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ABSTRACT

Research in interpretable machine learning proposes different com-
putational and human subject approaches to evaluate model saliency
explanations. These approaches measure different qualities of expla-
nations to achieve diverse goals in designing interpretable machine
learning systems. In this paper, we propose a benchmark for image
and text domains using multi-layer human attention masks aggre-
gated from multiple human annotators. We then present an evalua-
tion study to compare model saliency explanations obtained using
Grad-cam and LIME techniques to human understanding and ac-
ceptance. We demonstrate our benchmark’s utility for quantitative
evaluation of model explanations by comparing it with human sub-
jective ratings and ground-truth single-layer segmentation masks
evaluations. Our study results show that our threshold agnostic
evaluation method with the human attention baseline is more effec-
tive than single-layer object segmentation masks to ground truth.
Our experiments also reveal user biases in the subjective rating of
model saliency explanations.
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1 INTRODUCTION

With the recent and continuing advancements in robust deep neural
networks (DNN), the prominence of machine learning techniques
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for automated decision-making is growing. In such cases, expert
users, operators, and decision-makers can also take advantage of
advanced machine learning techniques to account for latent fea-
tures and assist in taking real-world actions. However, because of
the disparity between the sense-making process in humans and
the computational feature learning of machine learning models,
people require model transparency to be able to understand and
trust machine learning models. Thus, for more effective human-Al
collaboration, advancements in model explainability are needed to
support user understanding. This is the primary goal of recent in-
terdisciplinary research thrusts in Explainable Artificial Intelligence
(XAI). While a multi-faceted topic, the ultimate goal is for people to
understand machine models, and it is therefore essential to involve
user feedback and reasoning as a requisite component for design
and evaluation of XAI systems [25].

Research on interpretable algorithms has recently proposed var-
ious techniques to design inherently interpretable models [37] and
generate explanations for black-box models [33]. Interpretability
techniques enable user review of model reasoning and learning rep-
resentations for their correctness in accordance to design goals, law
and regulations, and safety requirements. Such evaluations could
potentially prevent adverse outcomes of Al-based systems—such
as unfair and discriminatory decision-making when performing
real-world tasks. However, with the complexity of interpretability
techniques and human cognitive biases, the question remains: how
should we assess the correctness and completeness of the evaluation
methods for machine learning explanations?

Different approaches have been proposed for evaluating inter-
pretable models and XAI systems at different stages of system
design [7]. In machine learning research, various computational
methods are used to measure the fidelity of interpretability tech-
niques with respect to the underlying black-box model [1, 13]. On
the other hand, in the field of human-computer interaction, human-
grounded evaluation approaches measure human factors such as
user satisfaction, mental model, and trust in XAI systems designed
for different tasks. However, there are fundamental differences be-
tween these evaluation approaches. Computational methods set
a precedent to objectively evaluate the model against a baseline
ground truth, yet they lack the ability to quantify human interpreta-
tions. On the other hand, while more descriptive in nature, human
subject studies tend to be more costly, imprecise, and subjective
to the task. Another major difference between these evaluation
methods is that once the human user is exposed to the evalua-
tion study setup, she can not unlearn the experience for another
round of evaluation. These differences raise the need to study the
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trade-off between objective ground-truth evaluation and subjective
human-judgment of explanations.

In this paper, we propose a human-attention baseline to quantita-
tively evaluate model saliency explanations. Our publicly available!
human-grounded benchmark enables fast, replicable, and objective
evaluation of model saliency explanations. Using this benchmark,
we study the relationship between subjective and objective evalua-
tion of saliency explanations by comparing our benchmark with
both binary feature mask ground truth (i.e., objective measure) and
user rating (i.e., subjective measure) evaluations. Specifically, we
are looking into the following two research questions:

e RQ1: What is the relationship between saliency explana-
tions’ evaluation results with objective ground truth and
subjective users rating?

e RQ2: How do user biases affect subjective rating of saliency
explanations?

We measure and report the correctness and completeness of
explanations based on the feature-wise mean absolute error be-
tween model saliency map and our ground truth baseline. Our
study results reveal the trade-off between objective ground-truth
evaluations and subjective human-judgments of explanations. Our
experiments also reveal user biases toward different model error
types and explanation visualizations in their subjective rating of
explanations.

2 BACKGROUND

The evaluation of model explanations and interpretability tech-
niques can be categorized in different ways [7, 25]. For instance,
previous works have examined the fidelity of interpretability tech-
niques to the black-box model [1, 13], evaluated correctness of
model explanations with ground-truth [8], as well as the usefulness
of explanations in different tasks and domains [16].

