
TE-2020-000394 

1 

 

1 

  

Abstract—Contribution: In this paper, the authors present 

findings and insights on the efficacy of using an educational block-

based programming (BBP) environment—Blocks4DS, to teach the 

Binary Search Tree (BST). 

Background: For a decade, BBP environments have been a hot 

topic in the Computer Science Education (CSEd) community to 

promote interactive active learning of programming. However, 

little attention has been paid to BBP environments’ efficacy on 

non-introductory courses like Data Structures & Algorithms 

(DS&A). DS&A courses are challenging to students due to levels 

of abstraction that could be reduced by syntax-free features 

existing in BBP interfaces. 

 Research Questions: 1) Can undergraduate computing-major 

students learn about the BST using Blocks4DS? 2) Do 

undergraduate computing-major students understand better 

BSTs when learning with a BBP environment? 3) How do 

undergraduate computing-major students perceive Blocks4DS for 

non-introductory CS topics? 

Methodology: A mixed-method study was designed, using a 

control and intervention group with 83 first and second-year 

Computer Science (CS) students, to evaluate the efficacy of 

Blocks4DS compared to traditional instructional methods (e.g., 

whiteboard and pseudo code). The authors evaluated its efficacy 

based on students’ conceptual understanding and perceptions.  

Findings: It was found that, regardless of prior experience with 

text-based programming languages and instructional approaches, 

students introduced to the BST with Blocks4DS gained significant 

conceptual understanding, and performed as well as peers 

instructed with pseudo-code. Also, 83.3% of students found the 

tool engaging and 72.3% found it useful to learn DS&A. This 

suggests that Blocks4DS can be used to teach DS&A. 

 
Index Terms—Computer science education, data structures and 

algorithms, visual languages 

I. INTRODUCTION 

HE Computer Science Education (CSEd) research 

community has explored for decades how students learn to 

program, building literature on pedagogy, tools, and strategies 

to develop computing literacy [16]. This exploration has mainly 

 
This paragraph of the first footnote will contain the date on which you 

submitted your paper for review. It will also contain support information, 

including sponsor and financial support acknowledgment. For example, “This 
work was supported in part by the U.S. Department of Commerce under Grant 

BS123456.”  

The next few paragraphs should contain the authors’ current affiliations, 
including current address and e-mail. For example, F. A. Author is with the 

focused on novice students in contexts such as K-12 and 

undergraduate introductory Computer Science (CS) courses 

like CS0 and CS1 [20], with little focus on non-introductory 

undergraduate courses such as Data Structures & Algorithms 

(DS&A) [28, 37]. DS&A courses are commonly taught in the 

second year of Computer Science (CS) curricula, and generally 

require students to have previously gained programming and 

abstraction skills in one text-based programming language 

(e.g., Java, C++) [20, 28]. The introduction of new levels of 

abstraction, time and memory for efficiency considerations, and 

non-linear representations make these courses challenging for 

students to learn and instructors to teach. 

Algorithms Visualization (AV) has been a way the CSEd 

community has taken to assist students [3, 33, 34]. Multiple 

visualization tools, static and dynamic, have been designed and 

used to foster and scaffold abstraction understanding on 

different educational levels. Static tools display algorithms’ 

operations as a whole or step-by-step, avoiding any code input 

from the user [13, 33]. Although these tools help in illustrating 

the procedures students are supposed to follow, they lack 

active-learning elements to allow students to visualize and code 

at the same time. On the other hand, dynamic tools such as 

Python Tutor [15], or Willow [25], feature visualizations with 

code-editing capabilities in a text-based language, accompanied 

by an interpreter in most cases [33]. These tools are excellent 

for addressing students’ needs in DS&A courses as they provide 

visualization and coding features [17]. However, text-based 

languages bring syntax challenges dependent on the 

programming language used in the tool, implying unnecessary 

cognitive load due to syntax errors [19]. 

One way the community has tried to address syntax barriers 

for novice programmers and to broaden the participation of 

students in computing is through block-based programming 

(BBP) environments [4, 5, 23, 24]. For a decade, these 

environments have been a hot topic in the CSEd community to 

promote interactive active learning of programming [23]. 

Environments featuring BBP assist students to learn 

National Institute of Standards and Technology, Boulder, CO 80305 USA (e-

mail: author@ boulder.nist.gov).  

S. B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He is 
now with the Department of Physics, Colorado State University, Fort Collins, 

CO 80523 USA (e-mail: author@lamar.colostate.edu). 

T. C. Author is with the Electrical Engineering Department, University of 
Colorado, Boulder, CO 80309 USA, on leave from the National Research 

Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp). 

