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Abstract

Explainable artificial intelligence (XAI) systems aim to provide users with informa-

tion to help them better understand computational models and reason about why

outputs were generated. However, there are many different ways an XAI interface

might present explanations, which makes designing an appropriate and effective

interface an important and challenging task. Our work investigates how different

types and amounts of explanatory information affect user ability to utilize explana-

tions to understand system behavior and improve task performance. The presented

research employs a system for detecting the truthfulness of news statements. In a

controlled experiment, participants were tasked with using the system to assess news

statements as well as to learn to predict the output of the AI. Our experiment com-

pares various levels of explanatory information to contribute empirical data about

how explanation detail can influence utility. The results show that more explanation

information improves participant understanding of AI models, but the benefits come

at the cost of time and attention needed to make sense of the explanation.
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INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) provide powerful tools for assisting with data analysis and
human decision-making across a variety of application areas. Unfortunately, computational models can be complicated
for nonexperts to understand, and many end users may be reluctant to trust and rely on intelligent systems they do not
understand. It is not surprising that experts have long argued for transparency in computing,1,2 and recent advances in
AI and deep learning methods have been accompanied by growing concerns about black-box computing.

To address such issues, researchers have expressed interest in explainable artificial intelligence (XAI)3 and interpret-
able machine learning solutions.4 XAI systems aim to provide users with information to help better understand how
computational models work and why their outputs are generated. Ideally, a better understanding of machine
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intelligence could allow users to identify and correct errors in the models, or to make informed decisions about when
to trust a system's output and when to be more skeptical. Such improved understanding has the potential to facilitate
better decision-making for real-world tasks.

The challenge, however, is in how to design effective and human-understandable explanations. Designers have near
limitless options for presenting meaningful and helpful explanations to users. Explanations can come in different for-
mats. They may be textual,5,6 visual,7,8 or numerical.9,10 Explanations may vary greatly in the level of detail they present
about their underlying model and rationale about specific outputs.

Our research focuses on studying trade-offs in the levels of explanation details for XAI systems for human judgment
tasks. Intuitively, explanations need to provide enough information to enable understanding and support human
decision-making. On the other hand, too much information may be confusing, distracting, or overwhelming to users.
We present a controlled experiment to study how different amounts of explanation affect human decision-making and
human understanding of a classifier. Our experiment is grounded in the context of an explainable classification system
for fact-checking news statements. Determining the validity of news statements is a difficult task of interest to the gen-
eral public, journalists, and politicians alike.11-13 For our research, we designed an explanation interface that utilizes
past news statements for automatic classification with integrated XAI interface components. Our study puts partici-
pants in the role of assessing the accuracy of news statements with the assistance of our classifier. The experiment com-
pares participant performance for different levels and types of explanation provided to participants while reviewing and
assessing news statements.

In this paper, we describe the experiment, the XAI system, and the study results based on quantitative differences in
time and accuracy across conditions. We also demonstrate how participants viewed their experience based on their
qualitative responses. Our findings show the XAI system improved their performance in some cases, but that presenting
too much information can negatively impact human judgment. We discuss these results and make recommendations
for future research in XAI.

RELATED WORK

We review related research to the explainable machine learning systems. Also, because our study and XAI system relies
on a fact-check detection task, we discuss relevant background on news-checking methods and services.

Overview of explainable machine learning

Explainable machine learning is a class of machine learning algorithms that generate interpretable explanations of
behavior and predictions. Machine-generated explanations are complementary information designed to help users
understand various complex machine learning decision-making processes. Research show machine learning interpret-
ability could result in improving user experience, trust, and performance in different applications.14,15 Doshi-Velez and
Kim consider the need for explanations to be derived from an incompleteness in the problem formalization.16 They dis-
cuss how domain experts would better trust the system with explanations to verify scientific findings, confirm economic
predictions, and justify fair and ethical decision-making. Machine-learning designers also benefit from explanations to
adjust and optimize models for the right objectives.17,18

A recent review by Mohseni et al19 explains how different research communities take different approaches and
adopt different priorities in improving explainability. Common goals of machine-learning explanation include describ-
ing the entire machine-learning model or explaining individual instances.20 Model explanations, sometimes called
global explanations, aim to directly represent or summarize the entire model using interpretable explanations. How-
ever, in many cases, machine-learning product end users do not have access to the entire machine-learning model,
leading researchers to present relatively simple visual21-23 and verbal5,24 representations of model reasoning. Visual ana-
lytics tools also help machine-learning engineers to visualize model parameters25,26 and review the training process27

for better design and evaluation of systems. In contrast to model explanations, instance explanations, sometimes called
local explanations, describe prediction details for individual input instances. In practice, many implementations of
instance explanation are in the form of input features contributing to that prediction. For example, feature contribu-
tions in a text classification task have been used to show which word in the input data had the highest contribution in
the context of the current output label.9 Other examples of feature contribution explanations include pixels and super-
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pixel weights in image classifiers8,9 and attribute weights in tabular data prediction.10 In our study, the XAI system also
uses instance explanations to represent model reasoning about how it classifies news statements. Our system generates
instance explanations in the form of confidence of veracity, attribute contribution, and related examples from
training data.

Explainable user interfaces

The purpose of explainable interfaces is to present machine-learning results together with the machine-generated expla-
nations for the end users. Examples of explainable interfaces have been implemented for recommendation systems28

and personalized agents.29 Research shows that the transparency of explainable interface algorithms can significantly
increase user acceptance and reliance on machine recommendations.30 For instance, Berkovsky et al31 conducted a
crowd-sourced study to examine the impact of recommendation-system strategies in terms of presentation, explanation,
and priority on user's trust in a movie recommendation system. They measured user trust with nine key factors and
showed a substantial difference among users based on their personality traits.