Recently, inspired by the call to understand how XAI impacts
user trust [10], Hoffman et al. [12] compiled a set of methods
uniquely situated for understanding the fuzzy conceptualization
of trust in these systems. Clearly, the trustworthiness of an expla-
nation goes beyond computer science literature and draws heavily
from the social sciences [15, 24] to study the similarities between
the user trust in machines and interpersonal trust [11]. As Shneider-
man discusses [34], XAl research can help dissolve the ambiguity
among researchers as it refers to human trust, reliance and safety.

However, in contrast to the context of machine learning trust-
worthiness, this paper focuses on evaluating the correctness and
completeness of explanations with the assumption of having high-
fidelity explanations. Also, we only focus on model saliency expla-
nations (e.g., gradient-based [33] and backpropagation-based [36]
techniques) which present a map of feature importance for indi-
vidual inputs as presented in Figure 3). The rest of this section
presents a review of related work on the two human judgment and
ground-truth based evaluation approaches.

2.1 Evaluation with Ground Truth

An objective way to quantify the correctness of model saliency
explanation is to examine it against a ground truth baseline. The
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ground truth is often defined by human annotation of representative
features (i.e., feature mask) and provides a baseline for quantitative
evaluation of explanations quality. Examples include annotations
of the object’s “segmentation mask” in natural datasets, e.g., [9],
and synthesized datasets, e.g., [27], that represent specific features
associated with the target class. Different similarity metrics, such
as Intersection over Union (IoU) (also called Jaccard index) and
mean Average Precision (mAP), are used to quantify the quality
of model saliency explanations or bounding boxes compared to
the ground truth. For instance, Li et al. [22] used IoU, between the
model saliency map from a Convolutional Neural Network (CNN)
and the ground truth segmentation mask from the validation set, to
measure their quality as a weakly-supervised semantic segmenta-
tion task. In another work, Du et al. [8] calculate the mAP between
the bounding boxes of an objects’ saliency mask and the ground
truth bounding boxes to evaluate their interpretability technique
as an object localization task. Similarly, in the text domain, direct
comparison of model attention explanations with human-annotated
sentences, e.g., evidence supporting the target label [38], provides
an explanation quality score [20]. However, the relationship be-
tween the evaluation of machine learning explanations and these
auxiliary tasks (i.e., binary object localization and semantic seg-
mentation) is not clear yet. Our studies reveal some aspects of user
feedback that are missing in the ground truth baselines but would
complement the evaluation of machine learning explanations.

In a review of limitations in threshold-based evaluations for
model saliency map, Choe et al. [4] present an evaluation protocol
to include a hyperparameter search for the 7 threshold for generat-
ing objects’ “binary mask” from the saliency score map. However,
unlike our proposed evaluation protocol, they do not consider the
pixel-wise evaluation of saliency score maps in the first place. Aside
from object segmentation mask baselines that annotate entire fea-
tures associated with the target class. Perhaps the closest works to
our human attention benchmark are Huang et al’s [14] and Das et
al’s [5] baselines for evaluating saliency maps for different machine
learning algorithms. Huang et al’s [14] gamified approach asked
participants to suggest regions of interest before then guessing
which areas previous users had suggested on the same images as a
method to capture more accurate user attention maps. Das et al. [5]
proposed the VQA-HAT baseline for evaluating saliency maps for
visual question and answering models. They test multiple game-
inspired methods for attention annotation by asking participants to
sharpen regions of a blurred image to answer a given question. The
resulting baseline is a human attention map that enabled object
identification by individual participants.

Similar to the previous benchmarks, our benchmark assembles
annotations from multiple unique participants to increase diversity
in responses. We go further by also calculating and assigning impor-
tance scores to features for creating generalizable human-attention
maps. In the next sections, we present a series of evaluation experi-
ments and argue that our proposed multi-layer human-attention
baseline is able to evaluate the completeness (i.e., the existence of
false-negative explanation errors) and correctness (i.e., the existence
of false-positive explanation errors) of model saliency maps.



