
On the Importance of User Backgrounds and Impressions: Lessons

Learned from Interactive AI Applications

MAHSAN NOURANI, University of Florida,

CHIRADEEP ROY, University of Texas in Dallas,

JEREMY E. BLOCK, University of Florida,

DONALD R. HONEYCUTT, University of Florida,

TAHRIMA RAHMAN, University of Texas in Dallas,

ERIC D. RAGAN, University of Florida,

VIBHAV GOGATE, University of Texas in Dallas,

While EXplainable Artiicial Intelligence (XAI) approaches aim to improve human-AI collaborative decision-making by

improving model transparency and mental model formations, experiential factors associated with human users can cause

challenges in ways system designers do not anticipate. In this paper, we irst showcase a user study on how anchoring bias can

potentially afect mental model formations when users initially interact with an intelligent system and the role of explanations

in addressing this bias. Using a video activity recognition tool in cooking domain, we asked participants to verify whether a

set of kitchen policies are being followed, with each policy focusing on a weakness or a strength. We controlled the order of

the policies and the presence of explanations to test our hypotheses. Our main inding shows that those who observed system

strengths early-on were more prone to automation bias and made signiicantly more errors due to positive irst impressions

of the system, while they built a more accurate mental model of the system competencies. On the other hand, those who

encountered weaknesses earlier made signiicantly fewer errors since they tended to rely more on themselves, while they also

underestimated model competencies due to having a more negative irst impression of the model. Motivated by these indings

and similar existing work, we formalize and present a conceptual model of user’s past experiences that examine the relations

between user’s backgrounds, experiences, and human factors in XAI systems based on usage time. Our work presents strong

indings and implications, aiming to raise the awareness of AI designers towards biases associated with user impressions and

backgrounds.

CCS Concepts: · Human-centered computing→ Empirical studies in HCI; User studies; · Computing methodolo-

gies→ Neural networks.

Additional Key Words and Phrases: Explainable AI, Cognitive Biases, HCI, User Studies, Conceptual Models

1 INTRODUCTION

Over the past decade, machine learning and artiicial intelligence algorithms have been incorporated in diferent
contexts and domains to make systems more intelligent and autonomous. Unfortunately, many of these so-called
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blackbox algorithms are hard to understand for the users due to the complexity of their inner logic [78]. This lack
of transparency can cause users to experience problems due to an inappropriate mapping between their mental
model of how the model works and the reality of how it works, which can lead to other problems such as over or
under-reliance on the intelligent system [7].

To help solve these problems, researchers and practitioners have introduced eXplainable Artiicial Intelligence
(XAI) models, where the systems attempt to explain their decision-making process to the users [40]. Explanations
can be anything from general information about and extracted from the model (e.g., post-hoc explanations [34])
to annotation of the input to highlight the features used in the decision-making process (e.g., [56]). For simplicity,
in the context of this paper, we refer to instance-level post-hoc explanations as explanations and use them to test
our hypotheses and generalize our indings.

Theoretically, explanations should help users build a better mental model of an intelligent system [79]. However,
in practice, as the models get more and more complex, it becomes harder to explain them in a manner that
is beneicial to the usersÐas also suggested by previous work in psychology (e.g., [27]). One major problem
is that with exploratory intelligent systems and tools, system designers have little to no control over when
users encounter inaccurate and accurate predictions. As a result, the order of observing accurate vs. inaccurate
predictions may introduce unintended biases in a user’s mental model of the system. For example, previous
research has shown that the order of encountering wrong predictions signiicantly afected a user’s perception of
accuracy [44]. However, there is little understanding of the interplay between the order of observing system
weaknesses and the presence of explanations with respect to the user’s mental model of the system.

In this study, we incorporate an explainable intelligent system (an online user interface tool powered by an
explainable deep learning model) with an exploratory task to test how the order of observing system weaknesses
and strengths can afect user’s mental model of the system, and whether explanation presence can help improve
these shaped mental models. The intelligent system we used was a video activity recognition tool (with cooking
videos) where users could query the system to ind certain actions and objects in the videos. The task was
simple but exploratory: users were provided with a set of kitchen policies, and they had to determine which of
the policies were being followed and which were not in a set of cooking videos. During the study session, the
order of the policies was manipulated to inluence when participants experienced correct and erroneous system
outputs. We ran a 2x2 user study controlling both policy order and explanation presence. Our results showed
that users with positive irst impressions formed a better mental model of system strengths, though they also
made more errors due to over-reliance on the model’s answers to queries. However, users who encountered
more model errors early formed negative irst impressions that ultimately lead to a limited mental model and
underestimation of system capabilities. Our results provides a novel contribution through an empirical user study
aimed to help intelligent system designers to be aware of human cognitive biases (speciically, anchoring bias and
irst impressions) when using intelligent systems. The indings of this paper inspired us to take a deeper dive into
how biases that are associated with user’s backgrounds, impressions, and experiences afect user behaviours and
the outcomes of human-AI collaborations. To further our contribution, we categorize human-centered outcomes
and factors based on usage over time in an empirically-driven conceptual model of users’ past experiences and
draw recent work from the literature in human-centered AI to demonstrate examples from the concepts and
categories in our model. Our work presents strong indings and implications, aiming to make intelligent system
designers aware of biases associated with impression formations when designing interactive, intelligent systems.

2 RELATED WORK

2.1 Mental Models in Explainable AI Research

Researchers in the human-computer interaction (HCI) community have been studying XAI systems from diferent
angles. Explainability is central to the community eforts for developing responsible and fair AI models [48]. As
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evidenced in Shneiderman’s discussion on the role of Human-Centered Artiicial Intelligence (HCAI) [65], the
need for clear descriptions of how an intelligent agent makes its predictions/decisions is critical to establishing
reliability, safety, and trust with such tools. With an emphasis on interactivity, Shneiderman argues that AI
systems should not only provide post-hoc explanationsÐsuch as saliency maps or decision treesÐbut also design
exploratory interfaces that allow users to develop a working understanding through investigative interactions. In
other words, he argues users are capable of understanding and building better mental models of ML/AI systems
when they are allowed to explore interactive, explainable models. Explainability and its impacts on humans
behaviours have been examined through various perspectives, such as scope [2, 3], type [32], and the target
users [12, 44, 62, 76]. One of the main focuses in XAI is to improve user understanding, by facilitating the
construction of a mental model with an accurate picture of a model’s limitations [25, 40].
User mental models of machine learning and AI algorithms can be deined as the representation through

which users understand the system [40]. In other words, mental models relect users’ understanding of how a
machine works and how their actions can afect the outcomes [4]. As they directly inluence user perceptions
of intelligent systems, it is important to study user mental models. Flawed mental models (whether inaccurate,
incomplete, or based on false assumptions) lead to a variety of other problems, such as unmet expectations,
frustrations [4], over-/under-reliance, and problems establishing and calibrating trust. With the involvement of
AI/ML technologies in various aspect of human lives, it becomes crucial to study user mental models to build a
general, scientiic understanding of these concepts and what behaviours they can lead to and how they afect
usage.
Mental models have been studied in diferent ields for a long time. For example, psychology researchers

have studied how humans form mental models of the world. Human-centered AI research can beneit and apply
the indings from psychology to improve the community’s understanding of mental models of AI systems and
incorporate techniques that are beneicial to users when they form them. For example, Hofman et al. [22] develop
and present a conceptual model of the process of explaining and discuss the role of mental models in the XAI
pipeline through the lens of psychology.
Explainability and mental models are commonly linked together. Not only because improving user mental

models is one of the main goals of explainability [40], but also because both inluence other human factors with AI
applications and tools. Many researchers have studied the relection of mental models on user trust. For example,
Holliday, Wilson, and Stumpf [25] discover that explanations can afect how users calibrate their trust in a model
based on whether they were provided with explanations or not. They ind that user perceptions of the model
directly afected their abilities to trust, and without explanations, they were unable to develop a mental model of
how the model works and therefore, gradually lost their trust as they continued working with the model. Kulesza
et al. [? ] also studied how certain features of explanations can afect mental model formations and trust. Based
on their results, the relationship between trust and mental models of an XAI tool vary based on the soundness
and completeness of explanations. For example, with highly sound and complete explanations, users build more
solid mental models and highest trust in explanations. However, when explanations are too detailed, users show
improvements in some aspects of the task, while their trust in explanations decrease. Examples like these warrant
for studying and exploring mental models in intelligent explainable tools.
Researchers in the HCI community focus on implementing and discussing various interactive, visual tech-

niques that can improve user mental models and understanding of a machine learning system. Some of these
techniques provide an instance-level explanation for a speciic input (e.g., [51, 57, 63])Ðthat is also referred to as
local explanationsÐwhile others expose the model’s inner workings without necessarily focusing on speciic
examples/outputs (e.g., [23, 47])Ði.e., providing global overviews (or explanations) of how a model works. More
recent work has gravitated to the use of global explanations by using ontological maps [9] or layered graphs [24]
to communicate how model parameters or input features may inluence one another to facilitate more eicient
mental model construction of the global system’s performance via post-hoc explainability. These techniques

ACM Trans. Interact. Intell. Syst.



