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People play a significant role in designing, developing, and employing artificial intelligence (AI) systems. They can consider contextual
information beyond the scope of Al models, thereby influencing system outcomes. At the same time, people’s choices or biases can
introduce problems into the systems. This paradoxical scenario, in which people can both introduce and contribute to relieving the
inherited machine bias, demands comprehensive and multidisciplinary approaches involving informed human interventions to improve
systems’ performances and reduce their biases. Researchers across various communities have investigated multifaceted methods to
reduce and mitigate bias in Al systems. Regardless of the method, humans are always involved in the debiasing method in one way or
another, emphasizing the importance of human intervention during Al systems development. In this systematic review, we analyzed
100 peer-reviewed publications from various human-computer interaction (HCI) and machine learning (ML) venues. We discuss their
research efforts to minimize data bias and algorithmic bias from three angles. First, we present a comprehensive taxonomy of bias
mitigation solutions, analyzing the research methodologies and standard benchmarks for evaluating these solutions, highlighting the
human researcher’s role in developing and evaluating solutions to address bias. Next, we identify humans’ roles in alleviating biases
and specify how, when, and where their involvement occurs within the Al lifecycle. Finally, we summarize the research focus and
methodologies across research disciplines. Our review revealed that, while technical solutions are essential, addressing bias requires a

broad perspective that integrates human oversight, ethical frameworks, and interdisciplinary collaboration.
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1 Introduction

People today heavily rely on intelligent systems for everyday decisions, data and algorithmic biases have become a
critical concern. From trivial cases like TV show recommendations through more significant scenarios such as job
recruitment and loan systems to highly consequential issues related to legal systems, the unintentional consequences of
embedded biases can perpetuate inequalities and hinder societal fairness. Although identifying the exact origins of these
biases could be challenging, some researchers pinpointed data as a primary source, mainly through representation bias,

where data may misrepresent certain groups [146, 173]. Such bias can stem from several factors, including selection and
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sampling biases during data collection and labeling biases in data annotation (e.g., [48, 122]). Algorithms themselves
can further amplify these biases if not adequately trained and evaluated (e.g., [76, 86, 109]).

One integral aspect to consider while addressing bias is the role of human involvement in the Al lifecycle. Humans
are significantly involved in designing, developing, and deploying machine learning algorithms [30]. Their decisions
during each phase could be both a source of bias and a potential solution for mitigating it. For instance, ML practitioners
make decisions affecting data curation and model development; it is essential that they thoroughly understand the
problem requirements to implement proper data sampling and balanced data annotation strategies (e.g., [37, 43, 44]), and
employ tools to counterbalance biases introduced by annotators (e.g., [64, 142, 149]). Furthermore, selecting appropriate
algorithms during development can prevent amplifying hidden biases (e.g.,[60, 78, 85, 86]). Human oversight can
significantly mitigate biases during deployment by overriding these systems in fully automated workflows, where
decisions are instantly employed [24, 29]. Additionally, leaders’ and policymakers’ decisions to adjust workflows and
enforce policies within the Al lifecycle are essential depending on the context of Al system deployment (e.g.,[48, 74]). In
all these scenarios, human decisions can either restrain biases and increase systems’ trustworthiness or amplify them,
undermining their fairness toward specific groups or threatening their robustness when seeing new data.

Recognizing the need for fair outcomes and robust systems, various ethical bodies and research communities have
invested significant effort in promoting trustworthy Al [161]. For example, the European Union (EU) has proposed
ethical guidelines to foster the development and deployment of trustworthy Al systems [141], outlining the following

seven requirements:

"(1) human agency and oversight, (2) technical robustness and safety, (3) privacy and data governance, (4)
transparency, (5) diversity, non-discrimination and fairness, (6) environmental and societal well-being and (7)

accountability."

Motivated by these requirements, countless researchers from different disciplines have explored diverse solutions to
mitigate bias in Al systems, each tailored to specific goals and research approaches. Throughout our review, we observed
that researchers frequently use the terms mitigate and reduce bias interchangeably, despite their subtle differences in
meaning in English—where mitigate suggests lessening the impact or severity of bias [35], and reduce typically implies
a decrease in the extent or amount of bias [36]. To maintain consistency and align with the usage in the literature,
we have adopted this convention throughout our work. Some researchers have adopted human-computer interaction
(HCI) strategies, encouraging participatory design methods to establish design principles and recommendations and
developing tools (e.g., [3, 55, 74, 87, 146]). In contrast, others have focused on the technical, data-driven aspects typical
of the machine learning (ML) field (e.g., [25, 50, 70, 90, 154, 168]).

Addressing bias in Al systems requires active involvement and collective responsibility from humans involved.
It begins with Al researchers who develop these solutions and extends to ML practitioners and other stakeholders.
Motivated by this collective responsibility, we present this systematic review, adopting a comprehensive and multidis-
ciplinary approach to exploring the state-of-the-art literature on addressing data and algorithmic bias in Al systems.
While several systematic reviews address bias in Al systems, our work provides a unique contribution by adopting a
human-centric perspective, unlike most existing reviews, which primarily focus on technical bias mitigation strategies.
In our review, we systematically examine the roles humans play (governance, technical, operational) in reducing bias
across the Al lifecycle, including a novel multidimensional classification of their roles and scopes of influence, mapping

them to debiasing methods. Further, we analyze the reviewed debiasing interventions within the design, data acquisition,
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modeling, and deployment cycles—a level of lifecycle granularity often missing in other surveys, which tend to focus
on modeling stage interventions alone, providing an academically-comprehensive consolidated reference.

We reviewed 100 research publications from 2018 to 2024, drawing from top-tier conferences in both HCI and ML
fields. This focus was chosen to manage the scope of our review while ensuring coverage of venues most relevant and
highly rated for this topic. We clarify that our review is intended as a representative sample rather than a comprehensive
survey of all possible relevant publications, and we acknowledge that journals and other venues indexed in databases
would also be relevant to the topic. Our analysis examines the proposed solutions to address bias and the nuances of
human involvement in employing these solutions. Additionally, we provide insights into the distinct motivations and
approaches the ML and HCI fields take to address these challenges.

We summarize our key contributions below:

e We present a detailed taxonomy of solutions to address bias, categorizing the research methodologies and
outlining standard evaluation benchmarks.

e We define humans’ roles within the Al lifecycle and classify the extent of their involvement in minimizing data
and algorithmic biases.

o We illustrate differences in the motivations and research methodologies employed to investigate solutions for
bias across the ML and HCI fields.

By classifying existing solutions, we aim to provide researchers with a comprehensive overview, showing the
breadth of solutions in state-of-the-art literature in HCI and ML disciplines and future interdisciplinary opportunities.
Situating the humans’ roles and contributions within these existing solutions highlights better opportunities for actively
integrating humans into designing and implementing ethical AI frameworks.

The remainder of this article is organized as follows. Section 2 describes the methodology of our systematic review,
including the search strategy, screening process, and coding approach. Sections 3-5 present the results of our analysis.
Section 3 examines methods for mitigating bias in Al classifying their types and detailing the methodologies for
development and evaluation. Section 4 explores human roles in bias mitigation throughout the Al lifecycle, categorizing
both the roles and the extent of involvement. Section 5 compares the motivations and methodologies of the ML and
HCI research communities. Finally, Section 6 discusses the main challenges to address bias, offers considerations for

effectively leveraging human roles, and summarizes key insights that extend beyond technical solutions.

2 Method

We adhered to a rigorous systematic literature review approach following the PRISMA 2020 statement [114]. We further
used a systematic review tool, Covidence [27], to facilitate the reviewing process. Figure 1 shows the PRISMA flowchart
of our research method. Since our inclusion criteria and coding depend on how bias is understood, we first clarify
its meaning for the scope of this review. We then outline the methodology, starting with the eligibility and inclusion

criteria, proceeding to the data collection strategy, and concluding with the data analysis procedures.

2.1 What is Bias?

In general terms, bias refers to a preference towards someone or something. Across academic disciplines, bias is defined
in various ways. In psychology, it is understood as systematic cognitive distortions that deviate from rational judgment
[53]. In statistics, bias represents a systematic deviation introduced when data collection or estimation methods yield
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Fig. 1. An overview of our research method following PRISMA.

different outputs than what is expected [80]. In machine learning, Mitchell [106] defines bias as "any basis for choosing
one generalization over another, other than strict consistency with the observed training instances."

For the context of our review, it is important to seek a broader definition that encompasses the various causes of bias
in Al one that integrates technical, cognitive, and societal perspectives, as well as the human role in the process. Bias in
Al systems can emerge from multiple sources. At the data level, representation bias occurs when training datasets fail
to accurately capture the diversity of real-world populations, resulting in the over- or under-representation of certain
groups. Other sources, such as sampling, measurement, and annotation bias, may further skew datasets during collection
and labeling. At the algorithmic level, model design choices and optimization strategies may unintentionally amplify
hidden biases present in data, producing outputs that reinforce disparities. Even when algorithms are technically fair, the
context of their deployment may introduce societal and institutional biases that reflect broader structural inequities. It
is essential to acknowledge that bias is not inherently limited to technical artifacts; it often reflects human decisions and
assumptions made throughout the Al lifecycle. From problem formulation and data curation to model development and
deployment, human actors influence how bias manifests and how it might be mitigated. Thus, addressing bias requires
not only computational solutions but also ethical frameworks, participatory practices, and governance mechanisms
that take into account contextual and societal dimensions.

Various recent surveys and review articles have also classified different types of bias in Al offering taxonomies that
complement our framework (e.g., [20, 102, 104, 112, 146]). Readers seeking broader mappings of bias categories are
encouraged to review their work. Bringing these strands together, for the purposes of our review, we define bias in Al
as:

"Systematic and unfair deviations in data or algorithmic outcomes that disadvantage particular individuals or groups.