Quantitative Evaluation of Machine Learning Explanations:
A Human-Grounded Benchmark

2.2 Human Judgment Evaluation

A common approach for evaluating machine learning explanations
is the direct review of model explanations with end-users for their
subjective feedback. Multiple papers have reported measurements
of users’ understanding of explanations as a proxy for usefulness
and interpretability of explanations [17, 29]. Others have measured
user-reported trust as a proxy for explanation goodness. For ex-
ample, Nourani et al. [26] and Papenmeier et al. [28] studied the
effects of explanation meaningfulness and ad-hoc explainer fidelity
on user reliance. Both studies show that model accuracy and expla-
nation fidelity impact users’ trust in the model and conclude that
providing nonsensical explanations (i.e., those that do not align
with users’ expectations) may harm users’ reported trust and ob-
served reliance on the system. With a crowdsourced evaluation
approach, Schmidt and Biessmann [31] present quantitative mea-
sures for system interpretability and human trust. They propose
that analyzing user interaction time can serve as a proxy for users’
understanding of the explanation. They recommend that model
explanations need to enhance the information transfer rate to users,
help users establish an intuitive understanding of system perfor-
mance and perform well independent from the user task. Along
similar lines, Hoffman et al. [12], describe how temporality, or the
amount of time one spends with a particular tool, is considered one
of the most significant factors in leading to accurate representations
of trust, system capabilities and expectations. Taking a different
perspective, Schneider et al. [32] inspected the effects of deceptive
model explanations in a user study. Their findings indicate that ex-
planations that are unfaithful to the black-box model can fool users
in accepting wrong predictions. Following a similar goal, Lakkaraju
et al. [18] present an approach to generate misleading explanations
in a case study with law and criminal justice domain experts. Their
study results found that misleading explanations were able to sig-
nificantly increase users’ trust. Conclusively, a more robust scale is
needed to evaluate explanation correctness and completeness as
various research show unjustified user trust can be developed with
user biases and deceptive systems.

Different papers have run user studies to evaluate the human
understanding of saliency map explanations from DNNs. For exam-
ple, Alqaraawi et al. [2] showed that instance explanations carry
new information to users, but model behavior remained largely
unpredictable for participants. In other work, Zhang et al. [39] com-
pared saliency explanations from multiple networks with human
explanations of objects in images. They performed a large crowd-
sourced study to directly compare machine learning and human
explanations and human feedback on model explanations. Their
results indicate that the features learned by some DNN models
are more similar to human intuition. To address the limitations
in human judgment evaluation studies, Lertvittayakumjorn and
Toni [21] defined a set of objective evaluation tasks for quantitative
evaluation of model explanations with respect to different explana-
tory purposes. They used three human-grounded tasks to evaluate
local explanation methods for their ability to reveal model behav-
ior, justify model predictions, and help users investigate uncertain
predictions. Overall, the review of previous research indicates that
the dissonance between machine learning models’ goal to learn
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Table 1: Details of the evaluation benchmark for human at-
tention masks in different datasets.

Domain Image Text

Dataset PASCAL VOC ImageNet 20 Newsgroup IMDB 50K
Number of classes 20 20 2 2
Samples per class 50 5 100 100

Total annotation

. 1000 100 200 200
sample size

discriminant features and human expectation for common sense ex-
planations (as presented in [39]) undermines the choice of using
human judgment for evaluation of machine learning models.

3 HUMAN-ATTENTION BENCHMARK

We captured human annotations of salient features to create this
human-grounded benchmark. Participants were prompted to se-
lect relevant regions in images and phrases in text documents that
they felt most represented the target subject or topic, respectively.
Figure 1 show examples of the resulting multi-layer masks derived
from aggregating annotations from multiple unique annotators for
each image. In comparison to the single-layer object’s segmenta-
tion map, the human-attention benchmark allows for a higher level
of granularity in the evaluation of saliency maps and reflects the
features most salient to human attention. Also, compared to hu-
man judgment rating evaluations, the human attention benchmark
enables reproducible and cost-efficient evaluation. The following
reviews the details of the benchmark specification, annotation pro-
cedure, and data processing.

3.1 Benchmark Specifications

The benchmark presents multi-layer masks representing what fea-
tures humans expect to be the most important representations of
a particular class. For each sample, we collect annotations from
10 unique annotators from the Amazon Mechanical Turk platform
that were instructed to select areas (in images) or words (in doc-
uments) that they deem most relevant to the target class. The
multi-layer mask generated by aggregating annotations for each
individual sample provides a more granular representation of at-
tributed features compared to the single-layer mask. Note that our
method—collecting multiple user annotations for human-attention
masks—balances the trade-off between objective annotation of pre-
cise feature-masks (i.e., segmentation mask) and subjective human
judgment of the representative features. Also, it is important to
mention that this human-attention baseline evaluates the explana-
tions’ correctness or trustworthiness of saliency explanations and
does not intend to measure the fidelity of ad-hoc interpretability
techniques to the black box models.