Effects of a Block-based Scaffolded Tool on 

Students’ Introduction to Hierarchical Data 

Structures 

Pedro G. Feijóo-García, Amanpreet Kapoor, Christina Gardner-McCune, and Eric Ragan 

T 



TE-2020-000394 

2 

 

1 

programming without syntax errors, decoupling syntax from 

computational thinking and CS theory [5, 23, 24]. Although 

popular, the CSEd community generally uses BBP with sand-

box environments for children and K-12 [4], introducing 

students to simple constructs such as variables, conditionals, 

loops, and functions (i.e., procedural programming). BBP 

environments can be immensely helpful on topics that involve 

high levels of abstraction, such as DS&A, as the removal of 

syntax errors may help students reduce their cognitive load and 

focus on computational thinking skills [5, 19]. Unfortunately, 

BBP environments have been underexplored in CS 

undergraduate contexts: only a few studies have referred to 

them in CS1 [4, 5, 22], or to teach linear data structures in 

DS&A courses [1]. More research is necessary to understand 

their effectiveness on topics that involve higher levels of 

abstraction, such as hierarchical and non-linear data structures. 

To bridge the gap of exposing students to algorithmic 

visualization with less syntactic barriers and through active 

learning, the tool Blocks4DS was designed. The tool is a BBP 

environment designed to assist in the instruction of the Binary 

Search Tree (BST) [11]. The tool features a block-based canvas 

that assists on the BST elements and operations (i.e., create, 

search, and delete), in addition to a visualizer that displays the 

data structure programmed by the student. The authors 

combined the best of both worlds, Algorithms Visualization 

(AV) and BBP (see Figure 1), to evaluate if dynamic 

visualizations coupled with languages that have less syntax 

sugar (e.g., semi-colons, brackets, parenthesis, reserved 

words—public or private, etc.) can be effective in students' 

understanding of higher-level CS topics—hierarchical data 

structures. The tools were evaluated addressing the following 

questions: 

• Q1: Can undergraduate computing-major students 

learn about the BST using Blocks4DS? 

• Q2: Do undergraduate computing-major students 

understand better BSTs when learning with a BBP 

environment? 

• Q3: How do undergraduate computing-major students 

perceive Blocks4DS for non-introductory CS topics? 

For the scope of this paper, learning is considered as the 

action of gaining new knowledge about the BST in terms of its 

properties, constrains, and operations. Understanding, on the 

other hand, concerns to students’ expertness on the BST—on 

how robust their mental models on the topic are. The study 

assessed learning based on how students were able to identify 

a BST from a Binary Tree (BT), and on how they could recall 

the data structures’ characteristics. Understanding was assessed 

based on how well students succeeded inserting elements into 

the BST and on how they explained the step-by-step process of 

its search operation (see Section III.E). 

This paper reports about an online-asynchronous study in a 

CS2 course with undergraduate students (n=93) from a North 

American university, that compared students’ conceptual 

understanding of the BST on two separate modes: Blocks4DS 

or pseudo-code (i.e., syntax-light textual approach to code). 

Students were assessed before (pre-assessment) and after (post-

assessment) using one of the two modes. Some students (n=10) 

scored higher or equal to 80% (letter grade of B at the 

University of Florida, U.S.A.) for their pre-assessment and 

were not assessed further: participants were expected to be 

novices towards the BST. Then, students (n=83) were asked 

about the BST organization and basic operations such as 

inserting and searching for an element. Students were assessed 

using a between-subjects design with two groups: Blocks4DS 

  
 Fig. 1.  Blocks4DS—Graphical User Interface (GUI) 



TE-2020-000394 

3 

 

1 

(n=44), and pseudo-code (n=39). After the post-assessment, 

students were asked to switch modes and to report their 

perceptions. Finally, students had to compare modes, to score 

features of Blocks4DS, and to evaluate the tool’s design: 

usefulness and engagement. 

The study found that students improved their conceptual 

understanding with Blocks4DS between assessments, as their 

post-assessment scores differed significantly from the pre-

assessment. Additionally, although students from the 

intervention group reported to be unfamiliar with BBP 

environments, they performed as well as students from the 

control group. This was true regardless of students’ prior 

experience with text-based programming languages (i.e., Java 

and C++) and instructional approaches (e.g., instructors 

relaying on whiteboards in classrooms to code or illustrate data 

structures). The majority of students found the tool engaging 

(83.3%) and useful to learn about the BST (72.3%), with 

particular higher scores by Female students and non-native 

English-speaking students. These findings suggest Blocks4DS 

can be useful in non-introductory CS courses, helping students 

to learn programming and abstraction for DS&A. 

II. BACKGROUND 

A. Teaching DS&A in CSEd Literature 

The CS Curricula 2013 identifies learning outcomes of 

DS&A in three categories: Familiarity, Usage, and Assessment 

[29]. These outcomes cover recognizing, conceptually 

understanding, implementing, and critically evaluating 

scenarios for choosing different data structures and algorithms. 

