
Design and evaluation of a scaffolded block-based
learning environment for hierarchical data structures

Pedro Guillermo Feijóo-García 1,2, Sishun Wang1, Ju Cai1, Naga Polavarapu1,
Christina Gardner-McCune1, and Eric D. Ragan1

Department of Computer & Information Science & Engineering1
University of Florida, Gainesville, FL, U.S.A.1

Program of Systems Engineering2
Universidad El Bosque, Bogotá, Colombia2

Email: {pfeijoogarcia, sishunw, jucai1, npolavarapu, gmccune, eragan}@ufl.edu

Abstract— This paper presents the design of Blocks4DS, a
block-based environment for students to learn data structures. As
a proof-of-concept, we designed custom blocks to allow students to
build and visualize Binary Search Trees (BST). Blocks4DS is built
on Blockly and uses vis.js to provide visualizations of the binary
search tree and its operations. This paper describes the results
from an initial evaluation of usability and student learning.

Keywords—CS Education, tools, block-based programming,
data structures, visual languages, human-centric computing

I. INTRODUCTION

Data structures courses present levels of abstraction that
make them challenging for students to learn and for instructors
to teach. These courses generally correspond to the second year
of Computer Science (CS) curricula, in which students usually
address their concepts through programming languages that
come with syntax and language complexity even though the data
structure topics can be addressed without them. These courses
pose pedagogical challenges that require both the instructor and
the student to invest effort into addressing the different levels of
abstraction in designing and organizing data structures
implementation [1, 2].

We designed Blocks4DS, an instructional block-based
technology for students to learn data structures without requiring
the extra difficulties of programming languages, syntax, and
configuration constraints. The initial modules support the design
and development of the Binary Search Tree (BST), offering the
opportunity for students to build, dynamically debug, and
visualize the data structure. In this paper, we describe the design
of Blocks4DS, also presenting findings and results on usability
and learning.

II. BACKGROUND

Recent CS ED studies have explored data structures courses
pedagogically and through a curricular lens. Porter et al. [2]
found that CS2 courses across multiple institutions were going
beyond teaching object-oriented programming, regardless of
the standards, by introducing basic data structures (from arrays
to the binary search tree). Open questions include whether data
structures should be introduced to students immediately after
the introduction to programming. Do data structures topics

imply the same complexity as introductory programming
concepts? The decision of introducing data structures topics in
the first year (CS1 or CS2) can potentially impact learning
outcomes due to possible difficulties learners might face, as
Zingaro et al. [1] found while examining students’ difficulties
with basic linear and hierarchical data structures such as
ArrayLists, simple and doubly linked lists, and Binary Search
Trees (BST). The authors found that most difficulties related to
the BST, considering aspects such as data insertion, searching,
and algorithmic complexity. They also encourage the CS ED
community to further explore this topic, arguing that literature
on data structures education is still limited.

Over the past decade, different tools have been developed
to scaffold students’ learning data structures. Some offer visual-
based languages to reduce difficulties regarding syntax, while
others feature visualizations and simulations to provide
students with visual feedback of their solutions.

Leveraging the Benefits of Block-based Environments
for Teaching Programming. Visual programming
environments such as Scratch, Blockly, and Alice provide
students with programming block-constructs that snap together
and can be combined to create programs without worrying
about syntax. Despite their simplified visual presentation, and
drag-and-drop affordances, these blocks can be sequenced and
nested into complex programs that solve real programming
challenges. Moreover, these programming environments have
been used successfully by novice programmers to learn
fundamental computing concepts [3, 4]. Price & Barnes [3]
found that block-based environments can help novices perform
better when assessing programming activities, mainly in
reducing the time they require to complete them. Similarly,
Feijóo-García & De la Rosa [5] found that students perceive
block-based environments friendly and interesting, based on a
study they conducted with middle school students who used
Scratch and RoBlock.