1:4 • Nourani et al.

attempt to provide a general impression of how the system performs by summarizing patterns of behavior or
collating trends in system responses over the data set. On the other hand, some methods were established in
an attempt to balance the cognitive load required for local explanations without sacriicing model-explanation
idelity. For example, Abdul et. al. [1] designed a hybrid approach that utilizes bar charts to express the relative
importance of diferent features and incorporates small multiples to show how features inluence regressive
models for the entire dataset. In turn, they show how their hybrid method is preferred by users and optimizes
the communication of model performance in a human review task. In diferent words, they showed that their
proposed approach decreases a user’s cognitive load without decreasing the accuracy.
To be able to build a solid mental model of a system, users need to be exposed to both its strengths and

weaknesses.While global interpretability can, in theory, help improve user’s understanding of model shortcomings
and capabilities, they are more challenging to generate in practice [2]. Moreover, many stakeholders do not
necessarily beneit from global explanations as they would with local explanations. Wortman Vaughan and
Wallach [76] describe two user mental models, structural and functional, and caution system designers and
researchers on making a distinction between the two. The former allows the stakeholders to understand how a
system works (could be achieved via global explanations) while the latter helps them to use the system without
necessarily understanding how the model works (could be achieved via local explanations). Which of these mental
models is suicient for each stakeholder remains an open challenge, and might be relevant to other factors, such
as user task and their level of corresponding expertise to the task. Generally speaking, the majority of work in
the HCI, ML, and AI communities has been focused on instance-level explanations that justify model predictions
per output [2] and depend on the user’s functional mental models. In this paper, we will also focus on local
explanations, providing system responses for individual frames and corresponding queries.

2.2 Measuring Mental Model

As interactive interfaces and data visualization techniques may be utilized to enhance user mental models of the
limitations and competencies of intelligent systems, to efectively test the efectiveness of the given techniques,
researchers need to measure and capture user mental models. Previous research demonstrates that it is not easy
to measure mental models due to their temporal nature and their inluence on user disposition [42]. Since their
initial description in 1943 [10], mental models are generally inferred from a variety of user study techniques, such
as think-aloud approaches [61], interviews [37], and well-constrained survey questionnaires [20, 22]. Research
on mental models in intelligent systems shows that as users work with an intelligent system, they develop more
robust mental models, thus relying less on their dispositional trust and more so on their experiential trust [35, 36].
In XAI communities, diferent people have reviewed and proposed diferent techniques and measures to quantify
and qualify a user’s mental model of the algorithm (e.g., [22, 40]). Prediction tasks are one of the commonly used
techniques in this ield, which require subjects to estimate model predictions and performance after they have
been exposed to its outcomes [21, 22, 62]. Given a novel sample, users are asked to predict and estimate how they
think the model will respond; with controlled choices, the unique diferences between the options serve as a proxy
for what users believe about the system. In this realm, Poursabzi-Sangdeh et al. [52] found that simpler models
with fewer features enable users to predict and simulate the model predictions. As relected in cognitive science,
when more models are required to make an inference, the more challenging it is for individuals to understand
the complexity of the problem [27]; therefore, the emphasis is on making visualizations that summarize the
autonomous system in a tractable way to assist in the valid construction of mental models.
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2.3 Cognitive Biases in XAI: First Impressions and Overconfidence

Mental models tend to be simpliied heuristics used as foundations for more complicated thought; however,
assuming that they are free of fault and being afected by cognitive biases is a mistake hinted at by HCI and
Psychology researchers extensively.

In his book, Baron [6] lists and classiies more than 50 diferent known and discovered cognitive biases. One of
these classes is motivated bias: Humans have beliefs that are aligned with the truth and can serve as a basis for
decision-making. That is to say that humans are motivated to use their beliefs to evaluate new information and
then adjust their beliefs based on the veracity of the information they receive, as a consequence of not wishing to
be seen as incorrect. Of the biases in this category, the present work explores the primacy efectśalso studied
under diferent names (e.g., anchoring bias [8, 64, 77], order bias [55], and irst impressions [30, 44]).
The primacy heuristic refers to when people make assumptions about someone/something earlier in their

encounters and are anchored towards those assumptions later on. This overlaps with the concept of conirmation
bias, where people tend to collect redundant information that aligns with an initial assumption as opposed to
contrasting information that can lead to a more complete understanding by refuting their assumption. Lighthall
and Vazquez-Guillamet [33] argue two causes for this bias: (1) [in]correct assumptions (where a person’s decision
on some variable is biased by another variable); and (2) a psychological tendency to rely on a[n incorrect] decision
they already made rather than restarting their decision-making process. With more people encountering and
using ML/AI systems each day, it is important to study how people form irst impressions of these algorithms.

First impressions are explored in various human-centered ields, such as psychology [53], social technology (e.g.,
irst impressions in news [11] or social media), social sciences [5], and decision-making [77]. First impressions
are also extensively explored in Human-Robot Interaction (HRI)Ðwhere researchers study how human’s irst
impressions of a robot can inluence their trust in and communication with the AI system and feelings of
uneasiness like those associated with the uncanny valley [19, 49, 50, 80]. However, in the recent explorations of
human factors in explainable intelligent systems (i.e., human-centered ML/XAI), few discuss the consequences
of potent irst impressions. In this paper, we tend to showcase some example work in this domain and lay the
groundwork for future researchers to focus on unexplored challenges within this realm or propose approaches
to mitigate this bias. Myriad factors inluence how irst impressions of ML/AI systems develop, from the user’s
emotional and cognitive state to the physical conditions of the interaction. In recent work, Kim et al. [29] show
and discuss that when a model makes an error can strongly inluence user reliance. They found that if users
experience the errors earlier, their reliance decreases, while experiencing errors later-on can only inluence their
reliance temporarily. In a prior work (Nourani, King, and Ragan[44]), we studied how domain expertise afects
users’ irst impressions of an intelligent system and how these impressions impact their trust and its evolution
over time; we found signiicant diferences in impression formations based on domain expertise, which we will
discuss in more detail in Section ??.
Beyond the formation of irst impressions, there are also concerns about the development of rigid heuristic

beliefs that lead to decision support tool neglect while constructing a mental model of a decision aid’s performance.
This abandonment of system support is sometimes referred to as overconidence. Siek and Arkes [66] examine how
overconidence develops in human-AI paired decision-making. In a series of experiments, they asked participants
to predict jurors’ opinions of assisted suicide given a handful of attributes (e.g., age, political party ailiation, and
alcohol consumption). In most conditions of their experiment, participants were provided with system predictions
from a regression model. Participants were told that the model was accurate 77% of the time and, even though
this was controlled to not always be the case, they found that participants generally favored their own łgut
feelingž over the model’s advice. This reliance on oneself over a model shows how overconidence can develop
and they discuss how challenging it can be to correctly redress the associated biased behaviors. Their result
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further emphasizes the challenge of controlling for these unintentional biases and the caution one must take as
they develop intelligent tools and training.
Finally, as seen in Van der Waa et. al.’s [75] work, additional time pressure and a delay in the resulting

consequences of human-machine paired decisions in a high-stakes simulated medical triage scenario further
emphasizes the requirement for explanations to not only be available to the human reviewer but also supply
ample time to fully comprehend and take responsibility for the AI’s behavior. In our task, we remove the time
pressure to prevent the additional demands and stress participants may experience and also provide various
explanations at once to give participants the freedom to use the tools they ind most applicable. Our work, focused
on the development of a user’s mental model in a more exploratory scenario, deviates from much of these past
experiments because we have less control over what a user observes and how they use the system. This makes
our work closer to decision-making tasks in more realistic settings.

3 EXPERIMENT

We conducted a human evaluation to understand how irst impressions of intelligent systems can inluence user
mental models, as well as task performance and reliance on the tool. We also sought to learn whether explanations
can help bypass the biases formed in the earlier encounters with model predictions. In this section, we describe
our experiment design in more detail.