Researchers and practitioners focusing on DS&A courses have 

created concept inventories to measure students’ conceptual 

understanding of data structures [29], identified topics that 

students face difficulty when learning DS&A [10, 18, 31], used 

active learning approaches to strengthen foundations [7, 27], 

and incorporated dynamic visualization tools that require text-

based languages to master basics [6, 8, 9, 15, 25]. This research 

includes work by Zingaro et. al., who identified that students 

have challenges with both linear and non-linear data structures 

[37]. Specifically, they found that students face difficulties in 

analyzing the impact of BST insertions and how insertions 

impact shape [37]. Other research focusing on the use of 

visualization to foster students’ understanding of DS&A is 

elaborated in Section II.B. Blocks4DS focuses on incorporating 

dynamic visualizations similar to [6, 8, 9, 15, 25]. However, the 

study reported in this paper uses a BBP language to allow 

students to visualize the DS&A unlike previous work (see 

Figure 1). 

 

B. Role of Visualizations in DS&A Education 

The use of interactive visualizations in CSEd for text-based 

languages dates back to the 1980s [33]. To understand the 

recent advancements in the field of AV, Shaffer et. al. [33] 

reviewed over 350 visualizations and found that most 

visualizations were of low quality and targeted introductory 

concepts [33]. They argued that most visualizations had low 

pedagogical utility as the visualization tools “rarely” illustrated 

the process of operations. For example, they explained that 

visualizations that covered insert and delete operations on tree 

data structures showed students the result of an operation rather 

than the process itself [33]. To organize the large set of studies 

and tools developed for Visualization purposes in Computing 

Education, an ACM ITiCSE Working Group developed a 

taxonomy of six ways in which students engage with 

visualizations: (1) No viewing, (2) Viewing, (3) Responding, 

(4) Changing, (5) Constructing, and (6) Presenting [26]. “No 

viewing” is classified as instructions without any visualizations, 

and “Viewing” is a passive activity of seeing visualizations. 

“Responding” classifies activities that include both watching 

visualizations as well as answering questions while the 

visualizations are presented with a tool. “Changing” involves 

altering the inputs or modifying the visualizations. 

“Constructing” refers to creating visualizations. Surprisingly, 

the results of the use of tools in the “Constructing” domain have 

had mixed results so far regarding learning [14, 27]. The last 

category, “Presenting” requires students to present 

visualizations to an audience for feedback and discussion. 

Studies have used this taxonomy for classifying the area under 

consideration [27]. For example, Grissom et. al., studied 

algorithmic learning using the JHAVE visualization tool [14] 

under three conditions: "No viewing", "Viewing", and 

"Responding" levels and concluded that learning of computing 

concepts increases with the level of engagement, i.e., active 

learning or “responding” for visualization is better than static 

visualizations or “Viewing” [14].  In the context of the reported 

study, standalone pseudo-code is classified as “No viewing”, 

whiteboard (i.e., refers to the classroom’s artifact or object that 

is used by instructors in lectures to write, code, illustrate 

examples, etc.) diagrams or presentations as “Viewing”, and 

Visualization using Blocks4DS as “Constructing”. 

 

C. BBP Languages in Undergraduate CSEd 

BBP languages such as Scratch and Snap! that have massive 

adoption rates, have been primarily designed to target novice 

students and introduce them to programming [23]. These 

languages support novice programmers in learning to code 

without worrying about syntax [31, 35]. However, older 

students (>14 years of age) have underrated these environments 

as these languages have become a central component of 

curricula in introductory high school CS courses [35, 36].  In 

the context of undergraduate CSEd, BBP environments have 

been adopted and studied in preliminary CS courses such as 

CS1 [22, 30] and hybrid environments have also been studied 

to ensure students’ smoother transition between blocks and text 

[4, 5]. In these undergraduate CS courses, novice students have 

reported positive experiences with Scratch before moving to 

text-based programming languages further along the course 

[22, 30]. The goal behind the design of Blocks4DS was to 

complement students’ experiences when understanding 

hierarchical data structures through an environment different 

from drawing data structures on whiteboards (i.e., refers to the 

classroom’s artifact or object that is used by instructors in 



TE-2020-000394 

4 

 

1 

lectures to write, code, illustrate examples, etc.) or using 

pseudo-code (i.e., syntax-light textual approach to code) for 

explanations. The utility of Blocks4DS is considered between 

pseudo-code and text-based programming languages. 

III. METHOD 

With the goal of evaluating the efficacy of Blocks4DS in the 

instruction of the BST, the authors conducted an online-

asynchronous study with undergraduate students enrolled in a 

CS2 course at a large public university in North America. Data 

was collected via multiple questionnaires and surveys over two 

semesters: Spring 2020 and Summer 2020, after students were 

introduced to recursion and linear data structures—the linked 

list. The CS2 course is taught in C++ and it is the second 

programming course offered in the CS curriculum. Students’ 

participation was no longer than 90 min for the study, and all 

communication with them was conducted via email. 

A. Participants 

The data reported in this paper corresponds to a sample 

population consisting of undergraduate computing-related 

majors (e.g., computer science and computer engineering), who 

had no prior experience with non-linear data structures (n=83). 