As block-based programming environments mature, they
are beginning to offer hybrid features that allow students to
toggle between blocks and text representations. Weintrop &
Holbert [6], reporting on the advantages and drawbacks of
block-based and text-based programming languages, found that
the block modality was most commonly used by learners to

978-1-7281-0810-0/19/$31.00 ©2019 IEEE

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

145

Authorized licensed use limited to: University of Florida. Downloaded on December 07,2020 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

explore and discover new commands. Working with the tool
Tiled, Grace, Homer & Noble [4] noted that participants found
the tiled view useful to explore and that switching between tiled
and textual views helped them to better understand concepts.
Block-based programming environments help learners explore
CS concepts before tackling them in text, and have led to
increased understanding and confidence when using concepts.
Although generally used for introductory courses such as CS1,
and for K-12, block-based technologies can be proposed and
used for courses such as data structures, helping the students to
visualize, build and debug graphically.

Block-based Environments for Teaching Data
Structures. More recently, block-based and hybrid
programming environments are being developed to address the
challenges students face in learning data structures. Almanza-
Cortés et al. [7] evaluated the use of block-based technologies
to assist in understanding linear data structures. Although
limited to linked-lists, stacks, and queues, DStBlocks offers an
environment that allows the student to visualize the data
structures while coding and building them [7]. Their work
demonstrates meaningful findings and results on the impact of
block-based technologies for simple data structures and
encouraged us to explore the use of block-based technologies
for hierarchical data structures instruction.

Data Structures Visualization Tools. In addition to tools
to help students program data structures, another set of tools
helps them visualize the manipulations of the actual data
structure. One example is BRIDGES, which is a system to
enable the creation of engaging data structures assignments
with real-world data and visualizations [8]. Burlinson et al. [8]
found that BRIDGES could provide an easy-to-use way for
accessing interesting real-world datasets, allowing the students
to share the visualization of data structure with others. Taking
a similar approach, Halim [9] presents VisuAlgo, as a scaffolded
tool to visualize different data structures and algorithms.
VisuAlgo offers visualizations for binary and non-binary trees,
including pseudo-code tracking for CRUD operations (i.e.,
Create-Read-Update-Delete). Visualizing data structures helps
students to understand not only the structures’ design but also
their functionality. However, visualization-only tools provide
pre-built data structures and do not provide mechanisms to help
students build them by themselves. As a result, students are not
able to see connections between the data structures and the code
required for them, which is something block-based
technologies can offer.

III. BLOCKS4DS: OUR SOLUTION

Blocks4DS is a block-based environment designed to help
students learn about data structures
(http://b4dsprototype.herokuapp.com/). As a proof-of-concept,
we designed custom blocks to allow students to build and
visualize Binary Search Trees (BST) and their operations. In
this section, we describe the technologies used for its
development, presenting its design and its features.

A. Technologies Used
Blocks4DS was developed using a series of libraries,

languages, and components for web development. At its core,

the tool was built using JavaScript structured with HTML and
styled with CSS. For more specialized functionality, we used
Blockly and vis.js. We used Blockly, an open source library that
supports authoring visual block-based code environments [10].
It provides functionality for code translations, which are useful
when showing students how their blocks correspond to
conventional languages such as JavaScript and Python [10].
Additionally, we used vis.js, which is a web library for visual
representation of data [11]. This library was incorporated in our
solution to allow visualizing the BST and its functionality
according to their code (Figure 1).

Figure 1. Graphical visualization of BST

Figure 2. Categories and Sub-Categories

B. Scaffolding Strategies & Blocks4DS Features
The blocks in Blocks4DS are visually and conceptually

organized into seven different categories based on their
intended use (Figure 2). The first category, Integrated Core
Functions, offers action-blocks for CRUD (i.e., Create-Read-
Update-Delete) operations in the BST: insertion, deletion, and
search. These blocks are included so the student can quickly
build a BST and use it to test CRUD functions without having
to implement them all (e.g., insertion for search). The first block
we implemented in this category is Insert Element.

With the blocks-programming visual editor, students can
complement the functionality of a BST, which corresponds to
two classes: Tree and Node (Figure 3). The Functions on Tree
and Functions on Node are the two categories that gather the

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

146

Authorized licensed use limited to: University of Florida. Downloaded on December 07,2020 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

core procedure-blocks referring to the main CRUD actions of
the data structure. Also, with the assistance of multiple built-in
functions of the BST, like insertElement, searchElement, or
removeElement; the application can be used by the student to
visually construct the BTS (Figure 4).

