all charts, error bars denote standard error.

5.1 Statistical Testing Approach

We used repeated measures ANOVAs for the statistical analysis. Full
factorial testing was not appropriate due to the unbalanced design
because it was not possible to have the ghost and ghost+trail cues
in the baseline technique with no pausing functionality. Therefore,
we decided to use two ANOVAs: (1) a test including the baseline
technique but ignoring differences in contextual cues, which al-
lowed us to compare the different techniques, and (2) a full factorial
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test that excluded the baseline technique but tested interactions
between contextual cue and pause technique. We also note that not
all metrics met the assumption of sphericity for parametric testing.
In such cases, we present corrected degrees of freedom and adjusted
p values using Greenhouse-Geisser estimates (noting € < 0.75 for
all outcomes).

5.2 Selection Performance Results

Average performance outcomes per technique and contextual cue
are summarized in Figures 4 and 5, which shows mean rates of
successful selection and mean rates of selection errors, respectively.
As can be seen in Figure 4, rate of successful selections was fairly
consistent, averaging near one successful selection every two sec-
onds. Among the pause techniques, Figure 4 does show a slower
selection rate with the trajectory technique. It is surprising to note
that the average selection rate for the baseline technique with-
out the pause functionality was similar to that of the other pause
techniques. However, the selection error results provide a more
complete picture (Figure 5), showing that the baseline technique
had over five times more errors than the pausing techniques.

The ANOVA testing with all techniques found a significant main
effect of technique for both selection rate, with F(357) = 32.00
and p < 0.001, and error rate, with F(q 4 19.80) = 28.36 and p <
0.001. Bonferroni-corrected pairwise comparisons found that the
baseline technique had a significantly higher error rate than all
other techniques (p < 0.001), and the trajectory technique had a
slower successful selection rate than the baseline as well as both the
proximity cursor and whole-screen pause techniques (p < 0.001).

These test results agree with the graphical analysis interpretation
that the baseline technique had a similar selection rate but more
errors than the other techniques. Additionally, the results indicate
that the trajectory technique was slower than the other pause
techniques, which we expect is related to the extra split second
needed for the pause region to update based on the cursor trajectory.

The ANOVA that accounted for contextual cues found a sig-
nificant effect of cues on selection rate with F,35) = 7.19 and
p < 0.005, and pairwise comparisons (with Bonferroni correction)
found that selection rate was significantly slower with ghost+trail
than either ghost cues or no ghost cues (p < 0.05). Graphical analysis
shows the differences due to contextual cues to be small (see Fig-
ure 4), and the effect is most noticeable for the whole screen pausing
technique. This suggests that although the addition of contextual
cues can make it easier to understand what is happening with pause
techniques, the additional visual information may invoke additional
perceptual distraction that can slow selection performance—at least
with the addition of too much supplemental contextual markup.

Overall, selection performance was worse with the faster speed
(Figure 6). Rates of successful selections were significantly worse
for the faster speed with the ANOVA with all techniques yielding
F(1,19) = 4.94 and p < 0.05. Faster speeds also had significantly
more error, with F(; 19y = 28.42and p < 0.001. However, differences
were small except for the baseline case without pausing, and the
interaction between technique and speed was significant for both
selection rate, with F(3 57) = 3.64 and p < 0.05, and error rate, with
F(1.18, 22.48) = 27.71 and p < 0.001. The posthoc test confirmed that
the only significant pairwise differences due to speed were for the
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Mean Rate of Successful Target Selections by Technique and Cue
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Figure 4: Rate of successful (correct) target selections per sec-
ond. Higher bars indicate better performance.
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Figure 5: Selection error rate (errors per second). Higher bars
indicate worse performance.

Mean Rate of Successful Target Selection by Technique and Speed
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Figure 6: Successful (correct) selections per second by speed
and technique. Higher bars indicate better performance.

baseline. Thus, this results demonstrates that all pause techniques
were fairly robust for target selection with different speeds, but
selection performance is more difficult without support for pausing.

Not surprisingly, increased object density resulted in signifi-
cantly worse selection performance. Test results yielded F(y 19) =
12.23 and p < 0.005 for selection rate, and the results were F(1 19y =
7.74 and p < 0.05 for error rates. No interaction effects were de-
tected involving density.

5.3 Contextual Awareness Results

Average counting error was used as the dependent outcome for
contextual awareness. For reference, Figure 8 shows average count-
ing errors as a percentage of the error in the baseline condition.
When testing for effects with the test including cues, a significant
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Mean Selection Error Rate by Technique and Speed
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Figure 7: Selection error rate (errors per second) by speed
and technique. Higher bars indicate worse performance.
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Figure 8: Counting error as a percentage of the baseline er-
ror. Bars indicates distance from the correct number. Higher
bars indicate worse counting than the baseline; bars below
the 0 line indicate lower error than the baseline.

effect of technique was found with F(;33) = 5.67 and p < 0.01.
Graphical inspection shows that the baseline, trajectory, and cursor
proximity techniques had similar counting error, and the whole
screen pause technique had higher (near 20%) error (see Figure 8).
Bonferroni-corrected posthoc testing only detected significant dif-
ferences between the whole screen and cursor proximity techniques
(p < 0.01). These results suggest that contextual awareness was
more difficult with the pausing techniques that interfered with the
entire screen, but the localized pause techniques were beneficial
for overall awareness.