Along the same line, XAI research also studies users' mental models and performance in explainable interfaces with
different explanations types and levels of detail.14,28 For example, to study users' mental models and trust, Lim et al15

designed and evaluated four different types of explanations in explainable context-aware systems. Their experiments
indicate the importance for explanations to communicate why the system produces a given result in order for users to
develop sound mental models. In another work, Kulesza et al32 incorporated user feedback in an exploratory debugging
interface to enable a two-way exchange of explanations between an end user and a personalized agent. In their study,
user feedback from participants working with the explanatory debugging interface was roughly twice worthy compared
to the feedback provided by the control participants in detecting model weaknesses. Another study of user feedback by
Honeycutt et al33 yielded evidence that soliciting interaction with or increasing attention to explanations to correct
problems with the model caused users to become more skeptical of the model, which ultimately reduced trust and user
perception of the model's accuracy. Other research of user trust and understanding of explanations suggest that users
will underestimate a model's accuracy if explanations indicate the machine logic for classification does not match
expected human logic.34

Similar results with domain experts have seen similar concerns when human operators do not understand machine
logic, further motivating the need for explanation in critical domains. For example, a case study with computer network
analysts found cybersecurity experts did not want to use algorithms they did not understand.26 In this work, the addi-
tion of explanatory views for an anomaly detector was reported to increase user adoption in an operational analysis cen-
ter. In other research, Krause et al35 implemented an explainable interface for scientists to improve predictive models
for detecting diabetes from medical records. In a case study, they showed how data scientists made use of an explain-
able interface to understand model behavior with localized inspection of the system. Controlled experimentation has
also yielded evidence of differences in how domain experts and novices build and lose trust over time.36 From their
experiment with an entomological classifier, early observation of poor model outcomes caused more knowledgeable
users to quickly lost trust in an intelligent system. Furthermore, when trust was lost early on, users were slow to
increase their confidence in the system.

Other research of explainable intelligent systems has shown the importance of not only evaluating the explanations
themselves but also studying how explanations may influence human thinking and decision-making. For instance, in
research by Nourani et al,37 a user study with interactive video review for activity recognition provided cautions about
cognitive biases and overconfidence due to the addition of explanations. Such concerns demonstrate that it is not suffi-
cient to simply include explanatory information without better understanding how the type of explanation might influ-
ence user behavior and their impressions of the model's capability. We also design and evaluate an explainable
interface and evaluate user task performance and trust on the system with different types of explanations, but our core
contribution is the controlled comparison of more nuanced variations in level of explanation.

News checking

False or fake news refers to media associated with propaganda, defamation, and material made to inflict emotional dis-
tress.11,12 Fake news often has information that can be verified as false and is created with a dishonest intention.38
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However, verifying whether a news statement is true is a difficult task. Recent events regarding web generated and
propagated fake news have brought the issue to the attention of academics, and politicians, and citizens. The upsets
from results in the 2016 US elections and the Brexit referendum have prompted calls for new regulations on web sites,
advertisers, and social media companies. Starbird et al found that even journalists, who are trained to fact check, often
unwittingly bring attention to rumors and false statements from Twitter.13 While they later correct their reporting on
the same channels, a rumor tends to gather more attention than its errata. Research has studied the characteristics of
fake news in social media that lead to better understanding based on news content and social context.39

Previous research has demonstrated that AI and machine learning can potentially evaluate the veracity of news.
Fact-checking systems can be classified into several areas such as spammer and bot detection, fake video, and image
detection,40 click bait detection,41 rumor,42 and truth discovery.43 Fact checking has its own unique challenges for dif-
ferent data formats and purposes. For example, challenges and techniques in knowledge-based models (eg, knowledge
graphs and open web sources) for truth discovery are far different from detecting fake video content. In data-based fact
detection, Shu et al44 introduced a method for detecting fake news articles using a variety of methods on the same cor-
pus, such as linguistic inquiry and word count, in the context of supervised machine learning. Other detection schemes
have addressed Twitter statements,45 trust and labeling,46,47 fake news-related images,48 and how news is spread
online.13,49-51 Despite the difficulty of detecting fake news, research has shown lexical features can classify the overall
truthfulness of statement.52

Our study utilizes an explainable news classification system. Our goal was not to build the most accurate fact detec-
tor, but to explore how different explanation designs affect how participants perceived and used recommendations. In
other words, we prioritized designing a system that could partially explain itself over a method that could potentially
produce better performance. Our approach is somewhat similar to52 in that we also use PolitiFact data,53 but we are
providing an explainable system and studying how participants interact with it. Also relevant to our work is a study of
agent-assisted news review by Mohseni et al.54 This experiment studied a variety of explanation types together for an
ensemble model to aid an open-ended review of entire news articles. With a variety of explanations available to users in
the study, the results showed how simple forms of explanation helped users to identify poor aspects of a fact-checking
model. Our current study builds on this work with further empirical study of simplified explanations but focuses more
on amount of explanation and employs a more controlled experimental context with fact checking rather than news
curation.

EXPLAINABLE FACT-CHECKING SYSTEM

The goal of our research was to study how different variations in machine explanation influence human performance
and model understanding using an XAI system. To this end, we designed an experiment based on a fact-checking task
and a corresponding XAI system. In this section, we describe the XAI system used for the experiment—an explainable
fact checker to classify news statements as true or false. To meet the research goals for the experiment, we designed the
XAI system's interface with explanation components we could reconfigure to create different experimental conditions.

News statement data and classifier

The data used in the study and to train the model were from PolitiFact, a fact-checking organization. Fact-checking
news organizations offer independent assessments of claims made by politicians, often refuting their claims.53 The
interpretable text classifier in our XAI system was trained on a corpus with the size of 3500 samples from PolitiFact.
com which has expert reviewed labeled news. On PolitiFact, each news statement is labeled as one of multiple classes,
but we separate them into either more true (true, half-true, mostly true) or more false (mostly-false, false, pants-on-fire).
This makes our classification task binary.

We note that the goal of this research was not to build the most accurate fact checker, but to study how different
explanation designs affect the perception and utility of recommendations. Fact checking is a relatively new application
of machine learning. In the political theatre, the epistemology of facts is not as rigid as they are in sciences, making log-
ical axioms difficult to address. In terms of state-of-the-art accuracy, there are no central corpora of test data for com-
paring fact-checking agents. Approaches vary from analyzing sources (eg, URL links55) qualities of text for linguistic
qualities,56 and providing people with documentation for further investigation.57
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Because the focus of this paper is on the human-subjects experiment and its findings, we limit the description of our
system to an abbreviated summary, though we aim to provide enough details that a skilled machine-learning system
designer could develop a similar system. For a more detailed description of the machine-learning aspects of the system,
we refer the reader to the following demo paper58 that describes the XFake architecture and technical details in full.

