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ABSTRACT

Integrating artificial intelligence (AI) with wearable technology and
the power of augmented reality (AR) holds great potential for en-
abling real-time task assistance. Through wearable sensors and
cameras, it is possible to monitor both the state of the physical world
and the biometric status of a human operator, which can allow the
AI to offer adaptive assistance tailored to match the user’s needs
and optimize aid. Developing AI models for such purposes requires
training data that not only describes users’ cognitive state during
tasks but also accounts for their responses to the interactive system
during the task. We introduce the Multi-Modal User Modeling for
Task Guidance (MUMTG) to support the development of AI models
for such purposes. The dataset is created through human-subjects
studies with users performing search and assembly procedures with
help from virtual instructions provided by either a head-worn AR
headset or a monitor screen. The data-collection study uses a game-
like scenario to guide participants through six guided tasks that vary
in difficulty.

Within each group, we manipulated task duration and induced
several stress triggers to increase the task cognitive demand for three
tasks. The dataset includes physiological data such as electrodermal
activity, temperature, heart rate, pupil dilation, and gaze. We also
collected subjective self-report ratings regarding task workload and
emotional responses after each task. We offer this rich dataset as a
valuable resource to facilitate the development of user models for
task guidance in highly demanding contexts.

Index Terms:
Human-centered computing—Human computer interaction

(HCI)—Interaction paradigms—Mixed / augmented reality; Human-
centered computing—Human computer interaction (HCI)—HCI
design and evaluation methods—User studies; Applied computing—
Education—Computer-assisted instruction

1 INTRODUCTION

Personalization of digital assistants and real-time information dis-
plays can dynamically adapt system output to align with users’ needs,
but developing such technology requires a deep understanding of
their behaviors and interactions within their environment to create a
model representation of the user [5]. Further, integrating artificial
intelligence (AI) with wearable technology and the power of Aug-
mented Reality (AR) holds great potential for enabling personalized
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real-time task assistance [21]. Through wearable sensors and cam-
eras, it is possible to monitor both the state of the physical world
and the biometric status of a human operator, which can allow the
AI to offer adaptive assistance tailored to match the user’s needs and
optimize aid [18].

Real-time monitoring of user stress and cognitive state could help
identify moments where users need more information in times of
uncertainty, less information during periods of overload, or a differ-
ent type of information to improve user understanding. Adapting
to stress is relevant for many common cases that require cogni-
tively demanding tasks under time constraints and high workloads—
including multitasking scenarios in daily life as well as professional
contexts. For instance, on the more extreme ends, medics often
find themselves in high-stakes scenes where immediate response
is crucial, and the margin for error is slim. Similarly, military per-
sonnel across different fields operate in contexts that may require
them to perform sophisticated procedures over extended periods.
Such scenarios characterized by intense cognitive demand can neg-
atively impact their performance [1, 6, 16], often manifesting in
emotional responses such as frustration and stress [3, 24]. Real-time
task guidance can also be beneficial in less critical but still impactful
scenarios. For example, chefs in busy kitchens could leverage such
guidance to enhance coordination and execution efficiency. In any of
these scenarios, where precision and timing are crucial, the ability to
monitor and adapt to an individual’s cognitive state can significantly
impact outcomes, ensuring high-quality performance and reducing
the potential for error.

As a basis for implementing personalization techniques and algo-
rithms, sample data is needed from user performance and various
sensors from different use cases; human-computer researchers call
this user modeling [5]. Furthermore, machine learning researchers
can leverage data-driven statistical techniques to learn mathematical
models [19, 28] that can classify users based on specific categories
or predict their psychological status [12] to provide adaptive model-
based personalization. Developing AI models for such purposes
requires training data that not only describes users’ cognitive state
during tasks but also accounts for their responses to the interactive
system during the task.

Our research provides a new multidimensional dataset of hu-
man behaviors, cognitive state, and biometric signals as they work
through a task procedure with the aid of digitally-presented instruc-
tions under pressure. The Multi-Modal User Modeling for Task
Guidance (MUMTG) dataset includes a range of physiological re-
sponses and subjective ratings as time-series data. In a game-like
scenario, participants engaged in guided tasks that vary in difficulty
under stressful and calm conditions. Participants were tasked with a
interpreting instructions, object search, and construction with build-
ing blocks as the scenario progressed. The stressful tasks included
various stress-inducing elements (stress triggers), including incom-
plete instructions, time limitations, and interruptions [15] provoking
participants to complete the activity under pressure. On the other
hand, the relaxed (unstressed) conditions did not include any stres-
sors, allowing participants to engage in the tasks without any time



Figure 1: The diagram illustrates the integration of various tech-
nologies and the processing workflow for our multi-modal data
collection.

restrictions or unanticipated challenges. The data collection studies
account for two modes of real-time information display: headworn
AR and on a monitor screen.