The development of this benchmark consists of a validation
subset from ImageNet [6] and PASCAL VOC [9] image datasets and
20 Newsgroup [19] and IMDB [23] text datasets. Table 1 presents
details for the number of classes and annotated samples from the
four datasets in our explanation evaluation benchmark. For the
PASCAL VOC dataset, 50 randomly selected samples from all 20
classes are annotated including Vehicles (airplane, bicycle, boat,
bus, car, motorbike, train), Households (bottle, chair, dining table,
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(a) Cat (b) Dog (c) Sheep (d) Cow

(f) Motorbike (h) TV/Monitor

(g) Horse

(e) Train

Figure 1: Examples of human annotations of salient features on images with the target class in the caption. (Top) Input images
with human-attention mask heatmap overlay. (Middle) Single-layer object’s segmentation mask for the target class. (Bottom)
Resulting multi-layer human attention mask. Each image is annotated by 10 unique participants. The salient areas are selected

by more participants and visualized with lighter shades.

potted plant, sofa, TV/monitor), and Animals (bird, cat, cow, dog,
horse, sheep) and other (person). To create a validation set from the
ImageNet dataset, we randomly selected five images from 20 classes
including living things (man, woman, cat, dog, bird, ant, elephant,
shark, zebra, flower, tree), indoor objects (chair, computer, ball,
book, phone), and outdoor objects (car, ship, airplane, house). The
images included in the benchmark cover a broad consideration of
complex scenes, where, for example, the target object may co-occur
in the same image at varying scales and/or lighting conditions.

For the text domain datasets, 100 randomly selected movie re-
views from each positive and negative classes of IMDB dataset are
selected. Similarly, 100 randomly selected text documents (with the
headers removed from samples) from the 20 Newsgroup dataset are
selected from two categories of medical (sci.med) and electronic
(sci.elect).

3.2 Annotation Interface and Procedure

To generate multi-layer human-attention explanations, we ask an-
notators to provide their interpretations of the salient features
that are most meaningful for the specific class from the data set.
Each sample is annotated by 10 unique annotators recruited from
Amazon Mechanical Turk (AMT). Recruitment advertisement for
Human Intelligence Task (HIT) required participants to have at
least 1000 previously approved HITs in AMT platform with the HIT
approval rate of above 95%. Recruited participants were walked
through a training slideshow of the task instructions and interface
controls at the beginning of their HIT. As a control, each training
slide was displayed on screen for two seconds before participants
were able to continue to the next slide. Afterward, they were asked
to agree to the IRB approved information sheet for data collection,
and continued to a set of 12 images or documents for annotation.

Participants were paid $0.40 for the image and text annotation HITs
to reach an average hourly pay rate of $10 an hour.

We designed two fundamentally similar human annotation in-
terfaces to capture human feedback for all image and text datasets.
Annotators used an interface with basic annotation tools in which
each document or image was presented individually. Task instruc-
tions prompted participants to select relevant regions or words that
they found “most representative” of the target object or topic. Each
annotation HIT started with the same two samples to serve as the
attention check and help the annotator adjust to the interface and
task. These were then followed by 10 samples from the main vali-
dation set. For image annotations, the annotators were specifically
asked to use their mouse to lasso “salient area(s) that explain the
target “object” in the image”. Similarly, for text annotations, partici-
pants were prompted to select relevant words in text documents
that they felt most representative of the target topic or class. For
example, for the movie review IMDB dataset, the annotators were
explicitly asked to “select words and phrases which explain the
positive (or negative) sentiment of the movie review”.

3.3 Data Processing and Storage

To generate multi-layer feature masks from multiple user annota-
tions, we run a union operation on all individual annotation that
displays what areas are most frequently selected by the annotators.
Figure 1 presents examples of resulting human-attention masks
for different images. Although specified in annotation task instruc-
tions, we also applied the exact segmentation mask of the target
object’s true pixels (only for image datasets) to remove the impact
of participants’ imprecision or hand jitter that might have included
the background pixels. The exact segmentation masks for images
are created by two authors and included in the benchmark. Human
attention masks for image datasets are stored as grayscale masks



Quantitative Evaluation of Machine Learning Explanations:
A Human-Grounded Benchmark

with the same size as the original images. The human attention
masks for text datasets are JSON objects with lists of index-word
pairs with human-attention scores in the range of 0 to 1.0. We did
not perform any feature filtering for text annotation samples. The
benchmark is stored in a public domain and free for research use.