Our system's framework consisted of several models, and our final results for the AI Meter are ensembled from
three models. All three models were given statements and their metadata, such as who the speaker, the context (eg, a
debate), and what the statement targeted (eg, Obama). One model is the MIMIC framework that analyzes news meta-
data attributes and statements mapped to a GloVe word embedding59 and a deep learning that then trains a student
model consisting of 80 decision trees. The ATTN model uses a pretrained word2vec word embedding, convolutional
neural network, and self-attention mechanism.60 This is used to capture global relationships among words efficiently.
The PERT framework looks at news statements using linguistic features, such as adjective ratio, verb ratio, sentiment,
and scores. We also used a shallow model to mimic the deep learning model in a more interpretable fashion using an
XGBoost classifier.61

The classifier output provides the overall confidence score (used for the AI Meter) and to model the attributes'
salience (which we used for the attributes explanation type).62 With the testing on validation set, we obtain 67.1%,
67.3%, and 53.2% accuracy, respectively, for MIMIC, ATTN, and PERT. We normalized weights according to the perfor-
mance and fixed the coefficients to 0.36, 0.36, and 0.28 for the AI Meter and classification score. To provide feature con-
tributions to explain the influence of specific attributes, for each prediction, we used a perturbation-based method that
measures feature importance by looking at how much the classification score drops when a feature is removed from the
input. Finally, our explanation method identified relevant examples; we used the most salient words as queries to the
training corpus of example statements, then ranked them based on the highest number of shared metadata attributes.

Explanation interface

Changing how visualizations present, omit, and encode information often impacts how end users interpret their
views.63 We implemented our interface as a web application that provides the classification output and explanations for
a given statement. As an XAI system, the interface also provides multiple types of explanatory information for the sys-
tem's prediction. Figure 1 shows an overview of the interface with annotations for specific components. The Statement
component shows an instance of input—the news statement and metadata of the subject, context, speaker, and target.
The Statement shows the content of a stated fact or assertion about a Subject, in a particular Context, originating from a
Speaker, by a particular Speaker, and sometimes directed at a Target. In deception, statements can provide linguistic
hints or “tells” that both people and algorithms recognize as indicators of deception.64 The Subject attribute includes
categories related to the statement, such as “Education,” “Crime,” “Jobs,” or “Poverty.” The Context attribute includes

FIGURE 1 This image shows an example from the Fact Check phase under the AI Meter condition On and the Interface Component

condition Attributes + Examples. All participants saw the Statement, which includes the news statement and other relevant metadata. The AI

Meter component shows the overall guess via a dial. The Attributes shows how influential different statement metadata is for the given

instance. The Examples component shows relevant alternative statements with the same classification
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the location or event related to where the statement was made, such as “at a debate” or “on Fox News interview”. The
Speaker attribute includes the name of the person who made the statement, such as “Bernie Sanders” or “Hillary Clin-
ton.” The Target attribute, which may or may not be present for a given statement, refers most often to the person the
statement is about (eg, as in when one politician is talking about another).

Different interface components provide different forms of explanation to help users understand the system's reason-
ing for making specific predictions. Overall, definitive guidelines for whether to show or hide an AI's confidence have
not emerged.53 Our thinking is that showing the confidence through an explanation will help participants have appro-
priate levels of trust.

The AI Meter interface component includes a dial representation that resembles PolitiFact's “Truth Meter.” While
many representations of uncertainty are possible,65 we decided to make the AI Meter similar to the Politifact “Truth
Meter” in order to provide a simple and familiar representation of our model's prediction of the truthfulness of political
statements. Politifact's “Truth Meter” is represented as a dial and explicit levels of text that show how truthful they rate
a political statement.66 Generally, statements are in political arenas are not completely factual. Intentionally dishonest
statements weave in falsehoods into otherwise honest content.64 Likewise, the Politifact Truth Meter rates the honesty
of statement across six levels from “pants on fire” (the most untrue) to “true” (the least untrue). Our AI Meter includes
a dial that is mapped to the overall classification value from the XAI output. In this way, the AI Meter provides an
explanation of model confidence. The AI Meter's indicator needle points to the left for “false,” to the right for “true,”
and straight up when “unsure.” This component also highlights either the “False” or “True” labels to emphasize the
overall binary recommendation.

To provide further explanation, the Attributes interface component shows the relative importance or salience of the
different attributes in news statements in terms of how they influenced our XAI model. For example, one particular
news statement may have the speaker and statement attributes be the most influential, whereas a different news state-
ment might have the targeting attribute as most influential. By “influential,” we mean that our modeling has found
these to impact veracity the most. Various aspects of context are captured by the attribute, for example, “Speaker.”
Attributes are tied to metadata, which can be important when determining veracity. Through a series of experiments,
Blair et al found that reviewing contextual information significantly improved participants' ability to detect lies.67 The
Attributes explanation help provide information about which metadata is most important for determining the veracity
of a statement. In a recent survey of rumor detection in social media, Zubiaga et al found that around half of automated
solutions incorporate metadata attributes.68 Because attributes empirically improve performance in prediction systems,
we reasoned that showing the relative importance of attributes provides a form of explanation.

Finally, an additional form of explanation is given by the Examples interface component, which uses keywords to
present additional related statements from the PolitiFact training set data with a similar classification output as the
statement instance. Providing this information, we expect, would help end users get a sense of the range dialogue
around similar subjects. Our systems show two related example statements with relevant keywords highlighted.