There was a significant effect on counting due to speed, with
F(1,19) = 12.67 and p < 0.005. As would be expected, there were
more counting errors with faster speed, and this effect was consis-
tent across all techniques.

Contrary to our expectations, there was no significant effect of
contextual cue on counting errors. That is, the addition of visual
ghosts and trails did not cause significant penalties for contextual
awareness. Also, no significant effects on counting errors were
detected due to density, and no interaction effects were detected
regarding the counting metric.

6 DISCUSSION

Our work provides new knowledge about the use of pause tech-
niques to aid selection of moving targets.



AVI *20, September 28-October 2, 2020, Salerno, Italy

6.1 Overall Feasibility of Pause Techniques

The study evaluated pause techniques and focused on variations
that only pausing limited regions of the dynamic visualization
to facilitate selection. The results provide evidence that although
whole-screen pausing significantly improves selection performance
over the baseline, pausing the entire visualization can significantly
interfere with the ability to maintain awareness of the state of the
visualization. We demonstrated that it is possible to pause subsets
of moving targets with varying methods to control the techniques’
pause activation areas, and we investigated how additional visual
cues added by pause techniques may cause problems for contex-
tual awareness. The tested limited-area pause techniques (cursor
proximity and trajectory pausing) support the selection benefits
of whole-screen pausing while making it significantly easier to
maintain awareness (see Figure 8)

Our experiment demonstrates that all types of pause techniques
made selection easier than with no pause functionality. In terms
of selection performance with the different techniques, the study
showed that only the trajectory pause technique was significantly
different from the other techniques (including the baseline), as
shown in Figure 4. Despite being designed to define the pause
region based on the direction of cursor movement, the selection-
rate results indicate that the trajectory technique was somewhat
confusing due to the angular selection region adjusting during the
first several mouse polls in a new movement direction.

The negative perception of the trajectory technique could have
been due to confusion while the trajectory region aligned with
movement direction. Taking this into consideration, we designed
a potential design improvement that combines the benefits of the
trajectory technique’s predictive pausing and the proximity cur-
sor’s simpler control. The alternative design would have a cursor
proximity region as the default state when the cursor was static or
moving slowly, but the pause region could branch out along the
movement direction for bigger or faster mouse movements. This
design would improve the brief early stage of the original trajectory
design, during which the pause region changes rapidly to adjust
to the new movement direction. We are interested in testing such
a design with different target speeds and densities, as well as for
more complex target movement patterns.

6.2 Selection and Contextual Awareness

More broadly, the evaluation provides findings about the general
use of pause techniques for interaction with dynamic data visual-
ization. Overall, selection error rate was significantly higher with
the baseline selection without pausing, with error rate being ap-
proximately five times worse without any pausing (see Figure 5).
Thus, the results clearly show that pause techniques make selec-
tion of moving targets easier. Similar results were found by other
tests with pause techniques [22]; however, by adding the contex-
tual awareness task, our study was able to assess other tradeoffs
of pause techniques related to perception of the visual state of an
animated visualization. Contextual counting errors were noticeably
worse when pausing the entire visualization as compared to the
other techniques (see Figure 8).

It would make sense that the additional visual representation
of the paused visualization could have caused some interference
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with visual memory of the visualization, and this would be worse
with the addition of the contextual cues (ghost and trails). While
these added contextual cues do make it possible to track movement
of paused targets, such contextual tracking was not necessary or
beneficial for either selection or the counting task in this study. So,
while it seems logical that many practical applications might want
to provide contextual cues for pause techniques, designers should
also be aware of the potential negative effects. Additional research
could investigate whether different types of contextual cues impact
tasks where it is helpful to maintain awareness of object trajectory
and continued movement.

Visualization of temporal or streaming data is one application
area that could benefit from continual situational awareness during
data monitoring or analysis [6, 20, 32]. Numerous previous visual-
izations require maintaining awareness while objects continually
move across a visual field, with examples including radar monitor-
ing (e.g., [5, 28]), cyber security (e.g., [15, 21]), and computational
performance monitoring (e.g., [36]). Considering general similari-
ties with the multi-task scenario of our study, we predict that the
results could be similar to such real-world scenarios that involve
inspecting individual items (e.g., planes, cyber alerts, computational
processes) while also monitoring the overall state of the system.
In future studies, we plan to study how selection techniques and
visual cues might influence performance on data analysis tasks and
more complex situational awareness tasks. It will also be important
to consider similar contextual awareness with dynamic visualiza-
tions in more domain-specific applications, but the more general
approach taken through our research provides findings that are
more accessible to the broader visualization community.

7 CONCLUSION

We studied how motion-pausing selection techniques influence
both selection performance and contextual awareness of a dynamic
visualization. All tested variations of pause techniques improved
selection performance, and we learned about the advantages and
limitations of our trajectory and cursor proximity designs through
empirical evaluation. While pausing the entire visualization can
negatively influence contextual awareness, pausing partial regions
of the visualization can retain benefits of pausing while allowing
users to better maintain awareness of the overall visual state.
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