Unlike random errors, bias reflects consistent distortions that can undermine robustness ! across diverse contexts, perpetuate

Here, robustness refers to the ability of Al systems to maintain consistent performance across diverse populations, contexts, and environments.
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existing societal inequities, or create new forms of unfairness when embedded in automated decision-making systems. Bias
is often shaped and perpetuated by human actors through decisions made during problem formulation, data collection,
model design choices, and deployment".

This definition guided both our eligibility criteria and our coding framework during data analysis presented in the

subsections below.

2.2 Eligibility and Inclusion Criteria

Following specific criteria to determine paper eligibility for our review, we included peer-reviewed full conference
papers published between 2018 and 2024 that proposed a solution to address bias at entire or any stage of the Al lifecycle,
including: 1) non-technical frameworks, design principles, and recommendations or 2) technical solutions, such as
algorithmic and data-related methods, and 3) targets increasing models’ fairness or robustness. At the same time, we
excluded papers that addressed human cognitive biases, such as confirmation bias and anchoring bias, except those
examining the impact of biased human feedback in Al systems through human-in-the-loop and interactive machine
learning. We also excluded papers that solely introduced new bias detection methods or fairness auditing without

presenting concrete methods to reduce bias.

2.3 Data Collection

Our discussion on bias in Al naturally suggests including papers from AI publication venues. However, one of our
primary motivations is to identify human involvement in addressing bias. Therefore, we decided to include human-
centered research to acquire a comprehensive understanding and diverse perspective. This multidisciplinary approach
combines the deep understanding of user interaction and design principles from HCI with AT’s technical solutions and
data-driven methodologies, allowing us to exhaustively analyze the various human roles in bias mitigation across the Al
lifecycle. This review spans various top-tier conferences in the Al and HCI communities, precisely full research articles
published between 2018-2024 in four ACM Conferences: the Conference on Human Factors in Computing Systems
(CHI), the International Conference on Machine Learning (ICML), Intelligent User Interfaces (IUI) and Fairness,
Accountability, and Transparency (FAccT). Two AAAI conferences: Conference on Artificial Intelligence (AAAI)
and the Human Computation and Crowdsourcing (HCOMP). In addition to the Conference on Neural Information
Processing Systems (NeurIPS). This list of venues is not exhaustive and does not cover the depth of the body of research
addressing bias; however, it spans a diverse collection of top-tier and middle-tier conferences that cover the scope of
our review, providing a representative sample of the state-of-the-art existing research. Our sample from seven venues
over the past six years reflects a substantial increase in publications in recent years, as illustrated in Figure 2.

We searched two digital libraries and two archives (ACM Digital Library, Scopus, AAAIL and NeurIPS), resulting in
833 initial articles. In our query, we used the terms (“Bias”, “Data bias” OR “Algorithmic bias”), and we also added
(AND (“Machine learning” OR “Artificial Intelligence” OR “AI”)) to narrow down the research results, especially in HCI
publication venues. Although one of our goals is to identify human roles, we intentionally avoided using keywords
related to humans to prevent limiting our search results. From an earlier informal exploration, we observed that authors
might not explicitly mention human roles, and adding specific human-related keywords to our search queries could
lead to excluding relevant studies. Relying on the keywords above ensured a more comprehensive and inclusive search,
capturing a wider range of papers that indirectly address human involvement through broader contexts.

After importing the initial list of 833 papers into Covidence, we removed 161 duplicates and excluded extended

abstracts and review articles, resulting in 672 full-paper articles. Following a systematic review approach, we filtered
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Table 1. Filtering process for selected papers in seven Conferences between 2018-2024.

Publication Venues

Filtering Process ‘

ACM ACM ACM ACM  AAAI

CHI IUI ICML FAceT Hcomp AAAT NewrlPS  Total
Potential papers after 139 24 192 188 35 117 138 833
keyword searching
Potential papers excluding
duplicates & others 77 10 191 134 18 104 138 672
Relevant papers aft.er title 19 5 41 52 g 2% " 175
and abstract screening
Included papers after 10 3 21 39 5 14 15 100
full-text review

the papers through two main steps: 1) title and abstract screening and 2) full-text review. In the first step, we manually
screened the titles and abstracts of all papers to identify those relevant to our review’s scope, narrowing the selection
to 175 articles. We then conducted a full-text review and included or excluded papers based on the eligibility criteria
outlined in the previous Section 2.2, ultimately selecting 100 papers for inclusion in our review. The filtering process is

summarized in Table 1.

2.4 Data Analysis

We used the Covidence tool for systematic review to facilitate the coding and analysis, enabling us to efficiently manage
and organize the large volume of papers. Our analysis followed an adaptive iterative coding classification and a thematic
approach. We conducted an exploratory review during the screening and full-text review phases to identify initial labels
and possible themes consulted from previous literature reviews. Driven by our research questions and the initial labels
we gathered earlier, we followed a deductive coding [42] —in which coding categories are developed in advance based
on theory, prior literature, or predefined frameworks approach—to create a priori codes and themes; these covered
different aspects of the proposed debiasing solutions including their types and evaluation methods, human intervention

characteristics, such as roles and levels of involvement, and research motivations and methodologies.
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While deductive coding provided a structured, quick starting point for classifying the papers, it did not capture
all existing categories. Therefore, we incorporated an inductive coding approach [42] —where coding categories
emerge directly from the data through iterative reading and interpretation—during data extraction to identify new
codes and update our initial themes accordingly. Once new codes were identified, we revisited previously labeled
papers for consistency in our categorization. This iterative hybrid coding approach allowed us to refine and expand the
codes incrementally until all papers were appropriately categorized and themes identified. This process ensured our
analysis accurately captured all elements related to our research questions, including the diverse debiasing solutions

and evaluations across the Al lifecycle, the aspects of human involvement, and research motivations and methodologies.

3 Solutions and Methods for Addressing Bias in Al

Due to the complexity of identifying bias and its sources, the convoluted process of building Al systems, and the variety
of individuals involved with conflicting objectives, researchers from various communities have approached bias in Al
from different angles; moreover, their distinct research interest, focus, scope, and goals shape their research methods
and contributions differently. The multidisciplinary nature of existing research in this area highlights the need for a
comprehensive classification to showcase all the diverse solutions for tackling bias at different stages of the Al lifecycle.

As identifying human roles in mitigating bias is one of the key objectives of this review, we decided to recognize
researchers’ critical role in this process because their work is indispensable for developing and evaluating new debiasing
methods. Although researchers’ roles do not fall within the direct AI development lifecycle of a particular system, their
contributions are crucial to providing various solutions for all other individuals involved. Therefore, we categorize their
involvement from a research perspective under two main areas: 1) types of debiasing solutions they propose and 2)
research and evaluation methodologies they adopt.

In the subsequent section (Section 4), we will analyze additional human roles with their unique contributions and
expertise to apply at different phases of the Al lifecycle. Unlike researchers, these roles are directly engaged in one or
more of the systems’ lifecycles and collectively contribute to reducing bias through applying debiasing solutions.

In the current section, we present the main findings of our systematic review, classifying the bias mitigation solutions
and situating them within the Al lifecycle. We examine each category’s scope with representative examples from the
literature (Section 3.1). We also summarize the evaluation methods used, mapping them to the mitigation solution

categories (Section 3.2).

3.1 Types of Solutions for Algorithmic and Data Bias

Based on our review of the literature, solutions to addressing bias tend to fall into one of these categories: 1) principle
and design guidelines, 2) non-algorithmic frameworks including structural, ethical, and others, 3) algorithmic solutions
including algorithms and algorithmic frameworks, and 4) tools and techniques. These solutions vary in their scope and
implementation requirements. While some focus strictly on technical adjustments, others include broader structural and
organizational reforms. We explain each of these solution types below. For a clearer understanding of our explanation
of the types below, Table 2 classifies the papers according to the stage of the Al lifecycle where the debiasing solution is
applied and Figure 3 shows the distributions of these solutions based on the Al lifecycle.

3.1.1  Principles and Design Guidelines. From our review to papers in this category, we describe principles and design
guidelines as high-level, value-driven recommendations aimed at embedding fairness, robustness, and inclusivity into
Al systems. They set the overarching ethical, legal, and societal goals while leaving flexibility in how these goals are
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Table 2. Classification of papers according to the stage of the Al lifecycle where the debiasing solution is applied. As some methods

span multiple stages, certain papers are listed in more than one category.

Principles & Design
Guidelines

Non-Algorithmic
Frameworks

Algorithmic Solutions

Tools & Techniques

Design

Data
Curation

Development

Deployment

[24, 29, 43, 44, 57, 65, 74,
87, 119, 130-132, 144,
153, 164]

[43, 44, 57, 63, 119, 132
153]

(44, 87]

[24, 29, 43, 119]

[11, 28, 103, 116, 147]

[11, 116, 147]

[103]

[28, 103, 147]

[21, 85, 93, 109, 118, 158, 165,
167, 172]

(85, 93, 170]

(2, 4, 6,9, 10, 13-16, 18, 21—
23, 25, 26, 34, 46-48, 50, 54,
60, 62, 67, 68, 70-72, 76, 78,
85, 86, 89-92, 98, 109-111,
115, 117, 118, 120, 122, 126~
129, 135, 143, 150, 151, 154—
156, 158-160, 162, 163, 165—
169, 171-174]

(37]

(33,37, 64, 142, 149]

(3, 55]

#PUBLICATIONS
5

) .
0 |

Design Cycle

Data Curation Cycle D

Al LIFECYCLE

m Principles & Design Guidelines
Algorithmic Solutions

Cycle D Cycle

Non-Algorithmic Frameworks
Tools & Techniques

Fig. 3. The distributions of solutions to address data and algorithmic bias in the Al lifecycle

operationalized. They typically serve as high-level reminders of best practices, but do not provide a specific set of

steps or instructions for practitioners to follow. Such guidelines typically serve as a conceptual guide for practitioners,

influencing decisions across the Al lifecycle without prescribing a rigid process. They can be domain-specific or

broadly applicable, and often require translation into more concrete, context-specific actions before implementation.