4 EVALUATION EXPERIMENTS

In this section, we present multiple evaluation experiments on im-
age data to validate the proposed benchmark with empirical results.
These experiments compare three baselines: 1) human-attention
mask (our approach) as the ground truth, 2) segmentation mask
as the ground truth, and 3) human-judgment rating for evaluating
model saliency explanations. Our goal is to understand the relation-
ship between the three evaluation methods and communicate the
benefits of the proposed benchmark over other common evaluation
methods in the literature. We limit our experiments to the image
benchmark and the series of experiments are based on a subset
of 100 validation samples from the two classes of cat and dog in
PASCAL VOC dataset. Grad-CAM [33] technique is used to gener-
ate saliency maps from a VGG-19 [35] image classifier. The VGG
network is pre-trained on ImageNet-1k and tuned on PASCAL VOC
for the purpose of this evaluation.

Evaluation Criteria: We used pixel-wise Mean Absolute Error
(MAE) between the model saliency score map and the ground truth
mask as the quantitative measure for error in model explanations.
We also looked into False Positive (FP) and False Negative (FN)
saliency explanation errors individually. We calculate FP saliency
error as pixel-wise MAE for the model saliency map scores outside
the object’s segmentation mask (i.e., selecting background pixels) as
a representation of explanations correctness. We calculated FN
error as the pixel-wise MAE for model saliency map scores inside
the ground truth mask (i.e., non-selected target pixels) to represent
explanations completeness. In the following subsections, we
review details and share evaluation results from two evaluation
methods.

4.1 Comparison to Segmentation Mask

In the first evaluation experiment, we compare our proposed human-
attention benchmark (multi-layer feature mask) with the segmen-
tation mask (single-layer feature mask) as the evaluation ground
truth for the set of saliency maps from Grad-CAM technique. Given
the lack of granularity for distinguishing important features in the
segmentation mask, we hypothesize that the two baselines would
result in different evaluation scores for the same set of inputs.
Intuitively, the difference between the two baselines is that unlike
the segmentation mask, which scores all target features equally,
the human-attention mask gradates the “salient” features more
than others. To identify the difference between the two evaluation
baselines, we calculate evaluation scores using both baselines for
direct comparison. Specifically, we first normalize both ground
truth masks and model saliency maps and then calculate the pixel-
wise MAE error between the model saliency map and the ground
truth baseline. For example, a saliency map identical to its human
attention mask results in zero MAE error. In the opposite situation,
with cases having no overlap between the ground truth mask and
the model saliency map, the MAE error would be 1.0. Note that
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MAE is a threshold agnostic metric that—unlike Intersection over
Union (IoU)—does not require choosing the v hyperparameter for
generating objects’ binary masks or bounding boxes, see [4] for
more discussion. Also, evaluating the saliency score map (without
converting to a binary mask) retains the granular information in
the model explanation.

We chose correlation analysis followed by the test for homo-
geneity of regression slopes to compare the evaluation results for
the two baselines. We hypothesize that if the two measures are
equal, then the test should find the regression slopes to be homoge-
neous. Figure 2-(a) shows the scatter plot of evaluation scores (1.0 —
MAE) between human-attention and segmentation mask baselines.
A Pearson correlation test shows that the two evaluation scores
are statistically significantly (r = 0.896 , p < 0.001) correlated, as
expected. Using a linear regression test, we find a regression slope
of w = 0.896 and intercept of b = 0.48. As seen in Figure 2-(a),
this weight and bias result in different evaluation scores between
the two ground truth, especially in the higher and lower range of
scores. To examine the statistical significance of the difference be-
tween two ground truth evaluations, we use an ANCOVA test with
a custom model to the test for homogeneity of regression slopes
between the calculated regression model and the ideal of slope
1.0 with a zero intercept. The test for homogeneity of regression
slopes fails with a significant difference (p < 0.001) between the
two lines indicating that the two evaluation baselines are not equal.
This indicates that the proposed human-attention baseline contains
additional information as compared to the objective binary ground
truth mask.

4.2 Comparison to Human Judgment

In the second evaluation experiment, we compare explanation eval-
uation scores using the two ground truth baselines with the human
ratings of explanation goodness. Subjective human ratings of the
model explanations are commonly used as a direct approach for
evaluating machine learning explanations by providing a numer-
ical rating of explanations goodness using a simple quantitative
measure such as Likert scales. However, subjective measures typ-
ically lack precision and may include user bias. We hypothesize
that results from human-judgment scores will be significantly dif-
ferent for both (human-attention mask and object segmentation
mask) ground-truth evaluations. We use the same subset of images
and saliency map explanations from Grad-CAM technique similar
to the previous section for the purposes of this human-subjects
study. Figure 3-(Top) shows examples of heatmap overlays from
the Grad-CAM technique used in the user study.