3.1 Explainable System

3.1.1 System Context. For this study, we sought an open-ended scenario where users could explore the system
and build a mental model of how it works. With some intelligent systems, errors can be tolerated to some extent
and they may not be fatal. That is why it might seem unnecessary for the users to build mental models of the
system. However, some systems naturally require a human agent to monitor the outcomes and predictions rather
than automatically accepting failures without worrying about the consequences. Examples of such systems, and
our system of choice, include video activity recognition systems, where a model can be trained to automatically
detect activities that take place in the videos. In real-world scenarios, activity recognition has many use-cases and
can be critical due to physical limitations and time constraints. Some examples include ire detection [31], airport
security [74], smart hospitals [71, 82], and elderly care [28]. Since we desired a task where users are novices and
do not require any certain expertise or professional training, we chose a cooking video scenario where the system
was designed to identify cooking-related tasks in a kitchen. In the rest of this chapter, we briely describe the
model and interface we used for the system we designed for our experiment.

3.1.2 XAI Model. The XAI model used in this study was trained on a pre-annotated dataset of cooking videos
called the TACoS dataset [58]. Note that the development of the XAI model is not a part of the contributions
presented in this paper, as the model was only used to serve the goals of the experiment while using a real
explainable model for the system. More details on the speciics of the model can be found in our previous work [59].
Here, we provide an overview of the model to help readers understand the basis for the model capabilities and
explanations.
In the TACoS cooking videos [58], each frame of each video had a set of labels (which we call ground labels)

that summarized the activity taking place in the video (for example, {łwashž, łcarrotž, łsinkž} in frames where a
carrot was being washed in the sink). The problem was formulated as a multi-label classiication problem where
given each frame of the video, the model had to assign the correct labels to it. Each label was modeled as a binary
random variable where 0 and 1 indicated that the label was of or on respectively. We implemented a two-layer
architecture where the irst layer comprised a deep neural network based on GoogleNet [69] that converted each
frame into a set of noisy labels and the second layer used a dynamic version of a tractable probabilistic model
called a cutset network [54] that modeled a conditional probability distribution of the ground (true) labels given
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Fig. 1. The main overview of the user interface. By clicking in the top let corner (A), a panel opens from the let side of

the screen that includes a list of policies. Here, users recorded the kitchen’s compliance with each statement. (B) Users

selected components from three drop-downs to build a query and search for it among the videos. (C) The search sorted the

thumbnails into two categories: matching and non-matching videos. By showing a thumbnail preview of each video, their

assigned unique ID, and their corresponding weekday, users could select watch video to inspect and explore more.

the noisy labels from the neural network, i.e., P (G1:t |E1:t ) where Gt
= {Gt

1, ...,G
t
n } is the set of ground labels at

frame t and Et = {Et1, ...,E
t
n } is the set of corresponding noisy evidence labels. The top layer was designed as

an łexplanationž layer in order to (1) remove the noise from the GoogleNet labels and (2) model the temporal
relationships between the ground (true) labels. The model was trained on 30 videos with a vocabulary of 35
labels. Explanations were computed on the inal trained model by formulating them as two standard probabilistic
inference queries: posterior marginal (MAR) and top-k most probable explanation (MPE). The MAR query seeks
to estimate the probability of the true label given noisy labels obtained from GoogleNet while the top-k MPE
query seeks to ind the top k most likely assignments to the true labels.

3.1.3 Main Interface. We designed an interactive video activity searching tool to allow users to build speciic
queries and sort the videos from the dataset. The design of this tool was motivated from and was built on indings
from an earlier version of this tool [46] that focused on a more controlled scenario in which participants would see
a set of speciic examples. By grounding the exploration capabilities of the design, we tailored a simpler interface
for a similar model where participants were asked to review and evaluate the correctness of the model predictions
to yes/no queries before we evaluated their mental models of the XAI system. While the user experiment led to
insightful indings, it failed to capture diferences with user mental models, to which we believe a few factors
contributed. Most importantly, to form mental models, users need to explore the interface freely and on their
own terms and pace (as they most likely would in the real-word applications). These observations and indings
from our prior work inspired us to opt for a new exploratory, open-ended interface and system design with a
less controlled task to provide more opportunities for users before we try to capture their mental models. In
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Fig. 2. When clicking on the watch video buton in the main interface, as seen in Fig. 1, participants would see a modal to

allow them to watch the video. (A) showed the selected query and whether the query is found or not found in the video (B).

If they were in the explanation presence, they were shown all the video segments that were used to come up with the answer

(found/not found) under the progress bar (C). They were able to click on each of the available segments to see the model

justification based on the relevant activities found in the segment (D), as well as the system’s confidence score in all the

components it detected within the selected segment (E).

our new tool, we deine each activity using three component types: Action, Object, and Location. Fig. 1 shows
the overview of the interface. The top of the screen has a simple query builder where users can input speciic
component combinations or select a generic form (e.g., any action). After searching, the interface would organize
the videos into two lists based on whether the model found the searched activity in each video or not. The XAI
system showed thumbnails for each video to distinguish them from the other videos in the list. Each video was
assigned an id number and day of the week to help users track how the system responded.

3.1.4 Explanation Interface. By clicking on a thumbnail, a modal overlay would open where users could watch the
video and see the model explanations to examine why the video was categorized as a match (or non-match) for the
query. Fig. 2 shows the three explanation elements for each video that aimed to assist the users in understanding
why the model matched the query with the video. Directly under the video progress-bar (Fig. 2.C) was a series of
video segments that highlighted the most relevant set of frames used by the model to answer the current query.
Clicking a video segment updated the information presented in the other two explanation elements: (1) The
detected combinations (Fig. 2.D) listed the top 3 queries that the model associated with the currently-selected video
segment and (2) the detected components (Fig. 2.E) showed the model’s conidence about the activity components
detected separately in this video segment. Note that the explanation interface was similar to the one used in our
prior work [46], showing high-idelity, post-hoc explanations from the XAI model.

3.2 Research Goals and Hypotheses

For this study, we were primarily motivated to understand the role of irst impressions on a user’s mental model
formation. As one of the main motivations behind XAI research is to improve user understanding and mental
models of intelligent systems [18], we deemed to test whether and how the addition of explanations can afect
user mental models, given that users might have formed initial biases in their assumptions towards the system.
Therefore, we designed a policy-veriication task, where the system described in Section 3.1 was used to verify
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whether a set of kitchen guidelines and policies are being followed by the people performing cooking activities.
This was a task, exploratory enough to allow users to freely test and observe various system predictions to build
a mental model of both system weaknesses and strengths. Moreover, with an open-ended and real-world scenario,
we are able to generalize our indings to other intelligent decision aids. We designed a study where participants
observed the same set of policies, while we controlled that earlier in the usage, some observed policies that
expose system weaknesses while others observed the policies that exposed system competencies. Also, with each
order, some participants were provided explanations while others were not. By comparing these conditions, our
evaluation explored how users’ interpretation of the same system may be diferent based on their experience
of system performance with or without the addition of explanations. These goals and research question are
summarized in the following set of hypotheses:

• H1: Encountering model weaknesses early-on will lead to less usage and reliance compared to encountering
model strengths early.
• H2: Positive irst impressions can improve user mental models while negative irst impressions can impair
them.
• H3: Regardless of the order of encountering model weaknesses and strengths, model explanations help
decrease or eliminate the efect of anchoring bias on user reliance on the system.
• H4 The addition of explanations will signiicantly improve user task-performance and mental models by
increasing their understanding of AI system weaknesses and competencies.

3.3 Experimental Design

After describing the intelligent system and the goals of the study, we turn our attention to the study design
details.

3.3.1 User task. Using the XAI system described in Section 3.1, we sought an exploratory task to allow the
participants to use and experience the system and build a mental model of it. As we were also considering a task
that did not require any expertise or professional training, we used a kitchen policy scenario, where participants
were given a set of kitchen rules and policies and were asked to determine, using the system, which of the policies
were being followed by the kitchen staf.

We generated intricate policies that generally required users to build and test multiple queries in order to
encourage further use of the intelligent system. Each policy was designed to either expose model weaknesses
(i.e., components that were misidentiied or remained unidentiied) or model strengths (i.e., those components
known to be consistently identiied correctly). Due to this design, we ended up with 4 policies focused on system
weaknesses and 4 policies focused on system strengths. Additionally, we used one policy as attention check,
which was unique since it was not ubiquitously followed by the kitchen staf, but would sound logical to users
not watching the videos: łEmployees wash their hands immediately after entering the kitchenž. Ultimately,
participants received nine policies to interpret and were asked to determine their truthfulness in a set of thirty
cooking videos. Policies were simple statements of fact that used components available in the query builder,
like łEmployees must not use pineapples more than 3 days a weekž or łCarrots are only cut on rectangular
cutting boardsž. Additionally, since the post-task questionnaire asked users to report on their mental models and
usage of the system, we repeated components in multiple policies to increase memorability and to support user
understanding.
The interface included a list of policies (a hidden panel on the left side of the screen until the participants

decided to open them by pressing the łRules and Policiesž on the top left corner of the screen, as seen in Fig. 1.A),
and participants indicated if each was met with yes and no buttons.
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Fig. 3. Examples of the mental model questions for the user study. (A) The user estimated the accuracy for cucumber was

70% and had a high confidence in their estimation. (B) Frame-query estimation where the user guessed whether the system

matched each frame to the query and rated their confidence in their response.