Kurtz et al, through their experiments and discussion, find that examples are essential for learning.69 Examples serve
as a baseline for the range of possible and potentially analogous, situations. Cognitively, this can teach people to solve
problems by drawing on their recollection of similar situations their conclusions. Evaluating the veracity of news state-
ments may benefit from an example-based reasoning approach. As people are exposed to news, priming effects can
anchor70 their expectations. As Wall et al explain, bias can be seen as a way to model understanding.71 Valdex et al shows
that, when presented with a sequence of example visualizations, a person's evaluation baseline changes.70 Our Example
component also displays the political speaker, which involves social information. Social information, such as who is shar-
ing information, impacts how well they are trusted.72 Thus, we reasoned that showing examples provide participants with
additional context that would impact their veracity estimations and understanding of the classification system.

The interface can be configured to provide or exclude different explanation components. We describe the experi-
mental conditions and configurations in the following section. For the purposes of the experiment, the interface pres-
ented to participants also included instructions, questions, and buttons that guided participants through tasks as we
collect their responses.

EXPERIMENT

We conducted a controlled experiment to evaluate how different amounts of explanation provided by an XAI system
would affect user task performance and model understanding.
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Goals and hypotheses

The experiment was designed to address two primary research questions: (1) “How does the amount of explanation
information affect human performance in assessing the veracity of news statements?” (2) “How does the amount of
explanation information affect user understanding of the XAI models?”

We hypothesized that providing too much information as part of the system explanation could be overwhelming
and therefore reduce its utility, which we would expect to negatively affect human performance and decision-making.
On the other extreme, we predicted having some explanatory information would be better than no explanation. We
hypothesized that a moderate amount of explanation is important for achieving the benefits of XAI, and understanding
the appropriate balance of useful information is important for designing explanation interfaces. Thus, we designed an
experiment to test different types and levels of explanation detail in order to evaluate the effects on participant perfor-
mance and model understanding.

To test these hypotheses, we needed a challenging human analysis task that could potentially benefit from the assis-
tance of an intelligent system. We chose the task of news-statement fact checking as the basis for the experiment due to
its overall difficulty and relevance in society that require human judgment. In addition to our focus on the above
hypotheses, we also wanted to learn more about human review and decision-making processes used when evaluating
the truthfulness of news statements. A better understanding of how people assess and make sense of news statements is
important for future improvements to XAI systems and explanation design. For this reason, we solicited qualitative
feedback aimed to identify the issues involved and strategies that may be used in the process of detecting fake news.

Experimental design

To address our research goals, we designed an experiment that asked participants to review news statements with dif-
ferent interface configurations that varied explanation types. Refer to Figure 1 for the corresponding explanation com-
ponents. To test the most simplistic form of explanation, we controlled for the presence or absence (ie, on or off ) of the
AI Meter, which showed the model confidence in the predicted classification.

We also varied additional levels of explanation detail based on the inclusion of attribute weights (shown visually by
colored bars for each attribute; see upper left of Figure 1) and supporting examples (shown by similarly classified state-
ments; see upper right of Figure 1). Using these explanation components, the experiment controlled three levels of sup-
plemental explanation via Explanation Type: None, Attributes, and Attributes + Examples.

Thus, the experiment followed 2 � 3 between-subjects design with two levels of the AI meter factor and three levels
of supplemental explanation vai Explanation Type. In our between-subjects design, each participant experienced only
one version of the system. This provided consistency between paired phases, where participants first gained experience
reviewing the explanations (Fact Check), then used this experience to predict how they XAI model would assess news
statements (Prediction-Guess). Our design allows us to configure different levels of explanatory information and com-
pare how it impacted participant performance and understanding across conditions.

Tasks and measures

To collect measures for human new-verification performance and understanding of the model, we designed the experi-
ment to have two primary phases: Fact Check and Prediction-Guess. Figure 2 shows an overview of the study procedure
and how the tasks were influenced by the experimental conditions. While there are two main phases, we also use ques-
tionnaires that ask participants to answer questions about their demographics, political leanings, news consumption,
and their experiences using our XAI systems.

In the Fact Check phase, participants used the XAI system to review news statements (one at a time) along with the
corresponding output and explanations per the assigned experimental condition. Before the Fact Check phase, partici-
pants were shown tutorial slides that highlighted the interface components (AI Meter, attributes, examples) that dif-
fered based on the experimental condition. The Fact Check phase served as a short training session for using the XAI
system. Participants were tasked with assessing whether the news statement was true or false; they were free to decide
whether or not to agree with the AI classification. After they evaluated a statement, the system showed the correct
answer before allowing them to proceed to the next news statement. Participants evaluated 16 news statements in this
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phase. As dependent variables, we recorded correctness and response time as measures of human performance. After
assessing all statements in this phase, participants also provided subjective feedback about their experience via a ques-
tionnaire. We note that, in the Fact Check phase, we provided PolitiFact's answer after participants rated a news state-
ment (eg, replacing the “???” at the bottom right of Figure 1). This was true across conditions. We do not include the
time between reviewing these results in our response time measure.

Following the Fact Check phase, participants then moved to the Prediction-Guess phase. In this phase, participants
again viewed 16 news statements, except their task was now to predict the classification output of the XAI system. In
other words, instead of predicting the statement veracity, the goal was to predict how the model would assess the state-
ment. This task was done as a way to evaluate participant understanding of the model based on their ability to infer its
output for a new set of input. Trials in this phase did not provide the AI classification output, and no feedback was
given about whether their predictions were correct. Participants provided their answers using an interactive version of
the AI meter that allowed them to adjust the position of the indicator needle to the predicted location, which provided
data for true and false predictions and to indicate the level of system confidence. The supplemental explanation factor
also influenced how much explanation participants experienced in the Prediction-Guess phase. As in the previous
phase, participants evaluated 16 new statements in this phase, and time and correctness (aligned with the model's
guess) were again recorded for this prediction task. For this phase, we did not provide an answer after participants esti-
mated the AI Meter.

We used questionnaires between main phases to collect information about the participants and their qualitative
experiences. Before starting the Fact Check phase, participants answered questions about their demographics. After
each main phase, participants answered task questionnaires that asked participants about their experience. For exam-
ple, we asked them what their general strategy was during their tasks. Finally, we asked participants questions about
their news reading habits and political alignment.