2 DATA COLLECTION

2.1 System

Our study employed a multifaceted approach to data collection, in-
cluding spatial tracking, biometric data, and subjective feedback
data. The diagram in Figure 1 illustrates the multi-modal data col-
lection and processing workflow for the our study. It shows the
integration of various technologies: the OptiTrack tracking system
and Microsoft HoloLens headset for spatial tracking, the Empat-
ica wristband for physiological data, and the PupilLabs camera for
eye-tracking data. Data from these devices are streamed to servers
and processed via different APIs (OptiTrack Unity SDK, NetMQ,
and ZeroMQ), resulting in the compilation of logs in CSV format
for spatial tracking, physiological, and pupillometry data separately.
The subjective ratings are collected through web-based forms.

2.2 User Task

In a game-like scenario, participants engaged in guided tasks that
vary in difficulty. Each participant had to complete six tasks with
building blocks; two were simple with a few steps, two were more
challenging with several steps ranging between 4–7, and the other
two were complex builds with more than seven steps. Figure 2 shows
part of the physical game board used in the study, and Figure 3 shows
the physical setup. Figure 4 shows the constructed objects the par-
ticipants had to complete during the six tasks, the images ordered by
level of difficulty from left to right as low, medium, and high. The
top three were from the unstressed conditions, whereas the bottom
three were from the stressed conditions. Building-block assembly
tasks are inherently modular and scalable, making them ideal for
designing tasks varying in complexity. They require spatial reason-
ing, fine motor skills, and the ability to follow detailed instructions,
making them suitable for simulating real-world tasks that require
individuals to manage and adapt to varying workload activities. Fur-
ther, the sequential nature of block assembly lends itself to the study
of task assistance with the need for step-by-step instructions that can

Figure 2: Part of the physical game board for the user task

Figure 3: The physical study setup

Figure 4: The builds ordered by level of difficulty as low, medium,
and high from left to right. The top three are from the unstressed
conditions, whereas the bottom three are from the stressed condi-
tions.

be presented through various formats. Also important for data col-
lection, block building is an easily-understandable task for general
study participants without the need for specialized expertise.

We designed the study to collect data under stressful and un-
stressed conditions by splitting the game into two halves, each con-
sisting of three building tasks. During the first half, there was no
chance of failure and no complications. For the second half, each
task had a time limit, additional complications (stress triggers), and
consequences for failure.

2.2.1 Stress Triggers
Each task in the second half of the game had one or two complica-
tions meant to provoke participants to complete the activity under
pressure. Participants had to both complete the build and deal with
the complications within the time limit. Table 1 shows a summary of
the tasks with their associated level of difficulty and stress triggers.
These stressors are designed to increase task workload, such as cog-



Figure 5: The instructions panel through the HoloLens headset in
the AR condition (left) and on a monitor screen for the Desktop
monitor condition (right).

nitive and temporal demands, simulating the multifaceted nature of
challenges encountered in high-cognitive demand real-world tasks.

For task 4, the build instructions were given out-of-order, forcing
participants to move forward and backward through the steps to
figure out the correct sequence and guess in which order they should
be done. This out-of-order instruction stressor simulates scenarios
where information may not always be presented in a linear or logical
sequence, adding extra strain on working memory to interpret the
presented steps, solve spatial problems, and fix problems due to poor
instructions.

As another stressor, participants were also given a memorization
task at the end of task 4. For this stressor, they had to repeat five
names given to them at the beginning of the study (approximately
30–45 minutes before reaching this task). This stressor was chosen
to add an additional cognitive load, requiring individuals to retain
and recall information, while also evoking a sense of frustration
stemming from the need to remember names to avoid penalty in the
game scenario.

For task 5, we introduced the stressor of text form instructions
for the building blocks assembly. Here, the build instructions were
given in text form instead of as images, making them difficult to
interpret. This stressor was designed to increase cognitive load by
requiring additional mental effort to convert textual information into
spatial constructs, mirroring situations where instructions are un-
available in the most convenient format. Additionally, in the middle
of the task, we interrupted participants and asked them to find an
item on the game board. We added this stressor of interruption to
reflect scenarios where individuals are often required to shift atten-
tion between tasks or attend to distractions from their environment
while focusing on completing a specific task.