This category includes 16% of the papers in our review, outlining foundational rules and design recommendations
grounded in fairness and robustness standards [24, 29, 43, 44, 57, 63, 65, 74, 87, 119, 130-132, 144, 153, 164]. While

often framed as theoretical constructs, these principles and guidelines are also intended to inform practice and can

guide practitioners across various stages. Some researchers took a comprehensive approach to embed these standards

beyond technical adjustments and addressed one or more non-technical elements of Al system design, such as legal,
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ethical, and broader societal values, highlighting the need to extend the focus beyond developing fair algorithms and
to consider non-technical elements of the whole Al lifecycle. For instance, instead of fixing the algorithm, Huang et
al. [63] recommended addressing the biases inherent in the design process by promoting social inclusion practices
and improving diversity and accessibility during data curation. Drawing inspiration from the museum sector, they
proposed non-technical guidelines focused on societal values concerning practitioners, community engagement, and
situational contexts. Similarly, Katell et al. [74] encouraged considering social and political contexts to reduce bias
through situated interventions, such as including the community in participatory and co-design methods. Another
paper [131] discussed technical and theoretical constructs that address "racial talk" when creating Al chatbots. Focusing
on designing data crowdsourcing pipelines, research published by Wang et al. [153] presented recommendations to
facilitate organizational and structural adjustments that consider annotators’ well-being. Likewise, Sengupta et al. [132]
proposed recommendations that account for biased results from skewed annotator populations.

In the above examples, researchers articulated the proposed principles and guidelines with a high level of granularity.
While significant, practitioners must still translate these into specific domains and contexts to develop detailed guidelines
and recommendations. For example, Freeman et al. [43] focused on improving data quality for medical imaging by
drawing principles from the commodity crowdsourcing literature and mapping them to clinical needs through a
collaborative, iterative design process with domain experts. Another study [44] presented nuanced guidelines for
creating disability-centered datasets as a resource for developing disability-positive large language models (LLM).

Others articulated tailored technical recommendations. For instance, Levonian et al. [87] proposed detailed design
guidelines for modelers and designers regarding developing interactive machine-learning systems for text annotation
tasks. These guidelines aim to maximize the leverage of human input to improve the learning rate during active learning
at a lower cost. Additionally, research published in [57, 65] presented domain-specific recommendations focused on
eliminating racial bias in specific applications like automatic speaker recognition and visual question-answering systems.

Generally, while principles and recommendations affect decisions made during the design process of the Al lifecycle,

their implications may extend to reforming institutional policies, organizational structures and operational workflows.

3.1.2  Non-Algorithmic Frameworks. Researchers have also introduced non-algorithmic frameworks that target specific
bias problems and design contexts, providing practical guidance for Al development. Based on papers in this group, we
interpret non-algorithmic frameworks as structured, operational tools that translate high-level principles into specific,
actionable workflows or methodologies for mitigating bias in Al systems. In contrast with the previous category of
principles and guidelines, which are aspirational and more general, these frameworks prescribe a precise sequence of
steps, roles, and procedures that practitioners can directly apply. They tend to operate at a lower level of abstraction,
providing concrete pathways for consistent execution, and often include mechanisms for evaluation, iteration, or
stakeholder engagement. In our sample, only 5 of the 100 (5%) papers proposed some non-algorithmic framework.
For instance, research published in [11, 147] presented frameworks to guide ML practitioners during the data curation
phase. Suresh et al’s. [147] framework is grounded in feminism and supports iterative data collection and annotation
through participatory and co-design processes. Their approach exemplifies how high-level principles can be translated
into structured, operational practices for addressing bias. The approach prescribes an iterative data collection and
annotation workflow that responds to observed model weaknesses and explicitly interrogates framing decisions, such
as who is included or excluded in definitions of feminicide. This process defines concrete roles for practitioners, domain
experts, and community stakeholders, and establishes procedures for revisiting labels, categories, and data sources
over time. In addition, the framework provides actionable guidance for prioritizing marginalized groups in both data
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construction and analysis and direct practitioners to focus on intersectional identities rather than statistical majorities.
In another example of a non-algorithmic framework, Barbosa et al. [11] presented a framework based on ethics, focusing
on managing annotation task allocations while considering human factors such as annotators’ well-being. Similarly,
McCradden et al. [103] presented an ethical framework supporting the integration of ML into clinical practices, from
design to deployment, while promoting fair clinical operations and outcomes for patients from different social groups.

Other researchers in [116] developed a generalizable framework for auditing the data annotation pipeline. This
framework considers cultural and linguistic differences across annotators, promoting inclusivity of diverse cultural,
geographical, and demographic backgrounds when recruiting annotators and producing labels with uniform conceptu-
alization. Additionally, a framework proposed by CruzCort et al. [28] advocates for employing structural changes; their
framework (RISE) is established on four principles: Reformulate, Identify, Structuralize, and Expand. It takes a broader

approach to consider sources of harm during problem formulation, analysis, and stakeholder identification.

3.1.3  Algorithmic Solutions. With the highest number of papers (72 out of 100, representing 72%), this category includes
research proposing methods to reduce bias through algorithmic means, spanning both algorithms and algorithmic
frameworks. Among these, 14 of the 72 papers discuss using algorithmic frameworks [2, 21, 67, 85, 93, 109, 118, 158, 162,
165, 167, 169, 170, 172]. We are not categorizing the papers based on these distinctions; instead, we clarify the differences
below for the reader’s understanding. The primary distinction lies in their scope and application: an algorithmic
framework provides broad, generalized principles applicable across various models to maintain standards of fairness
and robustness. Conversely, a specific bias-reducing algorithm typically targets a particular model, offering focused
solution designed to minimize bias in data processing or decision-making.

Drawing from other classification schemes in previous surveys (e.g., [20, 88, 113]), we categorize these methods
into preprocessing, in-processing 2, and post-processing approaches. Researchers have explored a wide array of
techniques within each of these methods. For a detailed examination, we encourage readers to consult targeted surveys
dedicated to this topic (e.g., [61, 75, 104, 139, 152]). Below, we offer a concise overview of these methods, highlighting

some of the examples from our review.

Preprocessing methods. Research has consistently shown how biased datasets can adversely affect outcomes, threat-
ening system robustness when encountering new data or diminishing fairness towards sensitive groups [104]. Typically,
such bias arises from an imbalanced class representation, creating a propensity to favor the overrepresented group,
often referred to as representation bias. This bias can stem from various sources, including inherited socio-technical
issues in the worldviews, skewed distributions, or flawed sampling strategies [133]. One might think that the way to fix
underrepresented data is to collect more data for the less representative class; however, data collection and annotation
are not always possible for many reasons, such as being both time-consuming and cost-infeasible [100]. Therefore,
several researchers employed different techniques to ’fixing’ the data and mitigate bias before the training phase.

Of the 72 papers in the algorithmic solutions category, 19 proposed mitigating bias using preprocessing techniques.
One simple option involves rebalancing the dataset through augmentation, creating synthetic samples to counterbalance
the representation of different subgroups (e.g., [26, 68, 98, 117, 156]). Resampling represents another way to balance
the classes representations, it involves selecting or removing a subset of the data for training the model instead of

using the whole dataset, examples include research in [10, 85, 128]. Alternatively, the reweighting technique retain the

2While the term “Model Training stage” could be more descriptive, we adopt “in-processing” to remain consistent with the classification convention used
in prior surveys to facilitates comparison across studies.
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original data distribution but alter the significance of certain samples by assigning different weights to data records to
emphasize underrepresented classes during the learning process (e.g., [4, 21, 86]).

Preprocessing methods do not require modifying the learning algorithm, making them broadly applicable across
different models, especially for quantifiable data. However, they do not address biases emerging during training, such as
ones related to spurious correlation [78, 109]. Also, if not carefully employed, they may increase the risk of overfitting,

affecting the model’s generalizability [77].

In-processing methods. Alternatively to preprocessing methods, in-processing methods focus on modifying the model
to mitigate bias during training. These models continuously adjust their learning process by modifying their parameters
to meet specific criteria; this dynamic feature makes them adaptable to address biases emerging during training, such
as biased correlations or those caused by distribution shifts.

In the category of algorithmic solutions, 48 out of 72 papers proposed the reduction of bias via in-processing
techniques. Some of the most prominent techniques fall under adjusted learning where the learning procedure is
changed to mitigate bias (e.g., [71, 78, 90, 109, 118, 120, 154, 168]). Others researchers employed adversarial learning
where two models are trained simultaneously: a classifier that predicts outcomes and an adversary model that learns to
exploit fairness issues. These models compete against each other, with the adversarial model challenging the classifier
to improve its fairness, resulting in enhanced overall performance (e.g., [25, 50, 127, 167]). Additionally, some methods
leverage unlabeled data to learn fair representations (e.g., [122, 168]), while others focus on fairness in embedding
learning for networks and graphs (e.g., [16, 76]). However, these methods are complex to implement and can reduce
the overall accuracy, raising concerns about balancing the trade-off between accuracy and fairness. Additionally, they

require access to the model architecture components which is not always possible.

Post-processing methods. These methods are designed to address bias post-model training and are particularly useful
when previous measures to mitigate bias during data curation and model training fall short or when there are limitations
on accessing data or model components to perform a pre-processing or in-processing techniques. With only 11 papers
[34, 92, 110, 126, 129, 155, 158-160, 169, 172], this set of techniques represents the least explored in our sample.

Within this group, several studies employ optimization-based techniques. For example, DiCiccio et al. [34] apply
threshold optimization to adjust the decision threshold to satisfy fairness criteria, while Nandy et al. [110] and Wang et
al. [155] use ranking optimization to reorder recommendations in line with fairness objectives. Alternative approaches,
such as those reported by researchers in these papers [92, 158-160, 169], implement constraints-based approaches
typically on loss or objective functions to enforce fairness. A similar approach presented by Zhao et al. [172] uses
constraint-based approaches for explanation fairness. A third type of interventions, exemplified in references [126, 129],
utilizes influence-based approaches. Sattigeri et al. [129] modify the predictions at the instance level by dropping
training points after estimating the statistical influence scores. While the methods introduced by Richardson et al. [126]
involve resampling data points by applying one or more of the following: removing, relabeling, adding, or duplicating
samples to modify the training data distribution. Although these are data-level interventions, which are more commonly
used for pre-processing, the interventions in this specific case are guided by the identification of problematic training
points after a model has already been trained. For this reason, we consider the use of data interventions in Richardson
et al. [126] to fall under post-processing.