Experiment Data Corpus

The experiment used the XAI system results and explanations for news-statement data. The experiment used the same
PolitiFact data53 as previously described. However, to avoid confounds and maintain experimental control, we con-
trolled the data composition to ensure all participants reviewed equal numbers of true and false statements with the
XAI system and that the system performed at a fixed level of classification accuracy. Each participant completed
the tasks with 32 news statements drawn from a pool of 100 news statements that had been previously evaluated by the
XAI system and cached locally. In our method, the specific statements varied among participants, but all participants
completed the study with the same composition of true positives (37.5%), true negatives (37.5%), false positives (12.5%),
and false negatives (12.5%) from the total corpus. In order to evaluate the explanation system, it was important that par-
ticipants observed both correct and incorrect classifications. For the purpose of our experiment, we controlled the
amount of accuracy experienced by all participants to (1) remove noise in our data and (2) to ensure participants had

Guess-Prediction 
Phase

start

demographic
questionnaire

task 
questionnaire

Fact Check 
Phase

finish

task 
questionnaire

political alignment
and news questionnaire

Participant sees one of the 
interface conditions.

Participant sees statements with 
the same Explanation Type they 
saw in Fact Check.. 

Statement

Statement
+ Attributes

Statement
+Attributes
+ Examples

Statement+AI Meter
Statement+AI Meter+Attributes
Statement+AI Meter+Attributes+Examples

Statement+AI Meter.
Statement+AI Meter+Attributes
Statement+AI Meter+Attributes+Examples

FIGURE 2 A summary of the experiment's procedure as experienced by participants
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reason to at least partially trust the system. Early pilot testing showed that participants seeing 50% correct (equal por-
tions of true positives and true negatives) and 50% incorrect (equal portions of false positives and false negatives) accu-
racy mistrusted the model. Because of this, we adjusted this mixture to 75% correct and 25% incorrect classifications.

Participants

We conducted our experiment online using Amazon Mechanical Turk.73 We paid each participant $5 USD. Based on
the time it took to complete the study, participants made more than minimum wage. We set this amount based on pilot
studies, which took an average of around 30 minutes to complete. Through Mechanical Turk configuration, participants
were required to have completed 100 prior HITs, have at least 90% acceptance rate, and be located in the United States.
We recruited a total of 190 participants. For quality assurance, in addition to the constraints on participants, we
implemented an attention check problem during the Fact Check phase. We paid all participants, including those that
failed the attention check.

After filtering for attention check failures, 147 participants were included for data analysis. Of those, 101 identified
as male and 46 as female. Their ages ranged from 20 to 72, with a median of 32 years. Participants had various levels of
education, with 22 reporting a High School or equivalent education, 36 having some college, 67 with a college degree,
and 22 with a Masters or higher degree. Polls have shown more education correlates with more liberal political align-
ment.74 In terms of political alignment, 27 participants considered themselves moderates, leaning neither left nor right,
90 were liberal, and 30 were conservative. Of our 147 participants, 120 said they paid attention to the 2016 US presiden-
tial election, which may also indicate familiarity with the concept of fake news. The vast majority viewed their news
from news websites and social media (112), rather than television (28), radio (4), or print (3). Overall, this shows our
participants were fairly sampled from a range of political leanings, education, and news source consumption.

RESULTS

We report findings based on both quantitative and qualitative results. Quantitative measures met the assumptions for
parametric testing (ie, normality and homogeneity of variance), so we report statistical analyses using two-way indepen-
dent factorial analysis of variance (ANOVA) tests in accordance to the experimental design to assess evidence of the
effects due to type of supplemental explanation and the presence of the AI Meter. For brevity, we report test statistics
only for significant effects. To help summarize participants' understanding and strategies, we qualitatively coded the
results from questionnaires and organized the results based on their volume and relevance to our research goals.

Fact Check results

In the Fact Check phase, participants rated news statements as true or false. We measured the accuracy of participants
as the total number of answers right divided by the number of news statements (see Figure 3 and Table 1). A majority
of participants performed well over random (ie, 0.5), with all mean accuracy well above 0.5. Still, the results indicate
that the task was difficult, which was not surprising given that the news statements were short and fact checking gener-
ally involves consulting outside information. A two-way ANOVA found no significant difference in accuracy among
conditions for AI Meter and Explanation Type, and no interaction effect was detected. Thus, this result does not support
our hypothesis that added explanation supports improved human task performance; however, this is logical due to the
difficulty of the task. One participant, without the AI Meter and in the None Explanation Type condition, mentioned in
the general strategy:

Without knowing what actually happened, it's impossible to know if a statement related to it is true.

Based on our review of qualitative responses from participants, they were clearly engaging in the task. For example,
a participant who had the AI Meter said:

Where I didn't know [the answer], I took the AI's guess … into consideration … to help me decide.
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The results of a two-way ANOVA for the rate of participant agreement with the AI Meter provides evidence for this
behavior. We measured agreement as the number of statements when the participant's and AI Meter's rating were the
same. Participants with the AI Meter (M = 0.73) had a significantly higher rate of agreement than those without
(M = 0.60), with F(1, 141) = 31.12 and P < .001 No effect was detected for Explanation Type, and no interaction effect
was detected.

This indicates that participants were paying attention to the AI Meter. In this way, having an AI Meter impacted
how participants performed the task. Our review of qualitative data shows examples of participants using the AI Meter
as a tie breaker.