For task 6, the build instructions called for a piece purposely
not included in the corresponding bin. Instead, participants had
to search for the instructed item from among the other elements
around them. The instructed game piece was hidden among the
numerous colorful plastic decorative game setting, and participants
had to visually scan the space and account for occlusion from other
objects. The hidden required piece stressor was chosen to mimic
real-life cases where it is difficult to keep track of specific items or
tools, and cluttered workspaces introduce complexity for locating
key items at inopportune times.

In addition to all the above stressors, we added time pressure
in each of the final three tasks. Participants had to complete the
tasks within a specific duration of time in order to avoid a penalty
in the game progress, though the penalty did not directly affect the
instructed building tasks. We added this stressor to create a sense
of urgency and stress by putting pressure on individuals to manage
their time efficiently while correctly working through the tasks.

2.3 Instruction Conditions
We used a between-subjects study design with two conditions. One
group received instructions through a monitor screen, while the
other received the instructions through the HoloLens AR display.

Table 1: Summary of the tasks with their associated level of difficulty
and stress triggers.

Task Difficulty Level Stress Triggers

1 Medium None

2 Low None

3 High None

4 High
• Out of order instructions
• Memory task
• Time pressure

5 Low
• Text form instructions
• Interruption
• Time pressure

6 Medium • Hidden required piece
• Time pressure

For consistent data collection, all participants wore the headset for
the entirety of the study, but those in the desktop monitor condition
did not have anything displayed through the AR system.

Participants in the AR condition also received cues to help them
complete the challenges. For each step, an arrow was displayed
through the AR display over the bin(s) that contained the needed
piece(s). We contrasted the instructions delivery mode between
augmented reality (AR) and traditional monitor screen display to
assess the potential of immersive technology in facilitating following
instructions with visual cues compared to the conventional format of
static screens that would also require several physical shifts between
the screen and the building space.

2.4 User Interface
We used Unity to create the user interface for the task. The interface
consisted of an instruction panel containing directions for complet-
ing a single build step. Images of the required pieces for the step (a
maximum of three) were displayed at the top, with a number below
each image denoting how many of each piece is needed.

Below the required pieces is shown an image of the completed
step, with all the pieces assembled. We designed each step to be a
small change from the prior one to clarify the construction process.

Users in the AR condition viewed the instruction panel through
the headset. For the desktop monitor condition the instructions were
displayed on a monitor screen directly in front of the participant, an
example is shown in Figure 5.

2.5 Procedure
The study was reviewed and approved by the university’s ethics re-
view board (Institutional Review Board; IRB) for protection and re-
spect of participants. Participation in this study was voluntary. Upon
participants’ arrival, participants were comprehensively briefed
about the study’s objectives, procedures, and the sensor devices
used for data collection. Participants were optionally offered extra
credit in approved courses as compensation.

We conducted the study in a controlled lab setting, with individual
sessions for each participant to maintain privacy and minimize any
potential discomfort or stress. The dataset does not include any per-
sonal identifiers, thereby preserving the anonymity and ensuring the
privacy of all participants. Following the initial briefing, participants
were equipped with a headset, tracking gloves, and wristband and
were asked to complete two preliminary activities. The first was a
practice building task to allow them to familiarize themselves with
the process of following the instructions to build an object. The
second was a color detection task in which participants had to watch



Figure 6: Procedure overview

randomly colored squares presented for 10 seconds and count the
number of yellow squares passively. This task aimed to regulate their
physiological responses to baseline levels [11] before beginning the
non-stressed region of the game.

For the game, the participant was tasked with completing the three
builds of the unstressed region before being offered a short break
and then completing the three builds of the stressed region. After
each task, the participant filled out the NASA Task Load TLX [8]
and PANAS-X [25] questionnaires. Figure 6 show a visual summary
of the study procedure.

3 DATA PREPROCESSING AND LABELING

The output of the data collection workflow, shown in Figure 1, in-
cluded three CSV files: 1) spatial tracking and physiological data
logs, 2) pupillometry data logs, and 3) subjective rating data. We
crafted the dataset by following a structured preprocessing workflow.
For each step, we grouped the records by task for each participant to
guarantee the integrity of the results. Initially, we cleaned the spatial
tracking and physiological data—this included extracting unique
identifiers, synchronizing timestamps, filtering out irrelevant data
falling out-of-tasks range duration, and encoding textual information.
Additionally, we resampled the pupillometry data frequency to 60
Hz to match the spatial tracking and physiological data frequency.
Following this, we integrated both logs based on timestamps, re-
sulting in one log combining spatial tracking and biometric data.
Finally, we calculated the NASA TLX and PANAS-X scores in
the questionnaire responses, adhering to the standardized scoring
guidelines of each instrument to derive multi-labels outcomes for
the spatial tracking and physiological data.