4.2.1  Human Judgment Interface and Data Collection. We designed
a simple interface to collect user feedback about the quality of
heatmap overlays from the Grad-CAM saliency explanation tech-
nique. The participants started by reading task instructions followed
by a series of images to rate. Given an image from the test set, the
target classification, and a heatmap overlay, participants were in-
structed to “review and rate the heatmaps which explain what parts
the Al used to make its classification decision” and for each image
they were specifically asked “Please rate ‘how good’ the Al is ex-
plaining the “object” in this image” in which the word “object” was
substituted with the target in each image. A total of 200 unique
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(b) Relation between subjective rating and baseline mea-
sures

Figure 2: Comparison of averaged evaluation scores (1.0- MAE) between two ground truth baselines and human judgment
ratings for each image sample. Evaluation scores are not normalized and the black dashed lines shows the ideal regression
line with the slope equal to 1.0 and intercept of zero. (a) Scatterplot of evaluation scores based on segmentation mask (vertical
axis) and human-attention mask (horizontal axis). (b) Scatterplot of evaluation score based on two ground truth baselines and

human judgment rating.

Figure 3: Examples of heat-map overlay of saliency maps us-
ing (Top) Grad-cam [33] and (Bottom) LIME [30] techniques
used in the user study for human judgment.

participants’ were recruited from Amazon Mechanical Turk and
paid $0.20 per HIT to review and rate 14 images on the scale of 1-10.
The first four image ratings were identical for all participants and
used as training and attention check examples; these early images
were discarded for data collection.

4.2.2  Results: We now compare evaluation results from the user
study with both ground truth measurements. Figure 2-b shows
a scatterplot of the evaluation results between human judgment
ratings and two ground truth scores (1.0 — MAE) from objects’ seg-
mentation masks and human attention masks. The two regression
lines for human-attention ground truth (in orange) and segmenta-
tion mask (in blue) show both baselines produce different evaluation

scores from the user rating scores. To test for the statistical signifi-
cance of observed differences, we first normalize user ratings across
participants by subtracting each participant’s mean rating. Then,
we use a Pearson’s correlation test and linear regression test to com-
pare the human judgment rating scores and the two ground truth
scores. The user ratings show a moderate-strength correlation with
human-attention baseline (r = 0.428, p = 0.002) and small correla-
tion with object segmentation baseline (r = 0.268, p < 0.001). We
also observe signs of user bias, noting that none of the participants
rated any of the saliency map instances in the test set below 3-stars
even though there are multiple examples with scores below 0.3 for
both ground truth evaluation types. These cases were specifically
from the examples with multiple occurrences of the target object
in which the saliency map was only pointing to one of the target
objects. This could potentially indicate a side effect of lower user
attention in reviewing cases with incomplete saliency explanations.

To compare measurements between evaluation approaches, we
run a linear regression analysis and find that the segmentation
mask scores fit with a slope of w = 0.313 and intercept of b =
0.268 (Figure 2-b, blue trend line), and the fit for human-attention
mask scores has a slope of w = 0.428 and intercept of b = 0.210
(Figure 2-b, orange trend line). Note that the difference between
the two linear regression models’ slopes with the ideal slope of
1.0 is higher with the segmentation-mask baseline. To examine
the statistically significant difference between the measures, we
use ANCOVA with a custom model to test for homogeneity of the
regression slopes between the two regression models as well as
between the calculated regression model and the ideal of slope
1.0 with zero bias. The homogeneity test fails with a significant
difference of p < 0.001 between the two regression models and the
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ideal line. The analysis indicates the subjective measurement of
explanations goodness produces significantly different results from
both objective ground truth measures.

4.3 Human Biases in Rating

Next, we explore the human judgment evaluation results to find
other possible external or internal factors that could affect partic-
ipants’ subjective ratings. For example, human judgment ratings
may include user biases toward visual appearance or completeness
of saliency maps resulting in biased ratings. We reviewed and com-
pared the results from user studies for rating Grad-CAM and LIME
explanations to identify possible human biases toward the visual
appearance of saliency explanations. Also, we reviewed the results
to assess possible participants’ biases toward model explanation FP
and FN error types.

To evaluate the effect of the visual appearance of saliency expla-
nations, we compare participants’ ratings of saliency map explana-
tions from LIME [30] technique to Grad-CAM explanations on the
same subset of images and the same classifier. We run a new user
study to collect participants’ subjective ratings of LIME explana-
tions. The saliency explanations from the LIME technique (Figure 3-
(Bottom)) are visually more chunky and pixelated (mainly due to
the use of superpixels in LIME’s pipeline) compared to smooth class
activation maps from Grad-CAM technique (Figure 3-(Top)).