We also assessed the time it took participants to perform each rating of a news statement (see Figure 3 and Table 1).
To account for response variability of online studies, we use each participant's median time for analysis. We removed
one outlier that had a time of more than 75 seconds for this measure. A two-way ANOVA test found a significant
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FIGURE 3 Left shows boxplot of accuracy of participants in Fact Check phase, measured as rate correct against PolitiFact. Higher

values indicate better performance. No significant differences were detected across conditions. The right shows median participant response

time for each statement in the Fact Check phase. The Attributes + Examples condition was significantly higher than both the None and

Attributes conditions

TABLE 1 Performance summary for Fact Check task showing the mean (M) and SE for accuracy and time across conditions

(a) Condition Accuracy Time

Explanation AI Meter M SE M SE

None Off 0.64 0.14 12.6 5.59

Attributes Off 0.65 0.15 13.1 6.22

Attr + Examples Off 0.60 0.10 16.7 8.45

None On 0.67 0.11 12.6 4.11

Attributes On 0.60 0.15 14.4 6.47

Attr + Examples On 0.65 0.15 20.5 9.87

(b) Accuracy Time

Condition M SE M SE

AI Meter On 0.64 0.14 16.1 8.08

AI Meter Off 0.62 0.14 14.0 6.96

Explanation: None 0.65 0.13 12.6 4.90

Explanation: Attributes 0.62 0.15 13.7 6.31

Explanation: Attr + Examples 0.63 0.13 18.7 9.35

Note: In (a), we show a six-way split for each Explanation � AI Meter condition. In (b), we show a two-way split between the AI Meter as well as a three-way

split among each explanation.
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difference for Explanation Type with F(2, 141) = 10.4 and P < .001, and but no effect for AI Meter with P = .139. The
interaction was also not significant. A post hoc Tukey's honest significant difference (HSD) for Explanation Type found
the Attributes + Example condition took significantly longer than both None (P < .001) and Attributes (P < .01). We
believe the reason for this is that these Explanation Types engaged participants more, taking their attention for news
statements they were unsure of, but this engagement required more time to review and interpret the output.

Our results for the Fact Check phase shows that the amount of information offered to users can significantly impact
the time it takes to perform tasks. Participants in the conditions with the most supplemental information took more
time to complete the same tasks, compared to None and Attributes.

Prediction-Guess results

For the Prediction-Guess phase, we measured the participant's estimation error and time while they guessed the prediction
using an interactive AI Meter (see Figure 4 and Table 2). In other words, instead of seeing an AI Meter with a recommenda-
tion, participants set the position of the dial with a slider. For each news statement in the Prediction-Guess phase, we mea-
sured error as the distance between the participant-set value and the AI Meter's recommendation. For example, if the AI
Meter's values were fully false (�0.5) and the participant selected a value of fully true (0.5), the distance would be 1.0. We
refer to “estimation error” as the mean of these distances between participant estimations and the hidden AI Meter.

A two-way ANOVA found significant differences in estimation error for Explanation Type (None M = 0.25, Attributes
M = 0.25, and Attr + Examples M = 0.21) with F(2, 141) = 3.69 and P = .027, and for AI Meter (on M = 0.20 and off
M = 0.27) with F(1, 141) = 32.0 and P < .001. No interaction effect was detected between the two factors. Following the sig-
nificant main effect of Explanation Type, we compared types of explanation when the AI Meter was present. A post hoc
Tukey HSD found estimation error was significantly worse (ie, less accurate) for None (M = 0.22) than Attributes + Examples
(M = 0.17) with P = .02. This means participants with the most supplemental explanation information were more accurate
in the Prediction-Guess phase. Likewise, the Fact Check accuracy for participants with the AI Meter were slightly higher
(M = 0.64) compared to those without it (M = 0.62), but this result was not found to be statistically significantly different.

We also considered response time for tasks in the Prediction-Guess phase (see Figure 4 and Table 2). Due to partici-
pant variability in the online procedure, we analyzed each participant's median time used to set the AI Meter for each
news statement. A two-way ANOVA failed to detect effects due to AI Meter, and no interaction effect was found, but
the test nearly finds significant differences in time for Explanation Type with F(2, 141) = 2.80 and P = .064. A post hoc
Tukey HSD for Explanation Type found the None condition took nearly significantly less time than Attributes
+ Examples (P = .063). While, in our analysis of the Fact Check phase, we found a significant difference between None
and Examples + Attributes, this result is in the same direction, but nearly significant. Again, participants with the
Explanation Type with the most supplemental information took longer to perform their tasks.
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FIGURE 4 Left shows the estimation error in the Prediction-Guess phase. Here, lower values are better. Participants had significantly

higher performance with the AI Meter. Participants with the Attributes + Examples Interface Type were more accurate in guessing what the

AI Meter value would be. The right shows median response times for Prediction-Guess trials. The Explanation Type shows a near significant

difference, shorter for None and longer for Examples + Attributes
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When interpreted along with the error estimation results, the time results for the Guess-Prediction task suggest a
trade-off between ease of fast comprehension and level of understanding. These prediction results partially support our
hypothesis that additional explanation information can improve understanding of the model. The error estimation
results did not support our hypothesis that the highest level of explanation detail would be detrimental to understand-
ing, but the time results did indicate that the highest level of detail did take longer for participants to process.

Qualitative results

The questionnaire following the Fact Check phase asked participants to respond to open-ended questions about their
overall strategy. We reviewed all of their responses and performed a bottom-up process to distill descriptions of the
strategies participants used. One strategy involved feeling and intuition. These participants reported using a nonspecific
combination of background knowledge and what they thought might be important. They emphasized how true state-
ments “felt” and whether they “made sense.” For example, one participant said:

I didn't have one strategy, I just tried to think about what made sense overall….

Another strategy was simple heuristics. For example, participants reported basing their ratings on prior knowledge
about the speaker. Others reported that “blanket statements” were more often false.

If the speaker was Donald Trump, I generally leaned towards it being false.

If I didn't have a direct knowledge of the fact then I relied upon my beliefs if the reliability and bias of the
speaker.

…Blanket statements were often false at the beginning, so I went with that.

Along with reports of strategies, participants often mentioned the issue of trust with the AI Meter and Explanation
Types. The trust in the AI was mixed.

TABLE 2 Performance summary for Prediction-Guess task showing the mean (M) and SE for error and time across conditions

(a) Condition Error Time

Explanation AI Meter M SE M SE

None Off 0.28 0.08 17.4 6.24

Attributes Off 0.26 0.09 17.1 8.57

Attrs + Examples Off 0.26 0.06 18.7 9.85

None On 0.22 0.09 14.2 4.72

Attributes On 0.20 0.06 16.3 6.33

Attrs + Examples On 0.17 0.05 19.6 7.07

(b) Error Time

Condition M SE M SE

AI Meter On 0.20 0.07 16.8 6.51

AI Meter Off 0.27 0.08 17.7 8.22

Explanation: None 0.25 0.08 15.8 5.74

Explanation: Attributes 0.23 0.08 16.7 7.50

Explanation: Attr + Examples 0.21 0.07 19.2 8.39

Note: In (a), we show a six-way split for each Explanation � AI Meter condition. In (b), we show a two-way split between the AI Meter as well as a three-way
split among each explanation.
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I did use the AI and it did help me since it was more right than wrong many times I grew to trust it.