Participants’ reported age was: 18-20 years of age (n=74), 21-

25 years of age (n=3), 26-30 years of age (n=4), and >30 years 

of age (n=1). This range of participant ages in CS1 and CS2 

courses at the University of Florida is common as more students 

are pursing minors in CS or post-baccalaureate degrees to gain 

valuable computing skills. A 7-point Likert scale was used to 

ask students to self-report their previous experience with BBP 

environments (1—I am not familiar at all to them, 7—I am very 

familiar to them). Participants were generally unfamiliar with 

BBP environments: 78.3% of them (n=65) reported to have 

none (1) or little (2-3) familiarity with these environments. 

Table I presents additional demographics of the study 

participants who agreed to respond to demographic questions 

(n=82). 

B. Study Design 

The study was online and asynchronous (participants had not 

face-to-face interactions with the research team and could 

participate in the study at their own pace), and had participants 

from a CS2 course over two semesters: Spring 2020 and 

Summer 2020. The study was divided in three phases, giving 

access to students to the next phase as they completed the 

previous one. 

1) First Phase 

In this phase, the authors gave students an informed consent 

document with the details of the study. They were asked to 

read it and respond to an online survey if they agreed to 

participate. The authors then asked students to create an 

anonymous ID to use in the upcoming online 

questionnaires—to ensure anonymity.  Further, students 

were asked to respond to the pre-assessment questionnaire 

followed by a phase-completion survey that collected their 

emails—so that the authors could contact them for the next 

phase.  The pre-assessment questionnaire is described in 

Section III.E. 

2) Second Phase 

In this phase, students were randomly distributed into two 

groups. Both groups watched a video-lecture and worked on 

a follow-up assignment: 

a. Students in the control group watched a video-lecture 

(22 min) introducing the Binary Tree (BT) and the 

Binary Search Tree (BST) with pseudo-code (n=39), 

and had to work on an assignment that asked them to 

complete a sample code, in pseudo-code, of the 

insertion function of the BST. The video-lecture is 

described in Section III.D. 

b. Students in the intervention group watched a video-

lecture (24 min) that featured Blocks4DS to introduce 

the BT and the BST (n=44), and had to work on an 

assignment that asked them to complete a block-based 

sample code of the insertion function of the BST. The 

video-lecture is described in Section III.D. 

Both video-lectures and assignments addressed the same 

topics and problems, regardless of the mode used for them: 

Blocks4DS or pseudo-code. Subsequently, participants 

were asked to respond to a post-assessment questionnaire 

that featured the same number of questions and structure of 

the pre-assessment—see Section III.E. Once finished, 

students were asked to respond to a phase-completion 

survey, as they did in the first phase, which collected their 

emails for further communication. 

3) Third Phase 

The authors switched video-lectures and assignments 

between groups: this was done in order to provide enough 

experience to students to compare both modes. Then, the 

authors asked students to respond to a final questionnaire 

and self-report their perceptions and experience with the 

tool, its features, and the two distinct modes: Blocks4DS 

and pseudo-code. The final questionnaire is described in 

Section III.E. Once finished, students were asked to respond 

to a phase-completion survey to input their emails, as they 

did with the previous phases. 

 

TABLE I 
SAMPLE POPULATION - DEMOGRAPHICS 

Variable Demographic Group Counting Percentage 

 

Gender  

Male n=49 59.8% 

Female n=30 36.6% 

Non-Binary n=3 3.66% 

Race / 
Ethnicity 

Asian / Pacific Islander n=27 32.9% 

Black / African American n=3 3.66% 

Hispanic / Latin American n=19 23.2% 

Native American /Alaska Native n=0 0.00% 

White, Non-Hispanic / Latin 

American n=28 34.1% 

Middle Eastern / North African n=3 3.66% 

Other n=2 2.44% 

Native 

Language  

Native English Speakers n=64 78.0% 

Non-Native English Speakers n=18 22.0% 

 

 



TE-2020-000394 

5 

 

1 

C. The Tool: Blocks4DS 

Blocks4DS is a BBP environment introduced in 2019 [11], 

developed to assist students to learn data structures (see Figure 

1). It presents a web-based interface that allows students to 

visualize the BST and work on its operations using a BBP 

interface (see Figure 1).  As described by Feijóo-García et al., 

[11], the tool categorizes blocks regarding their intended 

operation, referring to one of two JavaScript back-end classes: 

Node or Tree. As it is observed in Figure 1, the tool’s 

scaffolding (i.e., assistance or support) is visually and 

conceptually organized in seven different categories: Integrated 

Core Functions, Functions on Nodes, Actions on Tree, Actions 

on Nodes, Conditionals, and Input and Output. 

Blocks4DS was programmed using JavaScript, structured 

with HTML, and styled with CSS. The tool integrates 

Blockly—to feature a block-based canvas [12], and vis.js—to 

provide a visualization of the BST [2].  The tool was designed 

with a web-based architecture to ensure that instructors or 

students incur minimal cost for installations. Previously, 

instructors have reported difficulty in adopting AV tools in 

classrooms [32]. For this study, the authors updated the tool’s 

interface to present a base template of the search operation, so 

that students were able to complete the proposed assignment. 