Figure 4-(a) shows two linear regression models to compare
participants’ ratings of the two explanation techniques. We find the
slope of w = —0.428 and intercept of b = 0.789 for the user ratings
on samples with LIME saliency map (Figure 4-(a) green trend line)
and slope of w = —0.607 and intercept of b = 0.947 for samples with
Grad-CAM saliency map (Figure 4-(a), yellow trend line). We would
have expected to see the similar regression slopes between the two
groups if the users were evaluating both saliency map explanation
types similarly. However, the test for homogeneity between the
two regression slopes shows a significant difference (p < 0.001)
between the two model error types. This indicates that users rated
saliency maps from the two techniques differently (an indication of
possible bias) inconsistent with the ground truth evaluation score
(Figure 4-(a), y-axis) for each set of samples.

We then analyze participants’ rating behavior with respect to
different explanation error types. We first divided the samples for
the test set into two groups with high FP explanation errors (when
the model is looking at background pixels) and high FN explanation
errors (when the model is missing foreground pixels). Using linear
regression models, we find the slope of w = —0.121 and intercept
of b = 0.265 for the samples with FP explanation error score (Fig-
ure 4-(b) yellow trend line) and slope of w = —0.306 and intercept
of b = 0.525 for samples with high FN explanations error score
(Figure 4-(b), green trend line). We would have expected to see the
similar regression slopes between the two groups if the users were
evaluating both saliency error types similarly. However, the test for
homogeneity between the two regression slopes shows a significant
difference (p < 0.001) between the two explanation error types.
This indicates that users pay less attention to FP explanation errors
and in turn, are more critical for FN explanation errors. Looking
at image samples from the user study, there are several examples
in which the target object was on a smaller scale and the model
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saliency map included more background pixels. Therefore, results
revealed user biases on different explanations’ error types in their
rating of explanation.

5 DISCUSSION

In this section, we review and discuss the evaluation experiments
and open problems around model explanation evaluation. The eval-
uation experiment results showed that the human-attention bench-
mark has allowed for a higher level of granularity in the evaluation
of saliency maps and also reflects how human attention to certain
features is different from the single-layer object’s segmentation
map. As compared to the human judgment rating evaluations, we
also observed signs of participants’ bias in their ratings.

5.1 Implications of Results

We ran human-subject experiments to understand the relationship
between the subjective and objective evaluations of saliency expla-
nations by inquiring two research questions. With respect to RQ1,
although the evaluation results from the three methods had posi-
tive correlations, statistical testing revealed significant differences
among them. The difference in scores was mainly due to the clear
non-uniform distribution of feature importance in human atten-
tion masks while the segmentation mask weights are uniformly
distributed for all features (e.g., pixels, words). Thus, it appears
that users consider certain areas of an image or words in a para-
graph as being key components of a “good” explanation and adjust
their ratings according to that component’s inclusion in the expla-
nation. Although the results suggest that both the segmentation
mask and the human-attention baselines generate highly correlated
explanation errors, there are statistically significant differences.
Specifically, the human-attention baseline may better reflect hu-
man interests and allow for a more accurate evaluation of a model
explanation’s correctness (i.e., via FP error) and completeness (i.e.,
via FN error) with respect to human reasoning and attention to
features. For example, in annotations of living things, users were
more likely to select facial features as important while the seg-
mentation mask captured any pixels related to the living thing
with a uniformly weighted single-layer mask. This is reflected in
the human-judgement evaluation results, where participants’ rat-
ings of explanations were higher for the human-attention baseline
rather than the segmentation mask baseline. Further, using human-
attention as the evaluation baseline could in turn lead to designing
types of machine learning explanations that are closer to human
rationale and more acceptable to end users. Note that we did not
explicitly ask participants to rate their trust in the model or its
explanations, but “how good” the model is explaining the target
object in images. However, more research is needed to expand the
quantitative evaluation results from our human-attention baseline
with respect to different user trust factors.