4 DATASET

We elaborate on the different types of data collected during the study,
and show descriptive statistics and figures from a portion of the
data analyzed so far (20 participants). The sample described in this
paper is a subset of data collected and processed to date, and we are
continuing to add to the dataset as we collect and process new data.
The (MUMTG) dataset presented in this paper is publicly available
in Mendeley Data repository [9].

4.1 Spatial Tracking Data
Head and hand movement patterns can offer valuable insights into
non-verbal cues and physical manifestations of cognitive load and
emotional status.

We captured several tracking data for the participants’ heads and
hands while executing the tasks. While one group of participants
received the instructions for the tasks on a monitor screen; they were
also equipped with the HoloLens for consistent data collection across
all participants. The captured tracking data includes positional and

Figure 7: Patterns of pupil diameter dilation (in image pixels) in
response to task engagement. Displayed are the trends of right and
left pupil diameters throughout the task’s progression, comparing a
medium difficulty task between stressed and unstressed conditions.

Table 2: Comparative analysis of pupillometry metrics for right and
left pupils during unstressed and stressed tasks.

Unstressed Tasks Stressed Tasks

Mean SD Mean SD

Right
pupil

Diameter 13.84 18.09 13.87 17.36

Axes X 10.49 12.65 10.14 12.86

Axes Y 13.84 18.09 13.87 17.36

Angle -13.7 83.02 -18.54 81.57

Left
pupil

Diameter 14.71 16.82 14.76 25.68

Axes X 11.11 12.2 10.9 12.75

Axes Y 14.71 16.82 14.76 25.68

Angle -0.25 88.1 -4.88 88.43

rotational coordinates denoted as ’x,’ ’y,’ and ’z’ values, providing
a three-dimensional positional matrix for various reference points
for the head and hands. The same movements were logged with
an OptiTrack Prime 13W camera system with reflective markers
observed by a set of infrared cameras to determine positions and
orientations. This has accuracy benefits over the computer-vision
based approach used by the Microsoft Hololens, and also can track
the users hands while outside their view (the Hololens is limited
to tracking hands only when its internal cameras can see them).
We note that the coordinate systems do not align between the two
systems (e.g., the origin of one space differs from the origin of the
other).

4.2 Biometric Data
Research in psychology has shown that biometric data is a rich re-
source for deducing various physiological and psychological states,
such as cognitive demands and emotional states (e.g. [17, 22, 27]).
Based on the psychology and computer science literature, we se-
lected specific biometric measures associated with cognitive demand
and emotional states that we show below.

Pupillometry Data Studies have demonstrated a correlation
between ocular metrics and various psychological states, including
cognitive workload, frustration, and stress levels. [7, 10, 13]. We



Table 3: Comparative analysis of physiological parameters across
unstressed and stressed tasks.

Unstressed Tasks Stressed Tasks

Measure Mean SD Mean SD

Temperature (°C) 30.42 1.16 30.77 1.15
HR (BPM) 103.2 33.87 107.65 35.25
GSR (µS) 0.66 1.09 1.05 1.34
BVP (µV ) 0.02 13.58 -0.01 14.22
IBI (ms) 0.66 0.25 0.62 0.22

Figure 8: Multifaceted physiological responses over task duration.
This graph displays changes in body temperature, galvanic skin
response, blood volume pulse, heart rate, and inter-beat interval
through different stages of task execution, comparing a medium
difficulty task between stressed and unstressed conditions.

captured various eye measurements, focusing on the geometric and
positional characteristics of the pupils. Including the normalized
x-y coordinates locating the pupil within the eye camera’s image
frame and the pupils’ diameter in image pixels. For detailed pupil
morphology, we captured the ellipse’s central x-y coordinates, the
lengths of its major and minor axes, and the axial orientation (angle).
Even in the absence of images or videos, the significance of such

dynamic, continuous data lies in its ability to provide quantitative
insights into human cognitive and physiological states; for example,
changes in pupil diameter can indicate the cognitive load exerted by
individuals during different tasks.

Figure 7 illustrates an example of the dynamic changes in pupil
diameter (in image pixels) in response to task conditions and specific
stress triggers, highlighting differences in ocular response across two
tasks with medium difficulty in stressed vs. unstressed conditions;
the task duration is segmented into deciles to facilitate comparison
between the two tasks as they differ in duration. We also show the
aggregated mean and standard deviation (SD) for pupil diameter (in
pixel images), x and y axes coordinates of the major axis, and the
rotation angle under stressed and unstressed conditions in Table 2.