Figure 3. BST - UML Class Diagram

Figure 4. insertElement with Blocks

Figure 5. Sub-category: Actions on Tree

The next two categories, Actions on Tree and Actions on

Node, present a series of action-blocks corresponding to setters
and getters of the properties and associations per class (Figure
2). All actions within these categories are displayed ordered by
type-signified sub-categories, such as Root Node, Getting,
Querying, Assigning and Creating, among others (Figure 5).

The final two categories, Conditionals and Input and Output,
present blocks that correspond to selection instructions (i.e., if-

else statements) and to data request/response for numerical and
textual values.

Figure 6. Extra Features

Most sub-categories blocks can display extra features and

elements by right-clicking on those blocks or by left-clicking
on the gear icon displayed within those blocks (Figure 6).
Additionally, all blocks in a same sub-category are presented in
the same color to help ease selection and support interaction-
memory.

IV. PRELIMINARY EVALUATION

We conducted a preliminary evaluation of Blocks4DS with
a focus on learning and user-experience outcomes. To help study
the tool’s impact, we designed and implemented a video-lecture
and assignment intended to introduce participants to BSTs.

Participants. We piloted our study with seven participants,
all undergraduate CS-major freshmen university students (n =
7). Participants were male students between 18 to 23 years of
age, recruited from the COP 3503 Programming Fundamentals
II course at the University of Florida. Unfortunately, we were
unable to recruit female students to participate in this pilot study.

Experiment Description. We met with each participant for
60 min. Participants were first asked to complete a pre-
assessment: four questions asking which visual examples were
a BST, and one open-ended question to explain how to search
for an element in a BST. They were then asked to watch a 20
min step-by-step video introducing the BST concept and to
complete an assignment that asked them to code the Search
function of the BST using (https://bit.ly/324Iz6T). After
completing the assignment, participants completed a post-
assessment with the same structure of the pre-assessment.
Finally, participants were asked to complete a final
questionnaire with Likert 1-7 scale and open-ended questions
about their experience.

Data Collection & Analysis. We evaluated the learning-
outcomes using pre- and post-assessments to measure
participants’ conceptual understanding of BST before and after
interacting with the tool. Both assessments featured quantitative
and qualitative questions that asked students to select correct
examples of the BST, and to explain the procedure of searching
for an element in the data structure. Students’ performance
outcomes in both assessments were based on the number of
correct responses to the quantitative questions, and to the details’
accuracy provided in the open-ended search procedure question.
We evaluated the quality of details using a Likert-scale rubric
(1-no idea, 4-has some idea, and 7-explained completely), used
by the research team to grade each open-ended response.

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

147

Authorized licensed use limited to: University of Florida. Downloaded on December 07,2020 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

For the user-experience perspective, we measured the time
participants spent to complete the video-assignment in addition
to the students’ perceptions gathered through a post-survey.
Responses were gathered with Likert scales addressing aspects
such as Graphical User Interface (GUI) organization, difficulty
of the assessment, and difficulty using the tool. Additionally, we
obtained textual feedback through an open-ended question
included in the questionnaire.

Our evaluation sought to establish evidence for Blocks4DS
functionality and feasibility, as well as to gather and understand
the feedback from the participants. Descriptive statistics were
used to analyze the data we present in Section V.

V. RESULTS AND DISCUSSION

A. Pilot Study – UX Perspective: Findings and Results
All participants were able to successfully complete the tasks

required with the video tutorial. The average time of completion

of the assignment was below to half an hour

.

Figure 7. How easy or difficult was to use the tool?

Figure 8. How well organized do you consider is its GUI?

Figure 9. How easy or hard was the assignment to accomplish?

Five participants out of seven self-reported that the tool was

“easy” to use (Figure 7). Four considered the GUI well
organized (Figure 8), and five responded that the proposed
assignment was easy to accomplish (Figure 9). These responses

suggest that the first pilot was positively received by the
intended audience.