Regarding RQ2, our experiments revealed user biases toward
explanations’ visual appearance and error types in their rating of
explanations. Specifically, participants treated model saliency ex-
planations from LIME technique with lower rating compared to the
Grad-CAM explanations. Also, participants paid less attention to
FP explanation errors (i.e. correctness of explanations) and instead
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Figure 4: Discrepancies between averaged human judgment rating of saliency explanations and human-attention baseline
evaluation. Evaluation scores are not normalized and the black dashed lines shows the ideal regression line with the slope
equal to -0.5 and intercept of zero. (a) Participants evaluate saliency explanations from LIME and Grad-CAM differently. (b)
Participants evaluate saliency explanations’ FP error (model looking at background pixels) differently than FN errors (model

not looking at target pixels).

were more critical for FN explanation errors (i.e. completeness of ex-
planations). This result shows the importance of taking user biases
into account when interpreting user study results involved with
machine learning explanations. Our findings are in accordance with
previous research indicating unjustified user trust and understand-
ing of machine learning explanations, e.g., [32] and [18]. However,
when comparing to these research, we emphasize that studying and
measuring user bias could be dependent to the user’s task and level
of human expertise. Our study results are bounded to the generic
user review and rating task and conducted in a crowdsourced plat-
form, thus inheriting certain limitations of non-expert participants
performing under unconstrained settings. A similar example is
the study by Buccinca et al. [3], which shows that intermediate
measures like user trust and acceptance may not correspond to
human-AI performance measures in deployed XAI systems since
users ultimately behave differently in decision-making situations.

5.2 Values and Limitations of Quantitative
Evaluation of Explanations

Our benchmarks are aimed to provide a quantitative evaluation
method for machine learning explanations and bridge the trade-
off between objectivity and subjectivity of different evaluation
methods. Despite the values of quantitative methods, there exist
limitations to the quantitative framing of an explanation’s trustwor-
thiness. In the following, we review these values and limitations
from two perspectives.

Reproducibility of Results: First, one way to categorize differ-
ent evaluation measures is by the reproducibility of their results.

As implemented in our work, users’ subjective ratings of expla-
nations could inform results for the goodness of model generated
explanations. Ribeiro et al. [30] presented a case for correction of
model explanation in which users reject wrong features and add
new features for quantitative evaluation of model explanations.
However, although these methods can provide detailed insights,
subjective user feedback is not necessarily reusable for new models
and interpretable techniques, as different explanations may require
new human review. This limitation indeed exists in studies for
evaluating XAI systems in different applications and domains [7],
including tasks and scenarios concerned with the fairness of the
decision-making system. A secondary limitation of creating human-
attention benchmark is in the annotation cost for multi-level hu-
man explanation masks. Asking multiple users to select areas they
feel best explain a classification is time consuming and compiling
those annotations can be challenging without an accessible sys-
tem. However, annotation costs (and the associated imperfections)
may be justifiable when compared to repeated novel rounds of user
evaluation, as the iterative process of design and evaluation for
machine-learning based systems typically requires multiple rounds
of training and testing. Therefore, our human attention benchmark
can potentially reduce evaluation costs over design cycles by pro-
viding a baseline to evaluate new implementations.

Ground Truth Objectivity: Although objective evaluations that
utilize an element of ground truth provide quantitative and repro-
ducible results, they lack the inherent guidance in human feedback
that can provide a finer-grained evaluation on different aspects of
explanation goodness and user trust. Thus, one should consider
these limitations when interpreting evaluation results and drawing
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conclusions from quantitative evaluation of machine learning ex-
planations. Additionally, studying and measuring user bias could
be sensitive to the data domain, user task, and user expertise. In this
regard, our proposed benchmark and study results are bounded to
the generic data collection task of user review and rating in a crowd-
sourced platform. Therefore, a limitation of our work is that user
annotations of data and acceptance ratings may not be transferable
to other proxy tasks or user types, as noted by others [3].

6 CONCLUSION AND FUTURE WORK

We present a new model-explanation evaluation benchmark for
multiple datasets in image and text domains. Our benchmark is
designed for quantitative evaluation of saliency map explanations
based on human attention. This human-grounded benchmark en-
ables fast, replicable, and objective execution of evaluation experi-
ments for saliency explanations. We studied the relationships and
trade-offs between two different human-grounded evaluation ap-
proaches (i.e., single-layer annotation mask and human subjective
feedback) to present the efficiency of the proposed human atten-
tion baseline. Our study results indicated the difference between
threshold-agnostic evaluation with a human-attention baseline as
compared to previous methods with binary ground truth masks
and labels. Our experiments also revealed user biases on different
explanations’ visual appearance and error types in the subjective
rating of explanations.

In our future work, we plan to study annotators’ behavior on
objects of different nature and learn general patterns in human at-
tention. This could potentially help to standardize annotators’ per-
ception of explanation when performing the annotation task. Lastly,
we are interested in examining the use case of the human-attention
benchmark for tuning models to improve prediction rationale and
its effects on explanation quality.
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