The efficiency of post-processing methods highly depends on the specific Al application and the desired fairness
outcomes. Although these techniques can be beneficial in some situations, they may not fully address the underlying

root cause for biases.
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3.1.4 Tools and Techniques. This category of bias mitigation solutions includes all other techniques that do not align
with the methods previously discussed. It contains methods with techniques requiring simple adjustments to the
workflow or interactive tools that facilitate human input at one phase of the Al lifecycle. Our review includes seven
papers in this category. Two of these studies presented interactive systems to reduce bias during system development
[3, 55]. These two systems facilitate human control during the training and fine-tuning phases by manipulating specific
model components, thereby reducing biases. Ahn et al. [3] identifies "blind spots” in the decision space of a model by
visualizing the associations of concepts with their target classes, allowing practitioners to identify spurious associations
and evaluate mitigation strategies to correct them. Similarly, the system in [55] guides the attention of a deep neural
network by allowing users to modify the attention maps in real time, directing the model to focus on relevant and
unbiased features.

The remaining five papers focus on supporting ML practitioners during the data curation phase. These studies
examine straightforward techniques and tools to mitigate cognitive biases introduced by crowdsourcers and systematic
biases inherent in the tools used. For instance, Draws et al. [37] proposed a practical and proactive approach, adapted
from psychology, to review crowdsourcing tasks and identify prevalent cognitive biases before initiating the data
collection process. This approach, with its immediate applicability, allows data crowdsourcing designers to adjust these
tasks as necessary to mitigate bias beforehand. It can also be used retrospectively on collected datasets to identify the
type of biases, aiding in the decision of effective mitigation interventions.

In another study by Hube et al. [64], the researchers proposed two proactive strategies based on social projection
and promoting self-awareness to significantly reduce workers’ biases during annotation tasks. Both strategies require
minor modifications to the annotation tool by adding simple messages to the task description and periodic reminders
throughout the task. These additions are designed to guide workers’ thought processes in specific ways based on social
projection; the first prompts workers to consider how their peers might label the same content. In contrast, the second
one encourages them to reflect on the topic’s controversial nature and consider how their personal views might bias
their judgments. Additionally, Diaz et al. [33] studied age-related bias in sentiment analysis; they suggested a simple
technique to mitigate underrepresentation bias by isolating age-related data in the training corpora. This approach
helps specify the origins of output bias and evaluates the impact of specific data manipulations on reducing bias before
model training.

Focusing on data aggregation methods, Thebault-Spieker et al. [149], suggested that aggregating judgments from
heterogeneous workers in political content moderation may significantly mitigate political biases. While Song et al.
[142] also proposed an aggregation technique for image segmentation tools, suggesting employing different tools for

different workers and then aggregating the results to reduce systematic biases.

3.2 Methodologies for Developing and Evaluating Bias Mitigation Solutions

3.2.1 Research Methodologies. This section focuses on the second category of our classification of the researcher’s role
in developing bias mitigation methods: the research methodologies adopted by researchers. Exploring the vast array
of diverse methodologies within one category of debiasing solutions and across the various solutions is essential for
understanding how these solutions were formulated, facilitating reproducibility, and identifying best research practices.
It also opens up potential areas of refinement and expansion in research within this field.

Our analysis revealed six research methods across all solution categories outlined in the previous section. These
methods include user research, user-based experiments, data-based experiments, case studies, conceptual

analysis and theoretical analysis. The diversity of these methods mirrors the variety of solutions we presented in
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Fig. 4. The various evaluation methods utilized across different categories of bias mitigation solutions.

the previous section and highlights the need for conducting multiple research approaches due to the complexity of
addressing bias.

From our analysis, data-based experimentation emerges as the most commonly employed methodology across
the four types of solutions, with a clear dominance in algorithmic solutions (71 out of the 100 papers), suggesting that
the development of algorithmic approaches to bias mitigation heavily relies on quantitative data investigations, with
the exception of one paper [135] that relied on theoretical analysis approach.

While user-based experiments (10 papers) and case studies (9 papers) may be numerically less prevalent, they
were employed across three debiasing solutions categories: 1) principles and design guidelines, 2) non-algorithmic
frameworks, and 3) tools and techniques, excluding algorithmic solutions. user-based experiments were primarily
employed to develop bias mitigation methods under the tools and techniques category, reflecting the importance of
involving users directly in shaping these methods. In contrast, case studies were used the most in creating principles
and design guidelines, indicating the need for conducting an in-depth study and detailed analysis of real-world scenarios
to generate these guidelines. User research (5 papers) methods such as surveys, interviews, and focus groups were
only employed to develop principles and design guidelines, which suggests the significant value of collecting user data
for creating this type of solutions.

Finally, conceptual analysis (3 papers) was used the least and mainly in developing two solution categories: 1)
principles and design guidelines and 2) non-algorithmic frameworks, which signify the role of the theoretical approach in

establishing foundational bias mitigation strategies.

3.2.2  Evaluation Methodologies. Additionally, we analyzed the methods employed by researchers to evaluate the
robustness, fairness or both of their proposed solution. We categorized them into the following categories: data-centric
experiments, user-centric experiments, theoretical, case studies, in-situ studies, and heuristic. While this
categorization may overlap with the one presented regarding research methodologies, the previous one considered the
overall employed methodologies for research, while this one focuses on identifying the employed method for evaluating
the debiasing solution only.

Figure 4 emphasizes the use of data-centric experiments in evaluating Algorithmic Solutions. In this approach,
developers test the proposed algorithms on their benchmark datasets to compare their robustness, fairness, or
both, against other algorithms (baselines) using a quantifiable measure. This process involves specifying a benchmark
dataset and a quantifiable metric(s) related to robustness or fairness.
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Table 3. Overview of the most common benchmark datasets used for bias mitigation research. The table shows examples from our
review sample. We list datasets that were used by at least two publications or more.

Benchmark Datasets ‘ Data Type ‘ Publication References ‘ Count
Adult (Census Income) [12] Tabular [4, 14, 21, 22, 47, 67, 68, 70, 90, 118, 127-129, 154, 160, 165, 170] 17
COMPAS [7] Tabular [21, 22, 67, 68, 90, 122, 126—128, 158, 165, 167, 170, 172, 173] 15
German Credit [59] Tabular [14, 47, 68, 90, 118, 122, 154, 158, 170, 172] 10
CIFAR [82] Images [50, 54, 62, 71, 72, 109, 111, 115, 168, 171] 10
MNIST [32] Images [9, 13, 46, 50, 60, 71, 86, 109, 115, 167] 10
ImageNet [31] Images | [9, 60, 62, 71,78, 85, 111, 171, 174] 9
CelebA [95] Images | [13, 26, 60, 62, 64, 67, 78] 7
Law School [157] Tabular [4, 118, 154, 159, 170] 5
Communities and Crime [124] Tabular [118, 127, 159] 3
Bank [108] Tabular [22, 156, 165] 3
Default [66] Tabular [14, 165] 2
MEPS [17] Tabular [68, 122] 2

Table 4. Overview of the most common predictive metrics in evaluating machine learning models’ performance with some examples
from our surveyed papers.

Predictive Metric Description Mathematical Description | Publication References
. : TP+TN
Accuracy overall proportion of correct predic- TPTTNLFPiFN [6,9, 21,48, 62,109, 117,
tions 120, 127, 128, 135, 154~
156, 160, 163, 168, 171,
172]
. ps 1 TP TN
Balanced average of sensitivity (true positive rate) | 3 (W + W) [68, 129, 151]
Accuracy and specificity (true negative rate) for
each class
Precision proportion of correctly identified posi- % [10, 149]
tives among all predicted positives
Recall proportion of true positives correctly % [10, 89, 149, 156]
detected
F harmonic mean of precision and recall %‘W [10, 91, 118, 150, 151,
158, 163, 172]
AUC-ROC probability that a classifier ranks a posi- - [4, 16, 23, 89, 117, 151,
tive example higher than a negative one 165, 167, 172]

Notation: TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives

Benchmark datasets are publicly available resources widely used by the ML research community to train, test, and
compare algorithms under consistent conditions [79]. Table 3 presents the most commonly used benchmark datasets,
along with examples from our surveyed papers. As described earlier, the evaluation process involves measuring the
models’ robustness, fairness, or both. Robustness refers to the stability of predictive metrics under various conditions
[140], while fairness ensures that model performance is distributed equally across subpopulations [104]. Both robustness
and fairness are constructs or abstract qualities that developers cannot observe directly, but they must measure them
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Table 5. Fairness Metrics in Machine Learning with identified examples from our review sample. To improve practical interpretability,
the metrics are defined using confusion-matrix components rather than probability-based notation, following practitioner-oriented
formulations in prior work [45].