B. Pilot Study – Learning-Outcomes: Findings and Results
The responses’ distribution per type of question are

presented in Figure 10 (Quantitative) and Figure 11
(Qualitative). In general, as we can observe, participants
improved their understanding of BST for the post-assessment.

Figure 10. Quantitative Responses

Figure 11. Qualitative Responses

On average, for both types of questions, participants

performed better after interacting with the learning tool.
Additionally, our results present lower standard deviations for
the post-assessment:

� Quantitative - Pre vs Post:
o Pre: .

o Post: .

� Qualitative - Pre vs Post:

o Pre: .

o Post: .

VI. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

Based on our experimental method and results, we conclude
that Blocks4DS can be used to help students learn basic concepts
of data structures in a short amount of time (< 60 min).
Additionally, considering our findings and participant feedback,
we conclude that Blocks4DS’ graphical organization is
appropriate for the learning context it was designed for.

Further research with the tool is necessary to compare the
usage of the tool with a traditional text-based language. In
subsequent studies, we will explore how impactful the tool can
be when used for comparing different concepts, lectures/video-
tutorial, and assignments.

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

148

Authorized licensed use limited to: University of Florida. Downloaded on December 07,2020 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Zingaro, C. Taylor, L. Porter, M. Clancy, C. Lee, S. N. Liao, and K. C.
Webb, “Identifying Student Difficulties with Basic Data Structures,”
Proceedings of the 2018 ACM Conference on International Computing
Education Research - ICER 18, 2018.

[2] L. Porter, D. Zingaro, C. Lee, C. Taylor, K. C. Webb, and M. Clancy,
“Developing Course-Level Learning Goals for Basic Data Structures in
CS2,” Proceedings of the 49th ACM Technical Symposium on Computer
Science Education - SIGCSE 18, 2018.

[3] T. W. Price and T. Barnes, “Comparing Textual and Block Interfaces in a
Novice Programming Environment,” Proceedings of the eleventh annual
International Conference on International Computing Education Research
- ICER 15, 2015.

[4] M. Homer and J. Noble, “Combining Tiled and Textual Views of Code,”
2014 Second IEEE Working Conference on Software Visualization, 2014.

[5] P. G. Feijóo-García and F. De la Rosa, “RoBlock – Web App for
Programming Learning,” International Journal of Emerging Technologies
in Learning (iJET), vol. 11, no. 12, p. 45, 2016.

[6] D. Weintrop and N. Holbert, “From Blocks to Text and Back:
Programming patterns in a dual-modality environment ” Proceedings of
the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education - SIGCSE 17, 2017.

[7] D. F. Almanza-Cortés, M. F. Del Toro-Salazar, R. A. Urrego-Arias, P. G.
Feijóo-García, and F. D. L. Rosa-Rosero, “Scaffolded Block-based
Instructional Tool for Linear Data Structures: A Constructivist Design to
Ease Data Structures’ Understanding,” International Journal of Emerging
Technologies in Learning (iJET), vol. 14, no. 10, p. 161, 2019.

[8] D. Burlinson, M. Mehedint, C. Grafer, K. Subramanian, J. Payton, P.
Goolkasian, M. Youngblood, and R. Kosara, “Bridges, A system to enable
creation of engaging data structures assignments with real-world data and
visualizations” Proceedings of the 47th ACM Technical Symposium on
Computing Science Education - SIGCSE 16, 2016.

[9] S. Halim, “VisuAlgo – Visualising Data Structures and Algorithms
Through Animation,” Olympiads In Informatics, vol. 9, pp. 243–245,
2015.

[10] N. Fraser, “Blockly Games,” Blockly Games. [Online]. Available:
https://blockly-games.appspot.com/. [Accessed: 21-Mar-2019].

[11] B. V. Almende, “vis.js,” vis.js - A dynamic, browser based visualization
library. [Online]. Available: http://visjs.org/. [Accessed: 21-Mar-2019].

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

149

Authorized licensed use limited to: University of Florida. Downloaded on December 07,2020 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