The AI was right most of the time so I trusted it.

I felt the AI gauge was not reliable so did not use it for most of my decisions.

Participants in conditions with the AI Meter and Explanation Type used them as tie breakers. In general, partici-
pants relied on their intuition and prior knowledge about news statements. However, the AI Meter and Explanation
Type would influence them in cases where they felt unsure.

I mainly used [the AI Meter] if I was unsure. Kind of like a tie breaker.

I used [the AI Meter] as a check on my first impression, depending on how strong I felt and how strong the
AI's opinion was, I took it all into consideration for my final decision.

We also analyzed all responses from participants about their strategies for the Guess-Prediction task. Overall, partic-
ipants' strategies were similar to those used in the Fact Check phase. This was due in part to participants assessing the
accuracy of news statements rather than attempting to estimate the AI Meter directly.

I just went by if it sounded true or not and if the AI would think if it was true or not.

I used my beliefs and desire for truth and imposed them on what I thought the AI would guess.

In terms of the task of estimating the AI Meter, participants reported a range of strategies and thought processes.
Simple strategies included paying attention to the speaker. More nuanced approaches altered participant estimation
based on the content of the statements. For example, participants reported moving the dial on the AI Meter based on
how “factual” or “strong” statements were.

It seemed like the AI would be more confident on a cut and dry matter of fact as opposed to something con-
taining any sort of opinion.

I had a hard time pinning down exactly what I thought the AI would use, but stronger statements seemed
to have higher influence on it, so I used that as my basis.

If it was true and bizarre, then I felt the AI would be more likely to rate it as false even if it's true.

Another participant tried to emulate how they perceived the AI would interpret keywords and phrases.

I tried to interpret the information in a way that I feel like an AI would understand, using certain keywords
and how the information was phrased. I think this allowed me to somewhat accurately predict what the AI
would guess.

Asking questions about their strategies soon after they completed each phase provides a unique opportunity to
understand how users might perceive and work with XAI systems. Overall, the qualitative results show that participants
were often engaged in their tasks and thought deeply about their decision-making processes.

DISCUSSION

Our primary research goal was to understand “how the amount of explanatory information provided by an XAI system
impacted human performance” in a data review and decision-making task. Overall, the results show that fact-checking
news statements—with the restrictions of not consulting outside information—to be very difficult.
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Fact Check, Prediction-Guess, and mental model results

The results of the Fact Check task did not show significant differences in accuracy due to the amount of explanation
information. However, participants with additional information spent significantly more time during the Fact Check
and the Prediction-Guess tasks. This indicates that there is an attention cost when asking users to perform tasks with
supplemental information about AI.

For the Fact Check phase, participants described using their own intuition first and relying more on the AI Meter
and Explanation Types when they were less sure. Participants described their “intuition,” “feelings,” and “hunches” as
an important first step. One said it served, “as a check on my first impression.” They also employed their own heuristics
about the speaker and factual nature of claims.

The Prediction-Guess phase more closely addresses our second question of “how the amount of explanation infor-
mation affect user understanding.” Both the presence of an AI Meter (during the Fact Check phase) and Explanation
Type (present during both phases) impacted participant performance in terms of estimation error. Participants were
worse at predicting the AI output if they previously completed the first task without the AI Meter, which suggests that
participants were learning about model outputs for given inputs. This finding provides general support for the funda-
mental notion that XAI can facilitate improved understanding of intelligent systems. Perhaps more interestingly, partic-
ipants made better predictions of model outcomes in explanation conditions that offered the most supplemental
information. Like the Fact-Checking task, they took significantly more time on the Prediction-Guess task in the condi-
tions of Explanation Type that provided the most supplemental information.

In terms of addressing mental models, participants mentally sidestepped the task of estimating the AI Meter by
assuming the AI would be correct. In other circumstances, they attempted to emulate the thought processes of the AI
by looking for potential keywords, the distribution of attribute scores, and whether the statement seemed more factual
or opinionated. We expect that users interacting with other XAI systems would develop similar ad hoc strategies for
managing their own performance on tasks and the performance of the AI they are working with. Users bring their own
experiences and external information with them for data judgment and decision-making tasks. When designing XAI
systems, it is important to take into consideration that people will likely develop their own ideas about how the system
works. Our results demonstrate that different users may adopt different strategies and interpretations for a system—
even when using the same interface and same models.

Trade-offs in XAI interface design

We see a fundamental trade-off in how people design interfaces for XAI systems: more modalities may provide better
understanding at the cost of attention and time. In our study, more information improved participant accuracy in the
Prediction-Guess phase, the benefits came at the cost of time and attention. People who design XAI systems should be
aware of this trade-off when designing for users. Having additional information in XAI systems can increase the overall
performance of users, but may introduce a trade-off of attention and time needed to understand them.

Like many AI systems, ours was composed of subsystems that combine to create a final score used to make predic-
tions. In our case, the visualizations corresponded to different components of our ensemble. The attribute visualization
corresponded to the MIMIC's interpretation of salient information, the supporting examples corresponded to similar
phrases and attributes, and the AI Meter shows the composite score. Our premise was that when visualizations provide
visual and perceptual aids that change in proportion with the context of ML that they necessarily provide an opportu-
nity for its users better understand what the system will predict.

We note here that the presence of the AI Meter provides the most improvement and, given the Prediction-Guess
task, the best explanation. There may be several reasons that this is the case. The AI Meter is one of the most simple
representations that is directly tied to how our XAI system models its understanding. This could represent an easier to
remember and understand visual signal that more closely aligns with the reality of fact-checking as a somewhat subjec-
tive task. For example, more fact-based and noncontroversial statements may be easier to predict and the meter serves
as a less binary representation of true and false. Another possibility is that practice in the Fact Check phase may have
sensitized participants to be more conservative in their guesses.