3.3.2 Conditions. To address our goals and hypotheses, we designed a 2x2 between-subjects user study with two
independent variables: (1) policy order and (2) explanation presence. Participants were assigned one of the four
conditions randomly and everyone completed the same task. We controlled the order of observing policies so
that some participants were exposed to system weaknesses irst while others were exposed to system strengths
irst. We also maintained that the attention check policy would always remain in the middle of the list of policies.
Ultimately, all participants observed the same set of policies, but with varying order. In pilot testing, we observed
that participants consistently examined each policy in sequence starting from the top of the list, so we relied on
this behavior to control for the policy order factor. We also updated the system interface described in sections 3.1.3
and 3.1.4 to match the assigned condition. We changed the video thumbnails to show the most relevant frame for
the with explanations conditions and the middle frame for the no explanations conditions. Also, while those in the
with explanations conditions observed all the three explanation elements within the explanation interface, the
participants in the no explanations conditions were only provided with the video player (i.e., only elements (A)
and (B) in Fig. 2).

3.3.3 Measures. In addition to interaction logs, we asked participants to complete four post-task questionnaires
designed to quantify and explore the limits of users’ perception of the system’s strengths and weaknesses (i.e.,
their mental models), as well as usage and reliance. We selected two types of questions for assessing mental models.
The irst, as shown in Fig. 3.A, asked users to estimate the detection accuracy for eight activity components we
selected that appeared in the policies frequently. Some of these components were from model weaknesses (e.g.,
pineapple) and some of them were from model strengths (e.g., carrot). Estimation of accuracy is an established
known method for estimating general user understanding of model performance and mental model of system
capability (e.g., [26, 40, 44]). With a slider, users indicated how accurately the system detected each component
(0ś100%) and also marked their conidence (low or high) in their answer. In the second question, as seen in
Fig. 3.B, the participants were given an activity query with a set of 4 video thumbnails and were asked to predict
whether the system would categorize each thumbnail as a match or non match using their mental model of the
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Policy Review Task

Subjects reviewed policies & evaluate whether 

they are being followed.

Explanation Presence determined by condition.

Policy Order determined by condition.

Background
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Study
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Usage and
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Fig. 4. An overview of the study procedure. Participants were mainly asked to review a set of kitchen policies and verify

whether each of them were being followed. Ater finishing the main task, we measured their mental model of the model’s

strengths and weaknesses through two sets of prediction tasks (as seen in Fig. 3).

system. They were also asked to rate their conidence in their prediction (low or high). We provided three queries,
each with four assigned thumbnails, making a total of 12 frame-query predictions per participant. This measure
was inspired by prediction tasks which are another established method in assessing and measuring the user’s
mental model of AI/XAI systems [22, 40].
We then asked the participants to rate both usage and helpfulness for each interface element on a 5-point

Likert scale. These measures were adjusted for participants based on their explanation condition (i.e., they were
only asked about components they saw). Finally, they rated their estimation of the model’s overall accuracy in
percentage, as well as answering a few free-response questions describing any noticeable weaknesses or feedback
to the researchers.

3.4 Procedure

In a single online session, participants completed the following, as summarized visually in Fig. 4. The research
was approved by the organization’s institutional review board (IRB). All participants took about 20 minutes to
verify all the policies. After observing the study’s informed consent, participants were asked to complete a brief
demographic background questionnaire.
Participants were then introduced to their task via video tutorial that described the task as well as how to

form a query by providing an example. To help participants understand the task better, we designed a tutorial
video, introducing a hypothetical restaurant owner who asks the participants to use the intelligent tool and
verify whether the kitchen rules are being followed by her employees by inspecting the surveillance footage
from the past week. Participants were informed that one food was prepared by one chef per video and that there
were six videos per day of the week (i.e., 30 videos in total). The tutorial then described how to use the tool and
how the task can be achieved. To avoid learning efects, the tutorial used an extra policy to demonstrate the
interface functions. We created two versions of the video for each of the with explanations and no explanations
conditions. We also included a summary of the tasks and important considerations on the main page under the
query building tool for users to refer to during the study.

After the tutorial, the main task had participants verify nine relevant kitchen policies listed in a sidebar. After
answering all nine policies, the participant continued to the post-study questionnaire to evaluate their mental
model and understanding of model weaknesses and strengths (more detail provided in Section 3.3.3).

3.5 Participants

We recruited a total of 116 participants from the university graduate and undergraduate students to complete the
study online for class credit. The participants consisted of 78 males and 38 females. After carefully investigating
the responses, we removed a total of 6 participants since they did not pass the attention check. Of the 110

ACM Trans. Interact. Intell. Syst.



1:12 • Nourani et al.

remaining participants, 54 observed explanations: 28 of whom saw strong policies irst and another 26 observed
the weak policies irst. Of those provided no explanations, 29 observed strong policies irst while the remaining
27 initially saw weak policies. All participants were compensated, including those who did not pass the attention
check.

4 RESULTS

In this section, we present the measures of our study and provide an analysis of the results. The indings of
this paper were previously accepted and presented as a CHI 2020 extended abstract [43] and later, an IUI 2021
conference paper [45]. The current manuscript serves as an extension of our prior work, in which we provide a
conceptual model of user past experiences in the lieu of the results from our previous indings and other relevant
work. Thus, we draw conclusions from these indings to discuss the conceptual model user’s past experiences. To
learn more about the conceptual model, please refer to Section ??.
Before performing data analysis, two steps were taken to avoid certain problems caused by performing an

online study. To ensure the quality of participant responses without having a researcher present during the
study sessions, we added an attention check policy and removed all of whom did not pass the test. Additionally,
to account for some participants taking breaks during the task, we adjusted the task completion time by not
counting any period of inactivity longer than ive minutes. For each of our measures, we used a two-way factorial
ANOVA for the main efect and Tukey HSD post-hoc testing for signiicant interaction efects, when applicable.

4.1 User-task Performance

First, to test our hypothesis about user-task performance, we tested both task time and task error to test. Task time
is deined as the amount of active time spent on the policy review task. Task error was measured as the proportion
of policies that the participant answered incorrectly. No signiicant efect was found for explanation presence.
However, participants in the weak irst conditions had signiicantly less error in their answers to the policy
questions than participants in the strong irst conditions, with F (1, 106) = 6.55, p < 0.05, η2p = 0.058. No evidence
of an interaction efect between explanation presence and policy order was observed. Additionally, no signiicant
efects were observed on task time. Participants in the with explanations conditions made signiicantly fewer
queries per policy compared to participants in the no explanations conditions, with F (1, 110) = 4.30, p < 0.05,
η2p = 0.045. Fig. 6.a shows the distribution of the task-error results across the conditions.

4.2 Component Accuracy

After completing the policy-review task, participants were asked to estimate the model’s detection accuracy
(percentage) for several components as described in Section 3.3.3. An example question for this measure is shown
in Fig. 3.A. We selected these components so that ive corresponded to system weaknesses (low model accuracy)
and four to system strengths (high model accuracy). We compared the participants’ perceived accuracy of each
component with the system’s actual accuracy for that component. Since our task and interface primarily had
participants focusing on the matches returned by the system, we selected the system’s positive predictive value
of each component as the metric for system accuracy. Additionally, we only considered system performance on
the videos that were used in the task.
For analysis purposes, we used the average error in percentage for both weaknesses and strengths for each

participant separately, i.e., two metrics per participant. A similar approach was used for the conidence scores.
The reason for this decision was to be able to compare the user’s mental model of both system weaknesses and
strengths and understand how each independent variable afected this understanding. We will discuss each of the
two separately below:
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Fig. 5. Mental model metrics. (a) Participants’ error of estimation for component accuracy (below 0 is underestimation). (b)

Percentage of components for which participants rated as being confident in their estimation. (c) Percentage of frame-query

pairs for which participants felt confident in their predictions. The last two plots are based on strength-detection (as described

in Section 4.2)

Weakness Detection: For components that corresponded to system weaknesses, the statistical tests did not
indicate signiicant diferences across the conditions for neither the accuracy nor conidence.
Strength Detection: For components that corresponded to system strengths, participants who observed weak-
nesses irst signiicantly underestimated the model’s detection accuracy compared to those who saw strengths
irst, with F (1, 106) = 6.24, p < 0.05, η2p = 0.056. Additionally, participants who observed weaknesses early-
on were signiicantly less conident about their estimations compared to those who saw strengths early, with
F (1, 106) = 3.94, p < 0.05, η2p = 0.036. We did not observe any signiicant efect based on explanation presence on
the user’s strength-components’ accuracy estimation or the conidence in their estimations. Fig. 5.a and 5.b show
participant responses and their conidence across the conditions, respectively.