D. Teaching Approach: Video-Lectures 

To conduct the study, the authors developed two video-

lectures that introduced concepts and definitions of the BT and 

the BST. Both videos also introduced basic operations on the 

BST: insertion, and search. The latter featured a different mode 

for each video: The control group watched the first video-

lecture (22 min), which explained the search operation using 

pseudo-code and BST visualizations. The intervention group 

watched the second video-lecture (24 min), which explained the 

search operation with Blocks4DS. Both video-lectures were 

instructed by the first author, in English, and were slideshows. 

Before participants’ recruitment, both video-lectures were 

reviewed by six external Computing-related professionals 

unrelated to the study: three CS Faculty and three Doctoral 

scholars. Each video had three reviews. The authors used a 

questionnaire that featured a 7-point Likert scale (1—not clear 

at all, 7—very clear) for three questions. Descriptive statistics 

are presented (mean—M, and standard deviation—SD) for each 

question and video-lecture (control—pseudo-code; 

intervention—Blocks4DS): 

1. How clear is the video tutorial's explanation of what a 

Binary Search Tree is? —control (M=7.0, SD=0.0); 

intervention (M=6.7, SD=0.7). 

2. How clear is the video tutorial's explanation on how to 

insert elements in a Binary Search Tree? —control 

(M=5.7, SD=0.6); intervention (M=6.3, SD=0.6). 

3. How clear is the video tutorial's explanation on how to 

search for an element in a Binary Search Tree? —

control (M=6.7, SD=0.6); intervention (M=6.3, 

SD=0.6). 

The instructional material was highly rated by the external 

peers, who indicated that both video-lectures were clear in the 

explanation of the BST, its concepts, and its operations, to 

strengthen reliability. 

E. Data Collection 

1) Pre-assessment and Post-assessment Questionnaires 

 Both questionnaires shared the same structure. Each of them 

had a total of seven (7) questions: four (4) close-ended, and 

three (3) open-ended [21]; addressing their understanding of the 

BT and the BST. All answers were scored as wrong (0 points) 

or correct (6 points). For open-ended questions, answers were 

scored by the research team using three categories—

Satisfactory (6 points), Partially Satisfactory (3 points), and 

Unsatisfactory (0 points). 

Questions used in both questionnaires were divided in three 

groups. The first group gathered two open-ended questions that 

asked participants to explain, in their own words, the properties 

of the BT and the BST—e.g., “Please explain, to the best of 

your ability, the properties of a Binary Tree.” The second group 

corresponded to questions that asked participants to visually 

identify the BT, the BST, and to distinguish one from another—

e.g., “Which of the following representations are not Binary 

Search Trees?” with four visual representations to select plus a 

final option that told “I don’t know which of these 

representations are not Binary Search Trees.” The third group 

had two questions that referred to the BST operations. One 

close-ended question—e.g., “You are asked to input into a 

Binary Search Tree the following sequence of numbers: 5, 3, 

25, 16, 71, 1, 2, 4. Which BST representation corresponds to 

this input?” with four visual representations to select plus an 

option that told “I don't know which is the BST representation 

for this input.”, and one open-ended question—e.g., “Using 

your own words, please explain the how to search for an 

element in a Binary Search Tree. If you do not know how to do 

so, please leave the text I don't know.” 

2) Final Questionnaire—Self-reported Perceptions 

 The questionnaire featured a 7-point Likert scale for ten 

questions on students’ perceptions and experiences. 

Additionally, this questionnaire featured demographic 

questions such as students’ age, gender, ethnicity, and native 

language. Demographic questions were used to study the 

impact of dynamic block-based visualizations on non-native 

English Speakers’ perceptions. 

 

F. Data Analysis 

To respond to the questions posed in Section I, the authors 

broke down their analysis into two categories. The 

first category corresponds to students’ performance between 

the pre-assessment and the post-assessment. The second one 

refers to students’ perceptions about the tool and their 

experience. Data was analyzed using quantitative techniques 

that involved descriptive and inferential statistics [21]. 

Students’ perceptions were analyzed using only descriptive 

statistics. 

 

1) Students’ Performance 

 Students’ performance was analyzed between groups—the 

control group and the intervention group, using descriptive and 

inferential statistics [21] on two variables. The first variable 



TE-2020-000394 

6 

 

1 

considered was the post-assessment final score (S2)—rated 

from 0.0 to 6.0. The second variable was the students’ 

improvement (W) from final scores between the S2 and the pre-

assessment S1: this variable could be positive, neutral, or 

negative (Equation 1). S2 was not normally distributed so the 

non-parametric independent two-tailed Mann-Whitney U test 

was employed [21]. Since W was normally distributed, the 

authors used for it the parametric two-tailed independent 

Student’s t-test [21]. 

Students’ performance was also analyzed within groups 

comparing post-assessment and pre-assessment scores—S2 vs 

S1. Since data was not normally distributed in either the control 

or the intervention groups, the non-parametric dependent two-

tailed Wilcoxon Signed Rank test was employed for it [21]. 