Fairness Metric Mathematical Description Publication References

Statistical (Demo- | proportion of positive predictions should be equal across different | [4, 6, 16, 22, 28, 62, 72,

graphic) Parity groups 90, 128, 129, 135, 156,
_ _ TPy +FP, 159, 160, 163, 170
PPRgO = PPRgl, Where PPRg = m ’ 4 ’ ]
Equal Opportunity true positive rates should be equal across different groups [4, 6, 16, 28, 62, 67, 135,
TPRy, = TPRy, 158, 163, 170]
Equalized Odds both true positive and false positive rates should be equal across [22, 67, 72, 90, 128, 129,
different groups 158]

TPRy, = TPR,, and FPRy, = FPR,,

Average Odds Dif- | measures the average difference in false positive rates and true (68, 90, 158]
ference positive rates between groups
1 [(TPRy, — TPRy,) + (FPRy, — FPRy,)]

Predictive Parity positive predictive value (precision) should be equal across [34]
different groups
PPV, = PPV,

Predictive Equality false positive rates should be equal across different groups (4]
FPRy, = FPRy,

TP, FP, TP,
Notation: TPR,; = ﬁ, FPRy = ﬁ, and PPV, = ﬁ for sensitive group g. TP, FP, FN, and TN denote true positives, false

positives, false negatives, and true negatives.

through quantitative metrics. However, these constructs extend beyond raw metrics such as the number of correct
predictions or whether different groups receive similar outcomes; instead, they demand a suite of chosen metrics to
capture their full complexity. Typically, developers evaluate the performance of the models through one of the following
predictive metrics: accuracy, precision, recall, Fy score, and the Area Under the Receiver Operating Characteristic Curve
(AUC —ROC). Table 4 summarizes the most commonly used predictive performance metrics, including their definitions,
mathematical formulations, and key references from our surveyed papers. When robustness is of interest, these same
metrics are applied under perturbed conditions—such as noisy inputs (e.g., [154, 160]), adversarial examples (e.g.,
[127, 135, 171]), or domain shifts (e.g, [6, 21])—to quantify the stability of performance across scenarios. While such
metrics indicate how well a model achieves its intended task, they do not fully capture models’ fairness; therefore,
developers must use other metrics designed to detect disparities in outcomes between demographic groups. Examples
include Statistical Parity (Demographic Parity), equalized odds, equal opportunity, and predictive parity. Table 5 shows
the most common fairness metrics with their descriptions and some examples from our surveyed papers. For further
details of fairness metrics, we refer readers to the survey by Caton and Haas [20].

To further clarify the evaluation process, take this example from Bahng et al. [9]. Their research evaluated the
proposed debiasing approach on ImageNet (benchmark dataset) using ResNet-18 as the backbone model. They trained a
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de-biased representation by encouraging statistical independence from a biased representation. Then they measured
the model accuracy (a performance metric) on the validation set, allowing them to assess whether the mitigation
method preserved predictive performance while reducing dataset bias. In another example, Zhang et al. [170] proposed
a solution leveraging confident learning to mitigate label bias. Their model is constructed based on a simple neural
network using ReLU activation functions. They evaluated it on several benchmark datasets, including Adult, COMPAS,
Default, and Law. The researchers used accuracy as a predictive measure for model performance. To measure fairness
on the other hand, they used demographic parity distance (DOP), difference in equal opportunity (DOD), and p%, a
resemblance measure for the demographic parity distance metric.

While data-centric experiments are dominant for evaluating Algorithmic Solutions, Figure 4 shows that user-centric
experiments and case studies are most common for evaluating tools and techniques, demonstrating the importance of
understanding user interaction and real-world applications to effectively employ these types of solutions to address
bias. In contrast, user-centric experiments and case studies are dominant methods for evaluating tools and techniques,
demonstrating the importance of understanding user interaction and real-world applications to effectively employ

these types of solution to address bias.

4 Human Role in Bias Mitigation Throughout the Al Lifecycle

Although Al systems have unparalleled capabilities for analyzing data and extracting relationships, they are prone
to producing discriminative decisions due to existing biases in data and algorithms—biases often introduced by their
creators during data collection and system development [75]. Interestingly, humans can outperform Al in specific
scenarios by considering nuances and contextual information beyond machine learning capabilities. This human ability
signifies the need for an informed human role in actively debiasing machine algorithms and their decisions (e.g.,
[24, 64, 74]).

Often, the research papers did not explicitly articulate the specific human roles involved in debiasing, but the
roles could be inferred them from contextual cues in the papers, such as descriptions of the debiasing mechanism, or
assumptions stated by the authors regarding their responsibilities. For example, descriptions of model adjustments
often implied technical roles, while discussions of policy, oversight, or deployment practices suggested governance or
operational roles. Our analysis defined humans’ roles based on the requirements of the proposed debiasing solution. It
also identifies their intervention points within the Al lifecycle based on when the solutions are employed. This review
extends beyond defining their role to determining the depth of human involvement and interaction with Al systems in
minimizing bias. Understanding how, when, and where humans contribute to reducing bias helps to identify gaps and
limitations in current practices and frameworks and propose more effective strategies for integrating human expertise
into designing and employing ethical frameworks for AI workflows.

We begin by categorizing the different human actors involved and outlining their specific functions (Section 4.1),
followed by an assessment of the varying levels of their involvement and decision-making authority (Section 4.2). We
then examine debiasing solutions explicitly designed for interactive machine learning, highlighting how human input

shapes model behavior and bias reduction (Section 4.3).

4.1 Who is the Human?

Translating an Al system from a design to an application requires the collaborative efforts of individuals with diverse
skills and capabilities. Typically, building an Al system goes through an iterative cycle of design, data curation,

development, and deployment, requiring the efforts of individuals with computer-related expertise, such as data and Al
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scientists and ML engineers [30]. However, our analysis suggests that improving the trustworthiness of Al systems
extends beyond traditional roles; it demands further contributions from additional individuals. Moreover, some must
participate across several Al lifecycle stages to ensure system robustness and fairness. Reviewing the proposed debiasing
methods led us to categorize individuals into distinct roles; these include AI/ML practitioners such as data scientists
and ML engineers, data annotators, domain experts, policymakers, and end-users.

Most of the papers in our review (97%) proposed solutions requiring AI/ML practitioners’ efforts. Their role begin
in the design cycle, focusing on problem definition and formation, and identifying design and data requirements.
Improving systems’ trustworthiness also starts in this stage, requiring data scientists to apply guidelines, principles,
and design recommendations supporting that goal. For example, Levonian et al. [87], targeting model designers and
developers, proposed non-random sampling guidelines to improve the robustness of text classifiers. In other work in
evaluating automated speaker recognition bias, Hutiri et al. [65] recommended that developers carefully select the error
metrics when evaluating these models across subgroups. Katell et al. [74] urges ML practitioners not to rely solely on
technical interventions but also to include community-based methods in designing equitable algorithmic systems for
situated contexts. In this paper, the authors discuss the Algorithmic Equity Toolkit as an example for engaging local
community groups, advocacy campaigns, and policy stakeholders in the co-design process.

During the data curation cycle, data scientists define data requirements and design data collection pipelines. Several
papers in our review proposed frameworks and design recommendations that demand practitioners’ attention when
establishing these requirements and pipelines, ensuring curating balanced datasets that satisfy fairness and robustness
objectives. For instance, in an effort to rehumanize the crowdsourcing process, Barbosa et al. [11] investigated the
efficiency of a crowdsourcing framework that manages workers’ sample distribution by considering their demographics
and other criteria to mitigate their bias in the data. Another study [132] urged to consider models’ contextual information
when designing data crowdsource pipelines. Regarding data annotations, Hirota et al. [57] called on practitioners to
reduce gender and racial bias by considering ethical aspects when designing data annotation processes for creating visual
question-answering (VQA) datasets. Similarly, Pang et al. [116] provided practitioners with a generalized framework
emphasizing global inclusivity when recruiting labelers and ensuring consistent labeling when auditing their data
annotation processes.

Several other papers presented technical interventions for ML engineers to mitigate bias in the data. Thebault-
Spieker et al. [149] investigated a data aggregation technique that reduces political bias by combining samples from
heterogeneous labelers. Another example recommended a social projection technique targeting annotators’ judgments
to reduce biases during subjective annotation tasks [64] .

Ensuring systems’ trustworthiness mandates selecting appropriate algorithms, constraints, and objectives during the
development cycle; this is where the data scientists’ role becomes inevitable as they bridge the gap between theoretical
fairness frameworks and practical implementation. Our review includes several papers laying out various algorithmic
solutions under AI/ML practitioners’ hands for diverse cases, such as: balancing data distribution before training
using pre-processing methods (e.g., [4, 26, 68, 117], across-groups equitable learning using in-processing methods (e.g.,
[6, 14, 47, 62, 155, 167], and other post-processing methods to meet fairness objectives (e.g., [34, 94, 110].

Additionally, we identified studies advocating for employing non-algorithmic frameworks that impose fairness
constraints beyond the traditional algorithmic approaches. These include structural frameworks [147], ethical frame-
works [103], and a framework guided by feminist principles [28]. While these frameworks are non-technical, AI/ML

practitioners participate in reducing bias by integrating these frameworks during system development and deployment.
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Other studies focused on the critical roles of data annotators’ in reducing bias. 9% of the proposed solutions
involve annotators’ effort to help reduce bias during data annotation. These studies range from including them in the
participatory design process [43] to promoting global inclusivity during recruitment [116] and specifying annotators’
characteristics, work organization, and labor conditions to cultivate and encourage better environments for workers
[153]. Additionally, some research employed social projections and political self-awareness approach to reduce cognitive
biases among workers during data annotation [64], while others created new interactive methods to facilitate image
annotation with simple clicks [55]. Other studies published in [142, 149] mitigated data bias through label aggregation
techniques.

Research introducing non-algorithmic frameworks to address bias necessitates careful consideration and active
involvement from policymakers (16%). Their role is to review and refine these frameworks and enact legal regulations
at the institutional and organizational levels to employ them effectively. These frameworks cover a broad spectrum,
including structural interventions [28, 147], medical ethics and justice-based theories [103], ethical consideration for
workers in data crowdsourcing [11] and promoting social inclusion, diversity and accessibility during data collection
[63]. In another direction, Katell et al. [74] presented a case study for an Algorithmic Equity Toolkit to understand the
discrimination dimensions beyond algorithmic bias and hold policymakers accountable for interventions that must
consider historical, political, and institutional contexts in which systems are situated. Other researchers called for
inclusive policy frameworks supporting data collection centered around people with disabilities [44]. Meanwhile, Wang
et al. [153] called for systematic and structural changes in work practices that prioritize annotators’ well-being and
benefits over those of annotation companies.