While this paper presents one approach to developing explanations through a combination of components, future
work might test a myriad of potential modalities. There is no end to the number of potential visual representations of
state and system-internals that could impact the utility of an XAI system. For example, researchers might study
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providing additional examples from external systems, ways to debug the system itself, and distribution of veracity based
on the historical record of the speaker.

We also observe that the complexity of underlying models for machine learning may have a higher upper-bound on
overall complexity, and therefore unintelligibility, compared to the visual features presented by interfaces that are natu-
rally limited by human perception. The “more and more complex model architectures” associated with Deep Learning
models will eventually make their perceptibility “invisible under the weight of layers of the model”.75 In contrast, heu-
ristics generally have a low complexity and do not require complex interpretations. The only apparent solution to
increase understanding is to simplify machine-learning models, which would cost accuracy and utility, or to design
interfaces that visualize simplified correlates of model internals. This emphasizes the importance of inventing novel
understanding and interfaces that can correlate to machine-learning internals.

Another potential trade-off for complexity depends on the context for the intended use case and who will be using
the system itself. In our study, users conducted a verification task that allowed them to form their impressions of the
system over the duration of the first phase of the study—providing a relatively limited and constrained experience with
model capabilities. As study volunteers, participants likely had limited pressure in the task based on lack of conse-
quences for incorrect decisions. In contrast, system usage in operational contexts would provide a longer period of
usage (and likely multiple periods over time) to allow users' mental models to evolve with continued experience. In
addition, the study's usage context represents limited user investment in the task compared to potential users of such
systems including journalists, intelligence analysts, or political strategists. More involved participants with may be more
motivated and trained to better work with particular XAI systems. Also related to user contexts, additional explanation
approaches for explainable fact checkers could leverage differences in information needs based on user knowledge or
expertise. Familiarity with the task of fact checking might lead to ideas for better interfaces. Prior work has found that
with systems used to do deep dives, that people are willing to wait longer and have more attention over time.76

Future research could also support different types of user tasks for information verification and advancement of
fact-checking models. We studied an XAI system by asking participants to estimate its predictions. Our system design
summarizes feature and model attribution for specific input-output pairs rather than aiming to communicate a direct
representations of AI internals. This contrasts other XAI systems for debugging finding problems in specific AI internal
components.32 Furthermore, participants in our study were not ML experts and were not offered detailed information
about the creation and design of the AI's underlying models. Despite this lack of direct representation, they were more
accurate in the Prediction-Guess phase as detail increased, thus demonstrating how instance-level explanations can
help users to develop an intuition for understanding computational models through application-level experiences.

XAI effectiveness through empirical evidence of prediction

One of the basic goals of interaction design is to convey accurate mental models of systems to help align understanding
of interaction possibilities with actual system operation.77 However, given the “more and more complex model
architectures”,75 it can be challenging (or impossible) to create explanations that faithfully represent model logic while
still being simple enough for human understanding. Support for application-level human judgments with machine
assistance can take advantage of designs that provide supplemental information that allow end users to naturally
improve their understanding through continued observations of system operation. By this approach, rather than aiming
for novelty in creating representations that entirely model complex internal representations, our research contributes
an iterative and component-based design method that prioritizes high-level feature information to help users maintain
the connection between represented information and model functionality.

This method also facilitates evaluation of a wide variety of explanation designs. In our research, we demonstrate the
value of a broad approach that generates several new visual explanation representations and empirically tests them to
evaluate effectiveness. This approach enables user testing in a fashion similar to a unit testing approach to further
advance knowledge of a broad set of explanation strategies and representations. By taking advantage of the “user pre-
diction” approach to evaluating model understanding by tasking users with predicting future AI guesses for new inputs,
as our Prediction-Guess does, we can study model understanding empirically without regarding whether the partici-
pants' mental models match an AI's model directly.

With an empirical and pragmatic basis for evaluating understanding, new research has a tremendous breadth of
possible visual representations and explanation types. The designers of these systems may have specific hypotheses
about how they should be used in practice. However, as the complexity of AI models increase, it becomes less likely that
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understanding its inner mechanics will be possible or have practical utility for application-level end users. Our partici-
pants reported ad hoc and holistic decision-making for prediction, that they “took it all into consideration” to predict.
From an evolutionary perspective, this approach follows parallel cognitive mechanisms in Theory of Mind.78 As
humans develop skills to understand and attribute mental states to others, for example, by looking at what they do and
relating it to their own experiences, they engage in Theory of Mind social cognition. The Simulation Theory posits that
people accomplish this by using a combination of internal first-person thinking that is adjusted during real-world expe-
riences. In other words, the qualitative results of our study may suggest that users of complex AI systems in other con-
texts will inevitably develop personalized heuristic-generating practices that mitigate the cognitive cost of
understanding complex models. For future XAI research, the results suggest that the reception of user interfaces will
take on a life of their own when combined with the social and intellectual practices of their users.

CONCLUSION

The presented research provides novel empirical data of how different types and amounts of explanatory information
affects user ability to utilize explanations to understand system behavior and improve task performance. In a controlled
experiment, participants were tasked with using an explainable fact-checking system to assess news statements and to
predict the output of the AI. The study's results indicate a clear tradeoff between speed and accuracy due to added
explanation details. On one hand, the results provide strong evidence of the value of additional explanation information
for intelligent systems, as additional information did help users to better understand and predict system behavior. On
the other hand, it took more time to review and interpret the results in order to achieve the benefits.

This raises additional questions about whether such a tradeoff could be avoided with alternative types of explana-
tion. Explanation is difficult, and we do not claim that our studied XAI system follows an optimal design. It could be
possible to design an explanation interface that effectively communicates a perfect amount of information to facilitate
improved understanding without causing the penalty of additional human processing time. However, achieving an opti-
mal design would likely require prior knowledge of the users' level of expertise, the level of explanation detail that
would be most useful for one particular task, and the best explanation format for both the model and the user task.
Such complexity and possibilities for design demonstrate the need for future research on the topic of XAI and human-
interpretable systems.
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