4.3 Frame-uery Prediction

Additionally, we asked participants to predict what output the system would have on a given frame-query pair,
as observed in Section 3.3.3. An example of this prediction question can be seen in Fig. 3.B. We did not observe
any signiicant diferences among the conditions for the prediction accuracy. The mean prediction accuracy
wasM = 0.599 with a standard deviation of SD = 0.127 for participants with explanations andM = 0.601 with
a standard deviation of SD = 0.148 for participants without explanations. This shows that users’ estimations
were barely better than guessing. However, a signiicant efect was observed on the conidence participants
had in their responses. Participants with explanations were signiicantly more conident in their predictions
than those without explanations, with F (1, 106) = 4.12,p < 0.05,η2p = 0.035. There was also a signiicant

interaction efect between explanation presence and policy order with F (1, 106) = 5.20,p < 0.05,η2p = 0.047. A
Tukey multiple comparison test showed the following signiicant interactions: Among the participants with no
explanations, those who observed strong policies irst were signiicantly more conident than their counterparts
(p < 0.05). Participants with system explanations and strong policies irst were more conident than those with
no explanations and weak policies irst (p < 0.05). Finally, of the participants who observed policies relecting
weaknesses early on, those who had system explanations were signiicantly more conident than those without
explanations (p < 0.01). No diference in these efects was observed by splitting the frame-query pairs into those
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Fig. 6. Reliance and Usage metrics. (a) Participant error on the policy task (Percentage). (b) Responses to the question "How

much did you use this element?". (c) Responses to the question "How helpful did you find this element?". The last two were

measured on a 5-point Likert scale, with higher values indicating a higher rating of helpfulness and usage.

corresponding to system strengths and system weaknesses as we did with component accuracy. Fig. 5.c shows
the conidence of the participant’s responses among the conditions.

4.4 Explanation Usage and Helpfulness

After inishing the mental model questions, we asked the participants to report their usage of diferent interface
components and how helpful they found them during their interaction period. Particularly, we were interested
in the responses from those in the with explanations conditions about the provided system explanations; i.e.,
video segments (Fig. 2C), detected combinations (Fig. 2D), and detected components (Fig. 2E). Both usage and
helpfulness were measured through a 5-point Likert scale. To run a more accurate analysis based on these three
explanation types and policy order , we deined explanation type as a new independent variable for the analysis,
and then performed a two-way independent ANOVA on explanation usage and explanation helpfulness. The
results show participants who encountered weaknesses irst reported a signiicantly lower rate of usage of system
explanations than participants who encountered strengths irst, with F (1, 156) = 4.76, p < 0.05, η2p = 0.030.

Additionally, we found that regardless of policy order, participants strongly preferred the video segments (Fig. 2C)
in terms of both helpfulness and self-reported usage, with F (2, 156) = 9.77, p < 0.001, η2p = 0.111 for explanation

helpfulness and F (2, 156) = 16.70, p < 0.001, η2p = 0.176 for self-reported explanation usage. We also analyzed
user behaviorÐcaptured through interaction logsÐto understand the usefulness of explanations by measuring
how many queries participants performed on average for each policy. Participants who had system explanations
completed the policy review task with signiicantly fewer queries per policy than participants who did not have
system explanations, with F (1, 106) = 4.94,p < 0.05,η2p = 0.045. No efect of policy order was observed for the
number of queries made. Fig. 6 shows the self-reported usage and helpfulness of the diferent explanation types
and the number of queries performed based on condition.
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5 DISCUSSION

Our results demonstrate signiicant efects of irst impressions on mental model formation, user reliance, and
usage of the intelligent systems. In this section, we discuss the general indications of our results as well as their
limitations and provide implications for system designers and opportunities for future work.

5.1 Interpretation of the Results

Participants in the strong irst conditions had signiicantly more user-task error compared to those in weak irst
conditions. While this might seem counter-intuitive, it can be explained when compared to the indings from
usage and helpfulness, as those who encountered system strengths earlier used explanations signiicantly more
and found them to be signiicantly more helpful in the task compared to those who encountered weaknesses
early. This indicates that observing strengths irst can cause users to rely on the system more than they should
(i.e., automation bias), while seeing weaknesses in the beginning can prevent this problem.

On the other hand, users in the weak irst condition had problems forming their mental models of the system
competencies and strengths. They signiicantly underestimated the system capabilities while also having less
conidence in their estimations. These users are skeptical of system strengths but not conident in their skepticism
because the weaknesses they observed earlier obscured their judgment of the system capabilities. This causes
them to rely more on themselves rather than the model, leading to more confusion when shaping their mental
model.

Participants in thewith explanations conditions made fewer queries on average to answer each policy than those
in the no explanations conditions, while task performance was similar regardless of the presence of explanations.
One interpretation of this result is that the presence of explanations allowed users to achieve the same level of
accuracy in fewer queries, thus they had increased task eiciency in terms of how many questions they needed
to ask before being able to make their decision. However, this is only a hypothesis and due to the open-ended
nature of this aspect of the study more research is necessary to help verify this efect.
We designed the frame-query prediction task to measure the user’s granular mental model based on the

speciics of the system. Though we did not observe any signiicant efects on the user’s prediction, we did observe
signiicant efects for the user’s conidence in their prediction. Participants were more conident about their
mental models when explanations were present. However, given that the mean for their original predictions were
consistently around 50% in all the conditions (which is similar to guessing), we can conclude that these relatively
high reported conidence scores are overconidence. Our interaction efects show that without explanations,
users in the strong irst condition were more conident about their mental model, which we suspect is due to
their automation bias, as discussed before. However, we observe that with explanations, usersÐregardless of
their policy orderÐwere more conident about their estimations compared to without explanation condition in
weak irst order. This might indicate that users can experience overconidence in their mental model either when
explanations are present or when strengths are observed earlier. However, we observed this overconidence and
overreliance through multiple tests for strong irst order, showing that the order efect plays a more important
role on a user’s mental model than explanation presence (this can be supported by our results related to user-task
error: users in weak irst condition made fewer errors regardless of their explanation condition). This suggests
that explanations alone cannot solve the strong bias created by irst impressions.
Overall, these results suggest that unlike the general belief that model explanations can increase user under-

standing, they might not necessarily be beneicial. Explanations might cause a misconception in the users that
they understand how the model works when, in fact, they do not. As shown by previous research in psychology,
overconidence (in this case, in the form of overprecision) can have serious consequences [14, 41]. Similarly,
previous research suggests overreliance can cause several problems [7, 62], and our results provide a clear example
of users making more errors due to automation bias. First impressions have strong inluences on human’s minds
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towards information [72], and as shown by our results, they can be strong against automated systems as well. We
would encourage future research into mitigating such biases, as they can have lasting efects on users’ minds. More
intensive and meaningful user studies are needed with realistic systemsÐas other researchers (e.g., [2, 12, 38, 39])
have also arguedÐto expose such biases and ind techniques to (1) make users aware of their biases, (2) prevent
users from forming new biases, and (3) help users rectify their own misconceptions and inaccuracies in mental
models.

5.2 Design Implications for Intelligent System

With more complex and exploratory systems, the role of instructions and guided training becomes more inevitable;
that is, allowing the users to use the system without interventions might afect how their mental models are
shaped. With more critical tasks, it might be beneicial for the system to guide the formation of the mental model
early-on to help users develop a more accurate foundational understanding of the system before actually using it
in practice to make important decisions. Through this initial training phase, designers can control what kind
of predictions users observe and in what order they are observing them. These decisions are task-dependent
and can be made based on the priorities in that system. For instance, if sacriicing human-task accuracy (due to
errors made from automation bias) to encourage the formation of more accurate mental models is acceptable, the
introduction might focus more on showing system strengths earlier in the usage. Designers might also choose to
sacriice the mental model formation since they want to limit the number of mistakes made by the users, and
thus, they can focus on highlighting more errors earlier in the usage. However, most designers might strive for
the best of both worlds: limit the user mistakes by avoiding automation bias while allowing users to maintain
an appropriate mental model of the system. Based on our indings, users who observed strengths earlier made
more errors but formed a better mental model of the system strengths. Considering this inding, in the initial
training, designers can guide users’ early observations toward model strengths but also intervene and show errors
occasionally to balance users’ attention with errors as well. When errors are shown, designers can focus more on
explaining why they happen. This can be done by altering explanation type, scope, and focus and diferentiating
it from the explanations provided for the correct predictions. Note that this is only possible in guided training as
designers know what instances are correct and which are wrong.
Theoretically, a higher-level explanation could help users scafold more accurate mental models by irst

introducing how the system works before using the instance-level explanations. Previous research suggests
that global visualization and explanations can help users form a more appropriate perception of how the model
works [40]. Allowing users to explore and understand how the model works on a higher level might help users
form a mental model before encountering the intelligent system for the irst time. Future research needs to test the
extent of information suicient for global visualizations for mental model formation, and whether this approach
is efective for avoiding ordering and anchoring biases when using instance-level models. Finally, designers
need to consider the efect of irst impressions when designing explainable interfaces and be aware that the sole
addition of explanations cannot circumvent bias formation. Comparing various types of explanations against one
another (e.g., why and how explanations [2, 12, 32]) to understand which method works better against certain
biases, or incorporating multiple explanation scopes within one interface might allow users to decide what they
want to explore to understand the model decisions better. For example, with an analytical tool, a user can look
for diferent types of information and explanations from the model when encountering errors to improve their
understanding of the model.