Our analysis includes minimal research on debiasing methods that involve roles beyond AI/ML practitioners,
annotators, and policymakers such as, domain experts and end users. Only five papers (5%) highlighted domain
experts’ role in reducing bias through participatory design processes and collaborative decision-making in Al systems.
Their domain-specific knowledge supports tailoring Al systems to particular real-world applications and situated
contexts. They contribute substantially during problem conceptualization, data collection, model evaluation, and system
post-deployment. For instance, Suresh et al. [147] guided by data feminism, described a participatory process involving
activists co-designing datasets and ML models. Related to the medical field, McCradden et al. [103] presented an ethical
decision-making framework, JustEFAB, to address bias in clinical tools, guided by medical ethics and social justice
principles and reviewed by multiple stakeholders, including clinicians. Similarly, Freeman et al. [43] proposed principles
and guidelines for an iterative participatory data collection process for medical imaging, combining input from medical
experts across various medical subdomains. Advocating for non-technical interventions, recent research published
in [74, 153] emphasized the importance of active participation from all stakeholders and addressing bias within its
specific contexts. Meanwhile, Cheng et al. [24] proposed design implications to enhance the collaboration between
social workers and Al, particularly concerning racial disparities in child welfare contexts.

In our sample, only 4 out of the 100 studies closely examined the role of end users in reducing Al bias in high-
risk decision-making contexts. Two studies focusing on social workers’ assessment of child maltreatment [24, 29]
emphasized the significance of maintaining human agency over the machine and highlighted the risks of full automation.
Another study by Peng et al. [119] recommended decoupling bias sources to reduce gender bias in hiring. This research
demonstrated that decision-makers gender and the distribution of genders within a profession significantly impact
hiring decisions. In another study, researchers recommended improving Visual Question Answering (VQA) datasets by

allowing dataset users to report ethical problems with the data [57].
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4.2 Level of Human Involvement in the Debiasing Intervention

As shown in Section 4.1, reducing bias to satisfy robustness and fairness objectives requires various skilled and experi-
enced individuals throughout the entire Al lifecycle, from design stages to deployment. We defined their roles based
on the requirements and scope of the debiasing intervention method; for instance, algorithmic solutions demand the
expertise of AI/ML practitioners. We also captured several aspects of their roles to determine the depth of their involve-
ment, such as the frequency of their input, the timing of their participation throughout the Al lifecycle, the complexity
of their decisions, and the impact of their actions. Defining the depth of involvement provides an understanding of
stakeholders’ varying degrees of influence and responsibility in reducing bias during the AI development process. Thus,
by attempting to define levels of involvement, our review can pinpoint areas lacking participation in some of these
roles and suggest a more inclusive, comprehensive approach to debiasing involving individuals beyond the technical
aspects. It is important to note that these levels are not entirely disjoint, as roles can overlap and evolve across different
stages depending on the type of debiasing solution. To summarize differences in roles, our analysis led us to classify

three levels of human involvement depth, which we describe as low, medium, and high, which we explain next.

4.2.1 Low-Level Involvement. This level describes scenarios where human interaction with the system is limited to
one-time or infrequent interventions (e.g., [14, 16, 18, 34, 46, 47, 50, 62, 71, 76, 86, 91, 117, 120, 122]) Generally, they
occur when performing data preprocessing, model training, and fine-tuning scenarios. The influence of human actions
extends across all system outcomes but is relatively minimal as the system mainly operates autonomously. For example,
employing data preprocessing techniques aimed at balancing datasets and reducing bias by aggregation [142, 149]
and resampling [33]; once applied by ML practitioners, these preprocessing steps do not require ongoing human
intervention as the model processes the data independently during training. Another example is using an improved
k-means clustering algorithm to achieve fair clustering (Fair-Lloyd) [47]. Implemented by ML engineers during the
development cycle, this approach can significantly enhance the system’s fairness. However, human interaction is
limited to the algorithm’s initial implementation, after which the system operates autonomously. While crucial, this
one-time, task-specific involvement does not require continuous intervention by ML practitioners, reflecting their low

involvement level during these intervention scenarios.

4.2.2  Medium-Level Involvement. This level covers cases requiring regular human input, such as employing algorithmic
frameworks that promote fairness and robustness [21, 85, 93, 109, 118, 158, 165, 167, 172]. These cases may occur during
several development phases and commonly involve AI/ML practitioners, such as data scientists and ML engineers,
whose actions moderately influence operational outcomes. At this level, understanding the system’s requirements is
essential for making decisions that align with the framework standards. For instance, this understanding is crucial
to deciding the proper framework, inclusive and representative data collection pipelines, setting reasonable model
parameters, and choosing evaluation metrics.

During the data curation phase, scientists might iteratively refine datasets to ensure a balanced representation of
different demographic groups; for example, Liu et al. [93], in an effort to reduce the human efforts and disagreement
in labeling tasks, developed an algorithmic framework for learning labels distribution using few labels per item.
Employing this framework impacts the design of the data curation and development process, requiring the following
from practitioners: collecting and aggregating diverse and representative human-annotated labels per item, designing
and implementing label distribution methods, iteratively refining datasets to maintain balanced label distributions, and
continuously evaluating and tuning model performance to enhance reliability and fairness.
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In the development stage, algorithmic frameworks require ML engineers to adjust algorithms to align with framework
guidelines and standards continuously. For instance, Wu et al. [158] presented a fairness-aware PUL (FairPUL) algorithmic
framework for fair classification, a post-processing model-agnostic method based on positive and unlabeled learning
(PUL) to utilize unlabeled data. The FairPUL framework, involves several steps where data scientists must actively
engage with the model and the data, including estimating specific parameters that require a detailed understanding of
the validation data and the model’s behavior, then computing critical terms using both labeled and unlabeled datasets
to minimize unfairness in the data, and finally computing the final model parameters for the optimal fair classifier
which require a comprehensive understanding of the underlying mathematical framework of the used model.

Our analysis identified only algorithmic frameworks at this level of involvement, likely due to their extensive
nature. These frameworks guide algorithms’ development, implementation, and evaluation, as demonstrated in the
FairPUL example. As a result, such interventions require iterative and regular human involvement based on the problem

definition, context, and models’ mathematical characteristics.

4.2.3 High-Level Involvement. This level includes methods characterized by continuous human interactions and high-
impact decisions. We classify two types of solutions under this category: 1) principles and design guidelines (e.g.,
[43, 44, 63, 119, 130, 132, 144, 153, 164]) and 2) non-algorithmic frameworks (e.g., [11, 103, 116, 146]). Addressing bias
by following specific principles and guidelines and adopting ethical and structural frameworks heavily rely on humans.
These methods require humans to make subtle design judgments and ethical and fairness considerations to align Al
system outcomes with established standards. They also have a multi-faceted impact during several phases of the Al
lifecycle, including institutional policies, organizational practices, model outcomes, and the roles of other stakeholders,
such as annotators and end users. For example, Peng et al. [119] encouraged practitioners to consider global inclusivity
while recruiting annotators to increase data heterogeneity and evaluate the data labels for consistency using their
auditing framework. This framework requires data scientists to adjust data collection pipelines and perform ongoing
analyses and adjustments based on the guidelines. The impact extends to operational changes for data crowdsourcing
companies, annotators’ job opportunities and task natures, ML engineers’ assignments, and overall system outcomes. In
another case, Huang et al. [63] encouraged practitioners to adopt the following principles to promote social inclusion
in curated data: 1) embrace practices for cultural humility to reduce their own biases, 2) consider situational contexts of
where the models are to be adopted, and 3) engage different communities to match their needs. Adopting these principles
requires the continuous engagement of various stakeholders, such as data scientists, ML engineers, policymakers, and
end-users, during different phases; for example, cultural humility practices need to be formally set by an authoritative
figure and may require developing tools to help practitioners to self-reflect and adjust. At the same time, engaging the
community would require allocating resources and setting policies to facilitate their engagement.

Ensuring human agency in human-AI collaborative decision-making also falls under this category. As recommended
by several studies [24, 64, 119], this approach requires continuous review of Al decisions and consideration of contextual
contexts beyond machine capabilities. Humans can override system decisions when found to be discriminative, increasing
fairness across groups. Adopting these recommendations can significantly impact systems’ outcomes, but success
requires policymakers and regulators to set policies that change workflows to ensure human oversight.

Human interventions through interactive tools and systems are also classified as high-level due to the continuous and
active engagement required to manage and mitigate bias. For instance, He et al. [55] developed an interactive system
that explains deep neural network (DNN) decisions by visualizing the contributing features; the system empowers
practitioners to actively engage with the model by highlighting regions of interest to guide the model’s attention.
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Similarly, other researchers presented an interactive visual analysis system that allows scientists to reduce system
errors by identifying missing associations between concepts and target classes and evaluating mitigation methods to
reduce bias [3]. Both examples require practitioners to monitor and engage with the model continuously, interpret
visualizations and complex data relationships, make complex decisions, and perform iterative model adjustments
and evaluations. Utilizing interactive systems to effectively improve systems’ trustworthiness involves collaboration
among stakeholders, including AI/ML practitioners and domain experts, mainly when applied within specific domains.

Additionally, policymakers and regulators must set policies and roles to facilitate changes in AI workflows.

4.3 Human Interaction

Recent research in the HCI community has focused on incorporating interactive methods to improve Al systems through
human collaboration. This area, commonly known as Interactive Machine Learning (IML), as described by Dudley and
Kristensson [38], is an interaction paradigm that describes a wide range of methods to leverage user feedback through
ongoing and active engagement, thereby improving Al performance.

In the context of addressing bias in Al interactive tools enable practitioners to visualize data, interpret model outputs,
make informed adjustments, and directly manipulate data or model components, thereby reducing data and algorithmic
bias. Only a few studies in our review investigated adjusting data and model components through interactive methods.
For example, Ahn et al. [3] developed an interactive visual analysis system to engage ML practitioners throughout the
development cycle. This system enables users to identify bias by inspecting the association between data and target
classes and manipulating these associations to evaluate different mitigation strategies. Similarly, He et al. [55] created
an interactive system that allows users to control the attention of a deep neural network by annotating regions of
interest in an image with simple clicks. Both studies demonstrated that giving users direct control over data and model
components during the training and fine-tuning phases empirically reduced errors and improved system performance.
In another study, the researchers investigated the effectiveness of using a multi-tool approach over a single tool to reduce
systematic errors introduced by the tools during image segmentation [142]. With four interactive methods to segment
images, including basic trace, pin-placing, drag and drop, and flood fill, they found that assigning different methods to
different workers for the same task and aggregating their answers can significantly reduce dataset bias. Additionally,
Levonian et al. [87] proposed a set of design guidelines to improve interactive interfaces for text annotations. They
empirically investigated ways to enable users to provide feedback to the model during active learning. Through full-text

search, users could seed the classifier with the required samples, increasing the learning rate and reducing human costs.