                                    𝑊 = 𝑆2 − 𝑆1                                (1) 

 

2) Students’ Perceptions 

 The authors analyzed students’ perceptions from 7-point 

Likert scales questions on the final questionnaire, by counting 

the number of responses per scale for each one of their seven 

options. Their analysis was based on descriptive statistics 

(mean—M, standard deviation—SD, and mode—Mo) 

centered on the demographic groups for which they had 

participants (see Table I). The authors focused their analysis on 

answers from six (out of ten) questions of the final 

questionnaire: 

1. Based on your interaction with Blocks4DS, how 

engaging is the tool? 

2. How useful do you find Blocks4DS to learn of data 

structures such as the BST? 

3. How useful do you find a block-based canvas, like 

the one provided in Blocks4DS, to learn of data 

structures such as the BST? 

4. How useful do you find a visual representation of the 

data structure, like the one provided in Blocks4DS, to 

learn of data structures such as the BST? 

5. Comparing the two modes you used in the study, how 

much do you prefer using one versus the other? 

6. Comparing the two main features (block-based 

canvas vs data structure visual representation) 

displayed in Blocks4DS, which one do you find more 

useful to learn of data structures such as the BST? 

Four questions were removed due to their lack of 

contribution to the discussion of this study: the six questions 

included already addressed the research questions posed in 

Section I. The four questions discarded were: 

7. Based on your interaction with Blocks4DS, please 

rate your experience of interacting with the tool. 

8. Recalling the assignment, how difficult was 

working on it using blocks? 

9. Recalling the assignment, how difficult was 

working on it using pseudo-code? 

10. Recalling the assignment using pseudo-code, how 

much do you consider having a visual 

representation of the BST would have helped you 

responding to it? 

IV. FINDINGS AND RESULTS 

In this Section, findings on students’ performance and 

perceptions are outlined. These findings are presented 

following the categories, variables, and analysis described in 

Section III.F. 

 

 
Fig. 2.  Blocks4DS vs Pseudo-code: Native and Non-native English Speakers 



TE-2020-000394 

7 

 

1 

A. Students’ Performance 

Table II shows that students’ post-assessment scores (S2) 

were, on average, high for both groups. Both groups scored an 

average S2 greater than 4.0 on a scale up to 6.0 (see Section 

III.E). For the control group (n=39), 74.4% of students had an 

S2 score greater than 4.0., and 39.5% (n=15) had an S2 greater 

than 5.0. For the intervention group (n=44), 64.1% of students 

(n=25) had an S2 greater than 4.0, and 38.5% (n=15) had an S2 

greater than 5.0. As shown in Table II, S2 was not significantly 

different between groups (p>0.05). 

 

 
Students’ improvement (W) was positive for both groups, as 

the average for them was 3.5 for the control group and 3.0 for 

the intervention group (Equation 1). For the control group 

(n=39), 64.1% of students (n=25) reported a W greater than 3.0, 

33.3% (n=13) reported a W greater than 4.0, and 15.4% (n=6) 

reported a W greater than 5.0. For the intervention group 

(n=44), 48.7% of students (n=44) reported a W greater than 3.0, 

38.5% (n=15) reported a W greater than 4.0, and 20.5% (n=8) 

reported a W greater than 5.0. As with S2, W was not 

significantly different between groups (p>0.05). 

 

 
As observed in Table III, scores from the post-assessment 

(S2) were greater than those from the pre-assessment (S1) 

within both groups. Students from the intervention group—

Blocks4DS (n=44), performed significantly better on the post-

assessment compared to the pre-assessment (p<0.01). 

Likewise, for those students who were part of the control 

group—pseudo-code (n=39), S2 was significantly higher than 

S1 (p<0.01). 

B. Students’ Perceptions 

In general, students found Blocks4DS useful to learn DS&A 

(1—not useful at all, 7—very useful: M = 5.2, SD = 1.5, Mo = 

6), and engaging (1—not engaging at all, 7—very engaging: M 

= 5.3, SD = 1.1, Mo = 5). They reported to find the block-based 

canvas useful (1—not useful at all, 7—very useful: M = 5.3, SD 

= 1.5, Mo = 5), as also the visual representation of the BST (1—

not useful at all, 7—very useful: M = 6.1, SD = 1.0, Mo = 7). 

As it is observed, the visual representation of the BST was 

scored higher, as it was also the students’ preferred feature (1—

block-based canvas, 7—data structure visual representation: 

M= 5.1, SD = 1.7, Mo = 6).  

From the demographic groups, White students generally 

preferred pseudo-code over Blocks4DS (1—Blocks4DS, 7—

pseudo-code: M = 5.4, SD = 1.4, Mo = 6), as they also were the 

group of students with the lowest mode (Mo) in regards to the 

block-based canvas usefulness (1—not useful at all, 7—very 

useful: M = 4.6, SD = 1.8, Mo = 3). This was different from the 

Female students’ group, who reported the highest score on the 

block-based canvas’ usefulness (1—not useful at all, 7—very 

useful: M = 5.7, SD = 1.2, Mo = 7). 