Physiological Data Previous studies have shown that physio-
logical data are linked to various emotional states, such as frustration
and anxiety [2, 20, 23]. We gathered various metrics measuring par-
ticipants’ physiological responses while executing the tasks. These
include body temperature, the galvanic skin response, blood volume
pulse, heart rate, and inter-beat interval. This raw data provides
a significant resource for extracting several insightful features to
indicate changes in users’ nervous system response, such as temper-
ature variability, galvanic skin response (GSR) frequency, pulse rate
variability, heart rate variability, and IBI variability. Table 3 presents
the mean values and standard deviations (SD) for the above data,
comparing the measurements obtained during tasks with stressors to
those without.

Figure 8 shows an example of the progression of physiological
metrics across two tasks with medium difficulty (stressed vs. un-
stressed); the task duration is segmented into deciles to facilitate
comparison between the two tasks as they differ in duration.

4.3 Subjective Ratings
Existing research shows that self-reported measurements correlate
with cognitive demand and emotions [4, 26], Therefore, we asked
participants to provide their subjective ratings about the task work-
load experience and their emotions after each task. We utilized two
well-known, established instruments: the NASA Task Load Index
(TLX) [8] and the Positive and Negative Affect Schedule PANAS-
X [25]; after computing the scores, we derived several outcomes that
we used to produce a multi-label dataset. These are NASA Weighted
Average Scores, Positive Affect Scores, and Negative Affect Scores.

We run several statistical tests on the ratings data to check for
differences across the instruction delivery conditions (AR vs. desk-
top monitor) and the trial conditions (stressed vs. unstressed). The
results were statistically insignificant across the AR and desktop
monitor conditions. For the stressed and unstressed conditions, Fig-
ure 9 details the findings from the Wilcoxon Rank Test. It highlights
the influence of stress triggers on both the NASA Task Load In-
dex and the affect scores. The box-plots illustrate the distribution
of NASA Weighted Average, Positive Affect, and Negative Affect
scores grouped by the levels of task difficulty (low, medium, high).
The findings from wilcoxon-signed rank test reveal significant dif-
ferences (p < 0.05) between stressed and unstressed tasks across
all these measures except for the positive affect scores in the low
difficulty task with p = 0.06.

5 CONCLUSION

This paper describes the collection of the Multi-Modal User Model-
ing for Task Guidance (MUMTG) dataset, comprising raw biometric,
spatial tracking data, and subjective ratings from various tasks per-
formed by 20 participants. The scenario for data collection simulates
a variety of cognitively demanding tasks combining: search and as-
sembly tasks with physical objects; information processing through
digitally presented instructions; and state monitoring of the physical
game setup along with external stressors. We systematically manipu-
lated task difficulty and various stress triggers such as interruptions,



Figure 9: Impact of stress triggers on NASA Task Load Index and
Affect scores. The boxplots represent the distribution of NASA
Weighted Average Scores and Positive and Negative Affect Scores
under varying task difficulties (Low, Medium, High). The figure
compares the scores with and without stressors, indicating significant
differences as per the Wilcoxon-signed rank test results.

time pressure, and cognitively demanding instructions. We also
manipulated the instruction delivery to increase the variability of the
data.

The current dataset is a work in progress, and we continue to run
participants to increase the available sample for future researchers.
With feature engineering, researchers can harness this data for ma-
chine learning and creating AI systems capable of providing real-
time, adaptive task guidance. Our dataset is intended to supplement
existing datasets in the domain. For example, the dataset referenced

in [14] includes physiological metrics and subjective task ratings
gathered from participants engaged in tasks related to knowledge
work under conditions manipulated by stressors, which follows a
motivation similar to our own for enabling user modeling. Impor-
tantly, our work’s implementation across two display modalities (AR
and monitor screens) is important and novel due to the ability to
differentiate users’ behavioral changes due to different types of dis-
play functionality that is also likely to affect behaviors. For example,
when information is presented on a screen in the physical world, we
can expect users to physically turn to access the information, while
this would not be the case in AR. In AR, we might expect more
severe changes in eye movements and pupil reactions for abrupt al-
terations in the visual head-worn overlay. Through future work with
our dataset, research and development of AI models for adaptive
information presentation will be able to account for reactions related
to display differences more accurately. Through future analysis of
the dataset, we also hope to inform the need for testing different
display types and interaction modalities by improving the under-
standing of their effects on human responses, which is important for
user modeling.
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