5 Classifying Differences in Motivations and Methodologies: ML vs. HCI

Due to the breadth of this topic, we decided to include research from human-centered Al and intelligent systems
communities, providing us with a comprehensive look at the state-of-the-art research on this topic. While both
communities aim to reduce bias, each approaches the challenge from different perspectives due to their distinct focuses.
Human-centered AI (HCAI) research prioritizes designing Al systems that maintain human agency, explain its decisions
and align with their needs by understanding their interactions and behaviors throughout their experience with Al
systems [8, 138]. In contrast, machine learning research focuses on developing algorithms and frameworks to improve
the performance and reliability of Al systems [5, 99].

This section focuses on identifying the research motivations (Section 5.1) and methodologies (Section 5.2) across the
seven publication venues included in our review.
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included in our review.

5.1 Targeted Trustworthy Principle

Influenced by the EU requirements (mentioned in Section 1) for creating trustworthy Al [141], our analysis revealed
two key research motivations for minimizing bias. The first is increasing robustness, which aims to enhance the
model’s performance in real-world scenarios when faced with unexpected new data, whether it is due to population and
correlation shift (e.g., [6, 128]) or adversarial inputs [127], thereby reducing its generalization error (e.g., [78, 85]). The
second motivation is increasing fairness, which focuses on delivering equal opportunities across different individual
and group levels (e.g., [68, 129]). Addressing data and algorithmic bias have a direct effect on on the outcomes in both of
these cases. Figure 5 shows the distribution of research publications focused on the principles of fairness and robustness
across the academic venues included in our review.

We classify papers into one of the above categories based on the following criteria: 1) explicit references to robustness
or fairness as their goal to minimize bias or 2) the evaluation metrics used to assess the proposed bias minimization
strategies. Typically, strategies aimed at enhancing robustness utilize performance-related metrics such as model
accuracy (e.g., [62, 87, 132, 149, 160]). In contrast, strategies focused on fairness often involve one or more fairness
metrics, such as group or individual fairness measures (e.g., [68, 76, 90, 110, 129]).

Among the papers focusing on increasing robustness, 73% were published in ML venues. In contrast, 60% of the
papers dedicated to enhancing fairness were found in HCI venues. These results indicate that the machine learning
community tends to prioritize improving model performance, while the HCI community places greater emphasis on

reducing social and ethical biases to enhance fairness across individuals and groups.

5.2 Identified Research Methodologies

The scope of different research fields mandates different research methodologies. Figure 6 shows the distribution
of research methodologies employed across academic venues included in our review. Our analysis revealed that all
three ML venues conduct empirical research through data-based experimental studies on benchmark datasets (e.g.,
[3,9, 10, 16, 37, 91, 110, 160]), highlighting the reliance on empirical data for conducting computational experiments. As
defined in [84], these studies typically aim to establish the superiority of a new method over an existing one, considering
the new method as the independent variable. The dependent variable is some measure of performance such as: Accuracy
(e.g., [21, 34, 48, 109, 120, 154]), F1 score (e.g., [91, 118, 158]), ROC AUC (e.g.,[16, 89, 117, 165, 167)).
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In contrast, the HCI venues (CHI, FAccT, HCOMP, IUI) illustrate a broader mix of empirical research methodologies.
Data-based and user-based experiments, case studies, and user research are common methods across CHI, FAccT, and
HCOMP, reflecting their interdisciplinary approach. Other theoretical methods, such as conceptual analysis, are also
found in FAccT and CHI. Meanwhile, IUI only illustrated empirical methodologies through user-based experiments.

Focsing on human-centered methods, our analysis shows that FAccT, CHI and HCOMP stand out as having diverse
approaches. In CHI, user experiments are the most prevalent methodology, followed by a mix of retrospective analysis,
observations, and interviews. In FAccT, participatory and co-design methods, surveys, and observations are the most
common, with little emphasis on user experiments. HCOMP shows a balanced distribution of interviews, pilot studies,

and user experiments.

6 Discussion

We reviewed the state-of-the-art literature on addressing bias from various ML and HCI venues. Figure 7 provides a
comprehensive overview of our classification scheme of the wide range of solutions in addressing bias, the different
roles of people, their depth of involvement during the debiasing process, and the research methodologies and motivation
across different ML and HCI venues, referencing examples from the publications in our sample, which we extensively
discussed in the preceding sections.

In this section, we highlight some of the main challenges to addressing bias identified from the reviewed papers
(Section 6.1), considerations to effectively leverage human roles for addressing bias (Section 6.2), and summarize key

insights from the data that extend beyond technical solutions (Section 6.3).

6.1 Overcoming Bias: Challenges in Existing Solutions and Methods

The classification of solutions for addressing bias in Al, as presented in Section 3, provides a comprehensive overview,
showing the breadth of solutions in state-of-the-art literature in HCI and ML fields. However, the breadth of these
solutions also highlights several significant challenges: the complex character of bias, the lack of real-world evaluations

and the limited interdisciplinary research in this area.

Bias is Complex. Bias can originate from various sources and manifest at different stages of the Al lifecycle, including
data collection processes [37, 85, 93], algorithmic design [69, 91, 117], and deployment conditions [24, 29, 119]. Each
phase introduces unique challenges and requires distinct strategies for bias mitigation. Consequently, we see diverse
solutions from the design phase to deployment in our review, each addressing different aspects of bias, such as systems’
robustness (e.g., [9, 71, 89]), social fairness (e.g, [33, 64, 65]), ethical standards (e.g., [16, 103, 117]), structural changes
and regulations (e.g., [28, 147]) requiring different interventions and human roles.

Moreover, identifying and measuring bias are inherently difficult processes. Bias is not always apparent and can be
deeply embedded in a data or model. Even when bias is detected, determining the appropriate debiasing mechanism
is complex, particularly for already deployed systems. Implementing changes to mitigate bias in such systems might
require significant modifications to existing workflows, which can incur substantial human, financial, and time costs.
While it is generally more feasible to address bias starting from the design cycle, where interventions can be integrated
into the foundational stages of Al development, this proactive approach might still require identifying potential biases
and their sources before they manifest. This task is complex and necessitates a thorough understanding of the data, the
domain, and the societal context in which the Al system will operate.
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Fig. 7. Our classification scheme of the wide range of solutions in addressing bias, the different roles of people, their depth of
involvement during the debiasing process, and the research methodologies and motivation across different ML and HCI venues,
referencing examples from the publications in our sample. Note that the sample sizes across categories are different.

Lack of Real-World Evaluations. From our analysis, we found that researchers primarily conducted data-based
experiments on real-world and synthetic datasets to assess the performance of algorithmic solutions; on the other hand,
user-based experiments were conducted to evaluate tools and techniques. These controlled experiments, while helpful,
primarily fail to capture the full scope of real-world complexities. Only 6% of the papers in our sample employed other
methods of evaluation, including theoretical, case studies, in-situ, and heuristic.

Out of these methods, in-situ evaluations can provide the most accurate assessments of the proposed solutions to
address bias. Only two papers (2% of the sample) reported employing in-situ evaluations. Such evaluations are applied
in real-world scenarios involving all relevant stakeholders under realistic conditions, where numerous variables and
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unexpected challenges can influence outcomes. These evaluations can help reveal the gaps between solutions’ theoretical
and practical utility. Additionally, involving multiple stakeholders—including practitioners, domain experts, end-users,
and impacted communities—can provide a holistic view of the solution’s effectiveness and exposes other critical issues
such as ethical implications, user acceptance, scalability, and unintended consequences. However, conducting in-situ
evaluations is challenging. The logistical efforts and time required to implement these solutions in real-world settings
are substantial, involving coordination among various stakeholders and entities. Ethical and privacy concerns also arise,
mainly when dealing with end-user data, requiring precautions to protect individuals’ privacy.

Further, translating research findings into practical solutions involves overcoming technical, organizational, and
regulatory limitations. Challenges might also emerge due to incompatibility with existing infrastructure, organizational
resistance to change, and compliance with legal and ethical standards, which can discourage researchers from evaluating
their solutions in real-world settings.

Moreover, the fast pace of research in this field adds another layer of complexity. Researchers are often under
pressure to publish their findings quickly, which can discourage thorough, time-consuming evaluations in favor of
more immediate, less comprehensive assessments. This competitive environment can lead to a focus on incremental

advances rather than comprehensive, long-term solutions.

Limited Interdisciplinary Collaboration. While the variety of solution types in our sample highlights the multidisci-
plinary nature of bias mitigation research, it also reveals significant gaps in interdisciplinary collaboration. The machine
learning community primarily focuses on algorithmic approaches, which align with the technical goals of the field.
However, the absence of non-algorithmic solutions may suggest open opportunities to enhance the effectiveness of bias
mitigation by incorporating more human-centered perspectives.

Papers from the HCI community offered a wider variety of solutions, as HCI is, by nature, a highly interdisciplinary
subfield in computing. Still, the converse in approaches seen in ML conferences was generally found in some HCI
venues, with algorithmic approaches being less common or sometimes lacking (e.g., CHI and IUI). Although, the FAccT
conference stands out, featuring all four types of solutions. Most solutions presented in FAccT papers (total = 32)
were algorithmic (62%), 13% focused on non-algorithmic solutions, 22% presented principles and guidelines, and 3%
focused on tools and techniques. This diverse mix of solutions reflects a strong emphasis within the FAccT community
on integrating multiple perspectives and fostering an interdisciplinary approach. This trend is likely driven by the
conference’s explicit focus on fairness, accountability, and transparency, naturally encouraging broader, more inclusive
discussions. HCOMP also showed a variety of these four solution types, but this may not be fully representative due to
the small number of papers included (5 out of 100). All together, the results of solution types across venues demonstrates
the need and value of interdisciplinary venues, and they also motivate potential benefits of adopting interdisciplinary
methods within any particular community.