5.3 Limitations and Opportunities for Future Work

In this research, we studied how ordering biases can afect a user’s mental model and reliance formation in
intelligent systems and what role explanations play with such biases. Our study presents novel indings that
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highlight the importance of users’ irst impressions on their formed mental model of the intelligent system. The
results demonstrate that when encountering system strengths earlier in the usage, users built a better mental
model of the system strengths as they used the system explanations more frequently. But, positive irst impressions
can lead to automation bias and more errors as the user is overconident in not only the model’s strengths but
also the weaknesses of the system; and they generally over-rely on the system. In contrast, when encountering
system weaknesses early-on, users tend to rely more on themselves and make fewer errors; likely because they
develop a mental model that is skeptical of the system strengths due to their negative irst impressions.

In this study, we focused on a machine learning technique that produces high-level explanations with a novice-
friendly explanation interface (e.g., instead of using probabilities, we showed visual bars). While we believe our
results can generalize for various real-world systems incorporating this class of explanations, these results might
not generalize for low-level, more technical explanations. Future research needs to test and compare ordering
bias with these explanations as well. Further, since our system employed instance-level and local explanations,
additional research is needed to assess whether these results hold for higher-level, global intelligent systems.
Due to the nature of the design for our query-building tool, when users searched for an activity, we divided

the video into two categories of matched and not matched based on whether the system detected the activity
within each video. The detection is of course not always correct, i.e., a system might categorize a video as a
match when the activity did not take place in the video (false positive error) or categorize a video as a mismatch
while the activity is in fact taking place in the video (false negative error). For most of the activities, the number
of matched videos was smaller than the number of not matched videos, and thus, users needed to explore and
view fewer videos to detect false positives. Since it was easier to determine false positives, we expect that the
participants would fail to catch lots of false negative errors, i.e., the videos that the system failed to match for
the query. As a result, some system weaknesses were harder to identify, potentially leading to improper mental
models of system weaknesses. We suspect that this is the reason the study could not ind evidence of diferences
between the conditions based on a user’s mental model of the model’s weaknesses. Future research may beneit
from reined evaluations focusing on both error types to test user’s mental model formation for both strengths
and weaknesses.

6 CONCEPTUAL MODEL OF USERS’ PAST EXPERIENCES

The goal in the presented study was to investigate how anchoring bias can impact mental model formations with
XAI systems. While anchoring bias is an important bias to explore, diferent types of experiences can introduce
anchoring efects. Even still, anchoring bias is only one of the many possible types of biases. Whether conscious or
unconscious, human biases initiate from the complicated human brain, where memories, past experiences, social
pressures, and heuristics exist [60]. Users’ backgrounds and past experiences afect how they see and experience
the world and form and are afected by cognitive and societal biases. The indings of this paper, in lieu of other
prior work, motivated us to dive deeper to investigate how people’s collaborative eforts with intelligent tools
can be afected by their past experiences. With people coming from diferent backgrounds, types of expertise, and
social circles, it is crucial to understand how such diferences can afect usage behaviours and user perceptions of
the systems. To better understand possible implications for usage efects and design choices, we formalized and
developed a conceptual model of users’ past experiences along with associated factors and outcomes that might
inluence user behaviours.
In this section, we present a candidate conceptual model and explain how diferent categories apply to user

interaction processes. We reference existing literature as examples of points for each of the categories. We will
irst describe the model as a whole, and will further go deeper in the details in each category.
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Fig. 7. An overview of the conceptual model of users’ past experiences in hte context of human-AI collaborations. The model

works based on time, where each box represents time of experience: long-term past experiences, short-term past experiences,

and present usage. Each of the boxes includes a set of factors that influence user actions that lead to certain outcomes. The

dark purple arrows (from let to right) demonstrate how the past experiences afect those taking place more recently. As the

time goes by (i.e., present turning to past), the state of each of the factors update based on more recent interactions. This

constant back and forth between present, short- and long-term pasts is denoted by light purple arrows (from right to let).

6.1 Model

Here, we present the conceptual model of users’ past experiences. A summarized overview of the model is seen in
Figure 7. In this model, we explore how user’s past experiences afect their behaviours with an intelligent system.
As seen in Figure 7, we categorize the concepts based on the timeline of usage. At a high-level, we divide the time
to long-term past experiences and current usage. The long-term past experiences include user backgrounds and
experiences in the past, prior to using the system, while the current usage stage indicates the period since they
started interacting with the tool. As people continue using the system, their recent perceptions and experiences
with the tool inluences their upcoming interactions and usage. Thus, current usage consists of short-term past
and present phases.
For each of these categories, we include two types of elements: 1) factors and 2) outcomes. The factors refer

to the those human behaviours that inluence user choices, interactions, and decisions, ultimately leading to
certain behavioral outcomes. Despite being referred to as outcomes, they are not easily observed nor can they
easily be measured; in fact, their existence can easily be overlooked by system engineers and designers due to
their abstract nature, provoking unpredictable usage behaviours. Speciically in our model, with current usage,
outcomes from present interactions can become or contribute to the factors in short-term past. Changes in the
factors in short-term past may alter the corresponding outcomes, and once again, the outcomes from short-term
past are become the factors in the present interactions. As such, this łiterativež cycle of usage continues (lowing
with the nature of time, with future turning to now, and present becoming short-term past and later, long-term
past, and the shadows of the past afecting the present actions and behaviours), shaping the entirety of human-AI
collaborations. This iterative process is denoted in the model with the purple arrows inside the current usage
box. Similarly, individual past experiences and backgrounds can afect how each user perceives and utilizes
AI applications. Some of these experiences and exposures to AI technology changes, the more they use such
applications. These so-called łcurrent usagesž become part of the longer-term past experiences and exposures over
time, with the past constantly changing and shaping the person’s usage behaviours. This iterative back-and-forth
is also denoted by arrows between the dotted categories (i.e., long-term past and current usage).
We continue this section by diving deeper into the main concepts of our conceptual model, referencing to a

non-exhaustive list of related work in the human-centered AI and XAI research ield. The summarized overview
of these papers with respect to these concepts can be found in Table 1.

6.1.1 Long-Term Past Experiences. This category includes prior experiences, events, and circumstances that
inluence how users perceive and interact with AI systems (As summarized in Figure 7). The factors in this
category not only causes certain behaviours during current usage, but also leads to formation of cognitive and
social biases (consciously or unconsciously), not easily altered. Here, we discuss these background factors based
on whether they were derived from personal or communal roots.

Personal factors originate from personal diferences. A key distinctions is rooted in users’ level of knowledge.
While there are many ways to factor in the diferences based on knowledge (such as level of education), in the
XAI community, users are most commonly compared based on their level of domain expertise and familiarly with
AI/ML, and in fact, many prior work has focused on studying usage behaviours based on such diferences in prior
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expertise. For example, in an earlier work [44], we looked into how domain experts and novices show diferent
trends in trust calibration and their perceptions of an explainable algorithm. Our results demonstrate that domain
expertise is directly associated with impression formation, which could be positive or negative depending on
when users face model errors during interactions. Szymanski et al. [70] look into how diferent levels of users’
expertise cause them to form diferent understandings of explanations. They found that users show diferent
preference patterns for textual and visual explanations depending on their level of expertise. Similarly in another
recent example, Ehsan et al. [16] explored how user background knowledge of AI inluences their perceptions of
diferent types of explanations, and they also found people show diferent behaviours towards explanation type
based on their expertise in AI. All these mentioned studies, alongside many more not mentioned here, provide
supporting evidence for and highlight the importance of keeping expertise and background knowledge into
account when designing intelligent systems.
In the current literature, comparisons between levels of background knowledge is done in a binary fashion,