Although Blocks4DS was well received by the target 

audience, students reported to prefer using pseudo-code (1—

Blocks4DS, 7—pseudo-code: M = 4.5, SD = 1.8, Mo = 6). 

However, this preference varies when comparing two particular 

groups: native English-speakers (1—Blocks4DS, 7—pseudo-

code: M = 4.7, SD = 1.8, Mo = 6) and non-native English-

speakers (1—Blocks4DS, 7—pseudo-code: M = 3.8, SD = 1.8, 

Mo = 2). While native English-speakers preferred pseudo-code, 

non-native English-speakers were more inclined towards 

Blocks4DS (see Figure 2). It is believed that their perceptions 

reflect the language barrier that might exist for text-based 

programming languages. However, this is only a hypothesis, 

and further research is required to evaluate that claim. Overall, 

Female students (1—not useful at all, 7—very useful: M = 5.7, 

SD = 1.1, Mo = 5) and non-native English-speakers highly rated 

the usefulness of the block-based canvas. 

V. DISCUSSION 

Based on the findings and results presented in this paper, it is 

concluded that undergraduate STEM-major students were able 

to learn about the Binary Search Tree (BST) with Blocks4DS. 

As presented in Section IV, students who were introduced to 

the BST with the tool performed significantly better for the 

post-assessment than they did for the pre-assessment (see table 

III). These findings suggest that block-based environments can 

assist in undergraduate Computer Science (CS) courses as Data 

structures & Algorithms (DS&A). 

Additionally, despite the improvement observed within the 

intervention group (table III), there was no significant 

difference observed between the control and intervention 

groups (table 2).  The authors believe these findings are due to 

the prior experience students had with text-based programming 

languages: they were previously exposed to languages like Java 

and C++ in CS1 and CS2. Nevertheless, it is important to recall 

that students reported little to none experience with BBP 

environments prior to the study (see Section III.A). The lack of 

significant difference between groups also suggests that 

undergraduate Computing-major students can learn about 

DS&A with Blocks4DS, as they are used to with text-based 

instruction. 

The study found Blocks4DS was rated as engaging and useful 

for learning about BST. These findings also suggest that 

students self-identified as non-native English-speakers respond 

more positively to features such as the block-based canvas, as 

their demographic group was the only one that preferred 

Blocks4DS over pseudo-code. It was also observed that Female 

students rated the block-based canvas usefulness highly. This 

was true regardless of students’ prior experience with text-

based programming languages like Java and C++. Hence, 

TABLE II 
BETWEEN-GROUPS: SUMMARY OF RESULTS 

Variable Ctrl. M, SD Intv. M, SD p Test 

S2-post-

assessment 4.5, 1.0 4.1, 1.4 0.28 

Mann-Whitney 

U 

W-improvement 3.5, 1.3 3.0, 1.73 0.31 t-test 

 

 

TABLE III 

WITHIN-GROUPS: SUMMARY OF RESULTS 

 

Group S1.M, SD S2. M, SD p Test 

Control 1.0, 1.0 4.5, 1.0 <0.01 Wilcoxon Signed Rank 

Intervention 1.1, 1.2 4.1, 1.4 <0.01 Wilcoxon Signed Rank 

 



TE-2020-000394 

8 

 

1 

Blocks4DS can be a good tool to support diversity in CS 

courses. 

VI. FUTURE WORK 

Following this study, and using the design concept of 

Blocks4DS, a wide horizon for future work appears. Given how 

positively Blocks4DS was perceived in the instruction of the 

BST, future studies can explore using a BBP environment to 

teach graphs, or more advanced data structures (e.g., Fibonacci 

heaps, Radix trees). Moreover, from a Human-Computer 

Interaction (HCI) perspective, future studies can involve 

affordances and features’ elucidation for non-novice CS 

students. BBP technologies and visual languages have not been 

fully explored in undergraduate contexts, meaning research and 

design opportunities on how to build tools like Blocks4DS for 

upper-level courses.  

For this study, the authors conducted their analysis 

concerning one of many characteristics, at a time, to group 

participants. The sample population was targeted with three 

primary independently considered demographic lenses: gender, 

race-ethnicity, and native language. Future research will 

consider intersectionality between characteristics to understand 

how students may perceive educational environments like 

Blocks4DS: For example, there might be different perceptions 

of white women than non-white women.  

This study found positive perceptions coming from non-

native English speakers. Future research will also explore how 

visual technologies like Blocks4DS can leverage language 

barriers with text-based programming languages. 

The authors believe their research can help students in the 

understanding of advanced CS concepts, as it can help 

broadening CS to those who are not from English-centric 

locations. 