The iterative, multi-phase nature of the Al lifecycle generally further highlights the necessity of interdisciplinary
collaboration. Building and evaluating practical and robust solutions to address bias requires a holistic approach that
considers the entire Al lifecycle rather than focusing on a single phase; it requires insights and specialized knowledge
from various researchers at every stage of the Al lifecycle. Moreover, interdisciplinary collaborations enrich the research
process by incorporating diverse methodologies and viewpoints, leading to innovative solutions. For example, combining
the technical aspects of ML with the ethical and social insights from HCI can result in balanced and contextually aware

approaches to bias mitigation. Addressing bias in Al systems is a complex, multifaceted challenge that requires the
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combined efforts of researchers from various fields. Together, researchers from different fields can develop technically

efficient, socially responsible, and ethically robust solutions for creating trustworthy Al systems.

6.2 Leveraging Humans: Considerations for Effective Involvement

Human-Centered Approach. Our classification of human roles reveals two distinct standpoints on their involvement

in mitigating bias:

(1) Human contribution to reducing bias through research activities (outside the Al lifecycle): We see this rooted in the
human-centered Al space [19]. It includes methods that place humans at the center of the design process> to
enhance their performance in making trustworthy Al systems. It also includes participatory design methods
involving various stakeholders through design and evaluation phases [136, 137].

(2) Human control over bias in real-world applications (within the Al lifecycle): This point focuses on human-in-the-loop
methods or interactive machine learning [38, 40], where humans maintain control over bias within real-world
Al applications. This approach ensures ongoing human oversight and intervention during the deployment and

operation of Al systems, emphasizing the crucial role of human judgment in mitigating bias.

The above acknowledges the significant responsibility of engaging various stakeholders outside and within the AI
lifecycle. Several researchers, particularly from the HCI community, including the European Union (EU) and HCAI
institutes from UC Berkeley and MIT, advocated for human involvement in creating ethical and trustworthy Al
[161]. Typically, in research, the primary contributors to addressing the bias problem are the researchers themselves.
However, adopting a human-centered approach allows other stakeholders to contribute, bringing in domain knowledge,
situational awareness, and contextual details [161] that the researchers may lack. Human-centered methods were
evident only in papers proposing non-algorithmic solutions, including principles and design guidelines, non-algorithmic
frameworks, and tools and techniques (e.g., [24, 103, 147]). This observation aligns with the HCI community’s focus,
where human-centred methods are foundational to their research. Applying a user-centric approach to designing
and building real-world applications begins with defining business requirements, followed by researching users to
understand their needs before starting the design process [73]. Several papers adopting this approach included domain
experts, data annotators, and end-users as active participants in various research phases. These individuals contributed
through surveys, interviews, case studies, and user experiments, providing valuable insights that helped researchers
better understand and address user needs (e.g., [43, 119, 147]).

Additionally, EU guidelines advocated for human-centered approach because it supports maintaining human agency
and control over full autonomy resulting in developing and evaluating fair and robust systems [141]. Engaging users
and other stakeholders throughout the AI lifecycle ensures that the systems are designed with a comprehensive
understanding of the contextual and ethical implications, leading to more effective and trustworthy Al solutions.

As we mentioned earlier in Section 4, we often had to infer the roles of various stakeholders when the research did
not explicitly mention them, which clearly indicates users’ lack of involvement in research. Moreover, the absence of an
explicit characterization of these roles suggests a limited consideration of human control over these solutions outside
and within the Al lifecycle; this is especially evident in the papers proposing algorithmic solutions. However, these
solutions primarily require higher involvement from AI/ML practitioners; researchers must consider wider dimensions

and broader perspectives when applying them in real-world contexts, including involving other stakeholders.

3 Also referred to as user-centered or user-centric
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Explainable Al as an Enabling Tool for Human Oversight. While this review focuses on methods that explicitly aim
to address bias, eXplainable AI (XAI) techniques play an important complementary role in bias-related workflows, as
illustrated in He et al. [55] and Ahn et al. [3] from our review sample. Despite the relevance and potential benefits of
explanation for human understanding of algorithmic biases, the limited presence of XAI in our review may highlight
opportunities for further exploration at the intersection of XAI with bias mitigation. Techniques for explanation
vary greatly in both scope and function to aid human understanding or intervention [1, 107, 121]. Some of the most
common approaches provide local explanations, such as Local Interpretable Model-agnostic Explanations (LIME)
[125] and SHapley Additive exPlanations (SHAP) [97], which explain individual predictions by highlighting the most
contributing features to those predictions. Others offer global explanations that summarize overall model behavior or
feature importance across a dataset (e.g., [56, 81, 96]). Explainability methods may also be model-agnostic, applicable
across different architectures, or model-specific, leveraging internal model structures such as attention mechanisms or
gradients [1, 49].

However, XAI techniques do not, on their own, directly reduce bias. Instead, they primarily support interpretation
[101], bias detection [105], and human-in-the-loop oversight [145] by making model behavior more transparent to
different human roles identified in our review, including developers, domain experts, and policymakers. In practice,
explanations may often guide follow-up actions aiming to address bias at different stages of the Al lifecycle, such as
adjusting model design choices during development cycle (e.g., [3, 55]) or influencing systems’ decisions at deployment
time (e.g., [58, 101]). Other techniques enable direct human interaction with models, an approach often known as
explanatory interactive learning [148]. In this approach, explanations support active human involvement, allowing users
to reflect on how a model is making decisions and whether its reasoning aligns with their expectations. Instead of
modifying model parameters directly, users can provide feedback by adjusting explanations to indicate how they think
the model should behave differently. The model can then be updated to better align its explanations, and in turn its
behavior, with the user’s mental model. Prior research has demonstrated such methods relevant to addressing bias,
with examples including the use of interactive explanations for debugging model problems [83, 134].

Additionally, XAI tools can also inform policy and governance decisions in regulated domains [51], supporting
organizational and institutional oversight by human actors such as policymakers and domain experts. For example,
explanations are increasingly required to justify automated decisions in sensitive applications such as loan applications
[52, 123] and hiring systems [39, 41]. While XAl tools can make models more transparent and accountable, they cannot
ensure bias is reduced without human intervention. Meaningful mitigation still depends on humans’ interpretation and
response to these explanations. Thus, XAI’s role is best understood as an enabling tool for governance and human

oversight, not a standalone bias-reducing solution.

Collective Responsibility. People can play a crucial role in managing bias as the creators and operators of Al systems.
Their decisions at each phase of the Al lifecycle can significantly influence system outcomes [75]. Individuals’ diverse
knowledge, experience, and personal differences highlight the need for informed, organized, and active human involve-
ment outside and within the Al lifecycle to manage sources of bias effectively at different phases [141]. Recognizing the
collective responsibility to address bias in Al, we emphasize the need for a participatory approach. This participatory
approach, which includes stakeholders outside and within the Al lifecycle, is crucial for maintaining human superiority
and agency over the machine and requires a clear understanding of various stakeholders’ roles, their level of involvement,
and the impact of their decisions highlighting the dimensions of their single and collective responsibilities in managing
bias in Al systems.
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6.3 Insights from the Data: Exploring Broader Dimensions

Beyond Technical Solutions. Our research on solutions to address bias in Al has resulted in a broad range of strategies
covering the entire Al lifecycle. These strategies, ranging from principles and design guidelines to non-algorithmic
frameworks, tools, and techniques, are not limited to the modeling phase but cover the entire Al lifecycle. While our
classification may not contain all solutions proposed in the literature, it provides an overview of the solutions covering
the entire lifecycle, distinguishing our contribution from other survey papers that focus primarily on the modeling
phase which typically categorize debiasing methods into pre-processing, in-processing, and post-processing, all within
the development phase (e.g., [20, 104, 113, 133]). We still included some examples of this classification in our survey for
a comprehensive overview. By including these categories, we aim to bridge the traditional modeling-focused approaches

with a broader perspective, incorporating multiple stages of Al design and deployment from various research disciplines.

The Need for Ethical and Policy Frameworks. Technical solutions to bias can only go so far without clear ethical
and regulatory guidelines. Our review identified multiple papers emphasizing the importance of ethical standards,
structural changes, and policy interventions. These frameworks provide necessary governance to ensure that Al systems
operate fairly and responsibly, mainly when deployed in high-stakes environments such as healthcare, child welfare,
and law enforcement systems. [24, 43, 103, 147] Ensuring that Al systems adhere to ethical guidelines is not just a

recommendation but a crucial dimension in mitigating bias and fostering trustworthiness in Al

Addressing Human Roles Factors. Bias in Al systems is often a result of human decision-making, a factor that plays a
critical and integral role in designing, developing, and deploying these systems [75]. Data selection, annotation practices,
and model evaluation can introduce human biases, making it essential to consider human oversight and intervention
throughout different points of the Al lifecycle as part of the solution. Our classification integrates human role factors,
often neglected in purely technical frameworks. By defining the role of humans and the depth of their involvement as
presented in 4, we aim to highlight humans’ crucial and valued involvement throughout the Al lifecycle, from design to

implementation and oversight (e.g., [43, 74, 87, 103]).

Bridging the Gap Between Research and Practice. Although many proposed solutions show promise in controlled
research environments, there is often a gap between theoretical approaches and real-world applications. This gap stems
from various challenges, including scalability, system integration, and organizational resistance to change. Addressing
these gaps requires a more interdisciplinary approach that involves collaboration between technical researchers, domain
experts, and policymakers. Our survey highlights the need for broader dialogue between disciplines to ensure that

solutions can be successfully translated into practical applications.
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