where people were measured based on whether they have certain expertise or not; i.e., novices vs. the so-called
experts. However, it is important to study and explore background knowledge as an spectrum and in relation
with one another. For instance, the interplay between domain expertise and AI expertise could ultimately lead to
certain usage behaviour. Another open question is quantifying (or measuring) expertise. A majority of papers
that examine expertise as a factor rely on people’s self-reported perceived expertise [16, 46] or the researchers’
qualitative assessment of whether someone is an expert on a case-by-case basis [46, 70]. Such approaches propose
many limitations to the scientiic indings. For example, due to the Dunning-Kruger efect [13], experts might
underestimate their expertise while novices may be too conident with their knowledge. Broadly speaking,
people’s assessment of their expertise is highly subjective and people’s deinitions difer when they are asked to
assign ordinal numbers to their level of past knowledge. It is, thus, crucial to ind more objective, standardized
techniques to measure and report expertise, which presents an opportunity for future potential work.
The other personal factor from the past that we will discuss here is the memory of the past experiences and

usage of intelligent systems. Aside from a mental model speciically formed for a certain AI system and how it
works, people may form a broader mental model of AI technology. This mental model can be afected by personal
usage experiences in the past, and whether the past encounters of AI systems lead to positive impressions of AI
technology and world as a whole. However, such generalized mental models are also prune to be inluenced by
communal events, experiences, and circumstances. This means past experiences of others in the community can
shape how people within the community perceive AI systems. For instance, hearing about negative outcomes
of AI from others in social media may negatively afect people’s perceptions of AI. Such societal factors may
come from demographic social experiencesÐi.e., people from diferent demographic backgrounds might discern
AI diferentlyÐwhile they may also be due to social biases (such as conirmation bias). An interesting example
in this category is seen in the work by Ehsan et al [15]. They introduce a task scenario that provides examples
of past decisions from prior teammates in addition to the AI predictions and explanations to facilitate users’
decision-making. They describe this concept through a framework of Social Transparency, and discuss how
presenting such historical decision-making information can shepherd positive reinforcements such as improved
trust calibration and decision-making.

Overall, there still exist more open questions and future work opportunities with the communal than personal
past experiences. Firstly, we still lack proper understanding of how explanations can be designed for and to
beneit from communal/shared past experiences in ways that are beneicial to the users. More over, it is yet to be
studied how societal and mutual understandings of intelligent systems inluences current usage. While there have
been prior eforts in studying decision-making provenance and historical usage summary of the same system,
the implications of how others’ usage and perceptions of AI technology may afect one’s usage and perception
of AI applications is yet to be studied. This is still an open, yet important question that needs to be answered;
after all, humans are social beings and their collective past experiences and perceptions can afect them both
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individually and as a group. These are complicated scenarios that cannot be conveniently controlled through
a few user studies; but our incremental understanding of communal and social impacts of AI through smaller
problems can help with answering broader questions.

As seen in Figure 7, while long-term past plays a signiicant role on how users perceive XAI systems, current
usage, including the bufered past usage (or the short-term past that includes the past interactions with the tool
during the current usage session) and the present interactions, determines one’s perceptions and behaviours with
the system. Speciically, regardless of a person’s background and past experiences, an intelligent system has a
chance to prove itself and its worth to the end-user during each usage session. It is during this time that the user
decides whether to trust the model or not. It is then that they shape their mental models based on the predictions
(recommendations) and explanations. How the model actually behaves and how the explanations are designed
and included can consistently change the user’s attitude towards the model. In the upcoming subsections, we
will discuss the implications of current usage through an examination of short-term past and present.

6.1.2 Current Usage. When a user initially interacts with an XAI system, they only bring along those attributes
associated with long-term past, as well as its outcomes (i.e., their biases). Some of the biases are linked with
early-on usage of intelligent systems and can potentially determine the outcomes of the human-AI collaborations.
For instance, as we observed from the results of this paper [45] and our past work [44], irst impressions of the
XAI system afects mental model formations, conidence, reliance, and trust calibration.

Another example of early-on bias is availability heuristic, which refers to the user’s tendency to recall the
information received early-on more predominantly than the information presented later-on. While such bias does
not necessarily afect the user in the initial usage stage, it can be a more prominent factor as the user continues
exploring and interacting with the system. In our past work [26], we found that people tend to gradually lose
trust in the outcomes of a model when they were asked to provide correction feedback to model errors as early
as when they started using the model. While this might seem counter-intuitive, one way of justifying it is by
cognitive biases of this nature. First and foremost, we believe when people are asked to provide feedback to the
model, in their mind, ixing errors might be more salient than simply observing and agreeing with the model
outputs. This is an apparent example of availability bias. Moreover, as seen in our work [45], irst impressions
of an intelligent system can anchor users’ mental model formations. So, when they are negatively anchored
towards the model (i.e., by seeing model errors and having to correct them early-on), they form lawed mental
models of the system. Such examples present signiicant issues as human-in-the-loop systems heavily rely on
people’s providing accurate feedback. While end users desire the ability to control the behavior of systems they
rely on [68] and such feedback can successfully be used to incrementally update the model over time [17, 81], if it
results in negatively biased mental models of the systems, then they may not be able to provide optimal feedback.
Therefore it is vital for the AI system designers to be aware of the potential cognitive biases that may occur from
including humans in the loop and consider ways to prevent their users from maintaining their initial impressions
of the system, even after it has improved beyond its initial limitations.

When exploring the interplay between explainability, feedback, and human behaviours when using human-in-
the-loop systems, other interesting challenges may arise. For instance, Smith-Renner et al. [67] studied whether
model transparency can improve users’ understanding of the model and their tendency to ix these problems, and
whether asking people to provide feedback enhances their perceptions of the model and its improvements. While
their user studied presented thought-provoking indings, here, we will focus on one of them. They observed
that users expected the models to improve over time, even when they were not asked to provide feedback. Upon
further investigations, they found that users tend to believe that ML models łget better as they functionž. Though
their study did not investigate why this happens, they believe such misconceptions can be a result of prior
experiences or general misunderstandings, supporting our argument that long-term past (either personal or
communal) afect people’s perception of intelligent systems.
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Present usage results in numerous outcomes that are either measurable/observable behaviours (such as task
accuracy, speed, interaction behaviours, and level of agreement with the model) or abstract, perceptual outcomes
like trust and mental models. It is important to note that the abstract outcomes are those that are direct results
of the current interaction; i.e., the most recent fragment of information that can contribute to forming mental
models as opposed the complete mental model. Outcomes like trust and mental models require iterative reasoning
and interactivity. They can improve or deteriorate with time and usage, and based on the other outcomes. That
is why we describe an in-between stage, i.e., short-term past, that relects the most completed version of these
abstract outcomes, which we will discuss shortly.
As mental models are formed and users continue interacting with the system, the best, most current version

of the user’s mental model becomes a new factor that was not initially present upon the initial usage period.
How users perceive the model functionality and reliability, forms expectations of the potential outcomes, and
understand model weaknesses and strengths become important in the outcomes of the human-AI collaborations.
Mental models can determine when users lean toward trusting the model and when not; when they agree with
the system and when not; and how many errors they make in their collaborative task. A user’s most recent mental
model can also afect how their mental model is shaped and changed with current and future usages. While
mental models have been studied intensively in other ields, such as psychology and HCI, there are still many
potential opportunities to study them in the lieu of AI/XAI applications. For instance, how do users calibrate their
mental models over time? What factors can inluence how mental models are calibrated? Are there certain biases
that can lead mental models to be calibrated towards certain perceptions? When might explanations reinforce
existing biases and when might they reduce misunderstandings? There are so many open questions on how
mental models are shaped and can shape people’s perceptions of intelligent systems, that warrant future work in
this ield. We hope to have inspired future work to focus on addressing some of these challenges.

6.1.3 Short-Term Past Experiences. As users continue their session with an intelligent system, they start
building a rapport with the tool. With more interactivity comes a better ability to understand and calibrate
their trust and reliance through continued experiences. A user’s mental models start shaping as they form their
expectations and impressions of the system. Some of these impressions might be accurate while others may be
lawed. It can take iterations of user interaction and machine feedback for users to solidify their mental model of
any given system. The user needs opportunities to observe errors and mistakes from the system, make their own
mistakes and see how the model reacts, and see what the model is capable of. The gradual development of the
human-AI relationship can lead to beneicial or harmful outcomes. Much of the human-AI relationship may be
formed subconsciously and relect in the current usage behaviours. Here, we focus on two of these important
outcomes: trust and reliance.
Based on observations of AI performance, users decide when to trust the model and when not to. When

considered over time, users calibrate their trust to adapt to the system’s most recent behavior. However, several
factors may lead tomistrust in this process. Users may trust some outcomes that are incorrect or not trustworthy, or
they may distrust correct output. This diiculty in efectively calibrating trust may be consequential, compounding
with the efects of long-term past experiences to the quality and status of the formed mental models. A critical
consideration here is the presence of cognitive and societal biases. In our proposed conceptual model, we highlight
the importance of awareness for both factors and outcomes of past experiences related to the formation of biases
and perspectives of technology. Naturally, human biases can lead to certain assumptions and conclusions in
the background of their mind. When forming mental models, biases play a signiicant part in how perceptions,
expectations, and understandings are being formed. A clear example is the indings of this paper (i.e., Nourani
et al. [45]), which demonstrates how anchoring heuristic can strongly inluence mental model formation, the
positiveness of which relates to that of the formed irst impression. From a diferent angle, users can form biases
as a result of their interactions with the model over time. Depending on the application and the task, these biases
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can potentially be of many natures, such as biases towards the future outcomes of the model (e.g., inattentional
blindness, availability, hindsight, and anchoring bias), perceptions of AI and ML algorithms and technology (e.g.,
automation bias and expectation bias), or other people’s demographic representations within the tool (societal
biases). Such biases can ultimately afect current usage or even reside permanently in one’s subconscious.
With improved understanding of the model intentions in diferent scenarios and knowing when to trust the

machine outcomes, users can then decide when to rely on the model outcomes. Based on their trust, users not
only decide whether to rely on the model or not, but also when to do so. Knowing this is not necessarily an
instinct that comes easily. Rather, users need to see the model outcomes and evaluate other values that may not
be easily measured directly. For instance, in scenarios with diferent stakeholders involved, the satisfaction of
each of these stakeholders can motivate the system user to rely more on the outcomes. The user’s trust, mental
model of the system, and the level of reliance on the system are intrinsically intertwined.

Even though most of our discussion so far was based on irst-time usage and interaction with the system in a
single session, the points we made still apply to when users return to the system in a new session after having
used it before. In such scenarios, the prior interactions with the model are stored in the users’ mind; granted,
it even becomes the case that these experiences contribute to long-term past experiences. However, when the
users returns to start a new session, they have already formed perceptions of the system during the past usage.
In our conceptual model, the prior experiences and perceptions of the system are shown to current present usage
from the Long-Term Past category and Recent Mental Model as a factor in the Present category (i.e., in Figure 7).
Nonetheless, we should emphasize that the user will likely have a less clear vision about the system in mind.
This is the nature of the human brain: memories start fading with time. As such, upon starting a new session, the
user will pick back their mental model from the past exposure to the system, but their perceptions might difer
slightly from then due to the passage of time, which has similar implications for other usage factors, like trust
and reliance.This passage of time has similar implications for other usage factors, like trust and reliance. Studying
usage over time and over diferent sessions can be quite challenging; however, it is critical to understand how
human usage factors calibrate over the course of time and with multiple usage sessions. In a recent attempt
to study how irst impressions afect users in the beginning of every usage session in a long period of time,
Tolmeijer et al. [73] conduct a set of user studies that spanned across 6 days and consisting of three sessions.
Their main goal was to understand how irst impressions afect trust calibration over multiple sessions. This study
was complementary to our prior work [44], where we found that within one session, positive irst impressions
of the AI model leads to higher trust and users’ ability to calibrate their trust accordingly, while negative irst
impressions lead people to lose their trust and ability to adapt it over time. Tolmejer et al. change the accuracy
of the model in each session so that each session represented either accurate or inaccurate predictions. Their
results indicate that irst impressions matter not just internally, but also externally across sessions, speciically
when the system was often wrong (i.e., only one accurate session). Furthermore, this work demonstrates another
example of how understanding model problems (i.e., user mental models of weaknesses) can impact users’ trust
calibration. However, given that their study was held over a longer period of time, it can further conirm the
generalizability of our indings for more systems that are used over in real-world. One major diference with
our prior work [44] and the work by Tolmeijer et al. [73] is that the former utilized high-idelity explanations
while the latter did not. Hence, it is yet to be explored how these indings hold with longer term usage when
explanations are present, and how do explanations impact users and their irst impressions when they are used
over time. This is only one example open question in this area, while the study of changes and usage over time
still remains an neglected area of focus, presenting opportunities for future work.
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Table 1. Summary of topics from the papers discussed and presented as examples in Section 6. The topics in each column are

inspired by the findings of this paper and our candid conceptual model of user’s experiential biases. We carefully examined

each paper to check whether each topics were heavily discussed and/or directly measured in a given paper. For the biases,

we first examined whether any specific bias terms were discussed in the paper or not. In the later case, we analyzed if the

paper pays tribute to a certain bias that is not explicitly mentioned. For instance, Smith-Renner et al. [67] describe user’s

expectations of the AI model, which resonates with confirmation bias. While this table showcases a non-exhaustive list of

recent papers to support our arguments regarding our conceptual model, by referring to this list, we can identify some open

challenges that can be incremental to the findings of these papers. For instance, how does explainability help with user trust

with human-in-the-loop systems? Is it capable of mitigating users’ formed availability biases?

Paper Mental Models Trust Explainability Expertise Cognitive / Societal Biases

Nourani et al. [44] ✗ ✔ ✔ ✔ Anchoring Bias; Automation Bias;

Ehsan et al. [16] ✗ ✔ ✔ ✔ Automation Bias; Overconidence;

Szymanski et al. [70] ✗ ✗ ✔ ✔ Conirmation Bias;

Ehsan et al. [15] ✗ ✔ ✔ ✔ Societal Biases;

Tolmeijer et al. [73] ✗ ✔ ✗ ✗ Anchoring Bias; Reliance;

Nourani et al. [45] ✔ ✗ ✔ ✗ Anchoring; Overconidence; Automation Bias;

Smith-Renner et al. [67] ✗ ✔ ✔ ✗ Conirmation Bias;

Honeycutt et al. [26] ✗ ✔ ✗ ✗ Availability Bias;

6.2 Takeaways and Future Work

We presented and discussed our conceptual model of users’ past experiences in the context of human-AI collabora-
tions that is mainly relying on user’s prior / present experiences and impressions. We hope this organization sheds
light to the current gaps and open challenges in state-of-the-art research in human-centered AI and highlights
the importance of paying attention to user’s prior backgrounds, experiences, and expectations. Studying human
behaviours based on the timeline of usage and experiences can aid AI application designers to build systems
and tools more responsibly and better thought-through. Such systems should take advantage of user diferences
and utilize approaches to adapt the AI technology and its outcomes to user needs and variety of behaviours. We
use references from recent papers in human-centered AI community as example scientiic attempts to study the
concepts we present in our framework. These papers are summarized by main topics in Table 1. While we hope
our candid model can be beneicial at its current state, our future plan is to continue improving it over time by
performing an extensive analysis of the literature to reine the categories and organization of the topics.

7 CONCLUSIONS

In this work, we empirically explore how human subjects calibrate their trust in a policy review task with support
from an XAI tool. People who saw positive system behavior early on exhibited behaviors of blind overreliance
on the system output. That is, when one believes the system to perform well, they are likely to believe that the
system performs well in all situations and miss the frequent mistakes. Yet, when explanations are available, this
cavalier attitude is tempered and more accurate mental models develop. On the other hand, for people who saw
the system perform poorly early on, the addition of explanations did little to counteract their sour impression.
This is a testament to the relative weight users place on their initial experiential trust as opposed to the evidence
aforded over later trials. First impressions are important in XAI systems because human biases are prevalent.
This early dismissal can lead to the neglect of decision support aids and ultimately a fairly fuzzy mental model
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of how the system performs. In this work, we show how poor object detection and system failures early on
directly lead to underreliance and skepticism in future queries. While there was no signiicant diference in task
completion time, people who saw the system perform poorly at irst were more careful because they found
the system’s edge cases early on. Without clear evidence of the system’s competencies, users abandoned the
support provided and attempted to complete the task independent of the tool. We see that even the addition of
explanation components did not help users re-calibrate their expectations or encourage them to trust the model
even when it performed well. To the system designers, we recommend considering ways to balance the display
of system strengths and weaknesses when users begin working with or training on intelligent tools. Our work
reiterates the need to investigate additional ways to re-assess and adjust biased mental models to calibrate user
expectations, build a more complete understanding of the tool’s capabilities, and maintain the appropriate level
of trust in system output.

As the culmination of our previous explorations into the human factors associated with explanatory systems,
we conclude our paper by presenting an empirically-driven conceptual model of user’s experiential biases, where
we categorize human behaviours and impressions based on user experiences and backgrounds based on their time
in usage. To support our discussions and our categorization, we sought after and present example related work
from the human-centered AI research. We believe our organization can scafold future design considerations
for bias mitigation, prompt future research directions, and showcase methodologies from HCI/XAI that might
measure these efects.
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