VII. LIMITATIONS 

The study was designed to be asynchronous and online due to 

the pandemic caused by COVID-19. Although the data 

collection went through with no issues, the authors believe that 

the lack of interaction with their participants limited their 

observations on how participants interacted with the tool and 

responded to the proposed assessments. Nevertheless, the 

authors were limited due to the circumstances existing 

nowadays. 

ACKNOWLEDGMENT 

The authors extend their gratitude to the students who 

actively participated in this study; to Mr. Dhrubo Paul for taking 

part in the early brainstorm on the methodological design; and 

to Mr. Joshua Fox for helping in the recruitment of participants 

from his courses. Finally, the authors also thank the CS Faculty 

and Doctoral scholars who assisted in the revision of the video-

lectures used in the study.  

 

 

 

 

REFERENCES 

 

[1] D. F. Almanza-Cortés, M. F. Del Toro-Salazar, R. A. Urrego-Arias, P. 

G. Feijóo-García, and F. De la Rosa-Rosero, “Scaffolded Block-based 
Instructional Tool for Linear Data Structures: A Constructivist Design 

to Ease Data Structures’ Understanding,” International Journal of 

Emerging Technologies in Learning (iJET), vol. 14, no. 10, p. 161, 2019.  
[2] B. V. Almende, “vis.js community edition *,” vis.js. [Online]. Accessed 

on: Dec. 15, 2020. Available: http://visjs.org/. 

[3] P. Bille and I.L. Gørtz, "Immersive Algorithms: Better Visualization 
with Less Information," Proceedings of the 2017 ACM Conference on 

Innovation and Technology in Computer Science Education 2017, pp. 

80-81. 
[4] J. Blanchard, C. Gardner-McCune and L. Anthony, "Effects of Code 

Representation on Student Perceptions and Attitudes Toward 

Programming," 2019 IEEE Symposium on Visual Languages and 
Human-Centric Computing (VL/HCC), 2019, pp. 127-131, doi: 

10.1109/VLHCC.2019.8818762. 

[5] J. Blanchard, C. Gardner-McCune, and L. Anthony, “Dual-Modality 
Instruction and Learning,” Proceedings of the 51st ACM Technical 

Symposium on Computer Science Education, 2020, pp. 818-824, doi: 

10.1145/3328778.3366865 
[6] S. Buchanan, B. Ochs, and J. LaViola Jr J., "CSTutor: a pen-based tutor 

for data structure visualization," Proceedings of the 43rd ACM technical 

symposium on Computer Science Education 2012, pp. 565-570. 
[7] T.A. Budd, "An active learning approach to teaching the data structures 

course," Proceedings of the 37th SIGCSE technical symposium on 
Computer science education 2006, pp. 143-147. 

[8] D. Burlinson, M. Mehedint, C. Grafer, K. Subramanian, J. Payton, P. 

Goolkasian, M. Youngblood, and R. Kosara, "BRIDGES: A system to 
enable creation of engaging data structures assignments with real-world 

data and visualizations," Proceedings of the 47th ACM Technical 

Symposium on Computing Science Education 2016, pp. 18-23. 
[9] J.H. Cross, T.D. Hendrix, J. Jain, and L.A. Barowski, "Dynamic object 

viewers for data structures," Proceedings of the 38th SIGCSE technical 

symposium on Computer science education 2007, pp. 4-8. 
[10] H. Danielsiek, W. Paul, and J. Vahrenhold, "Detecting and 

understanding students' misconceptions related to algorithms and data 

structures," Proceedings of the 43rd ACM technical symposium on 
Computer Science Education 2012, pp. 21-26. 

[11] P. G. Feijóo-García, S. Wang, J. Cai, N. Polavarapu, C. Gardner-

McCune and E. D. Ragan, "Design and evaluation of a scaffolded block-
based learning environment for hierarchical data structures," 2019 IEEE 

Symposium on Visual Languages and Human-Centric Computing 

(VL/HCC), 2019, pp. 145-149, doi: 10.1109/VLHCC.2019.8818759. 
[12] N. Fraser, "Ten things we've learned from Blockly," 2015 IEEE Blocks 

and Beyond Workshop (Blocks and Beyond) 2015, pp. 49-50. 

[13] D. Galles, “Data Structure Visualizations,” Data Structure Visualization. 
[Online]. Available: https://www.cs.usfca.edu/~galles/visualization/.  

[14] S. Grissom, M.F. McNally, and T. Naps, "Algorithm visualization in CS 

education: comparing levels of student engagement," Proceedings of the 
2003 ACM symposium on Software visualization 2003, pp. 87-94. 

[15] P.J. Guo, "Online python tutor: embeddable web-based program 

visualization for cs education," Proceeding of the 44th ACM technical 
symposium on Computer science education 2013, pp. 579-584. 

[16] M. Guzdial, "Learner-centered design of computing education: Research 

on computing for everyone," Synthesis Lectures on Human-Centered 
Informatics, Vol. 8, 6 2015. 

[17] C.D. Hundhausen, S.A. Douglas, and J.T. Stasko, "A meta-study of 

algorithm visualization effectiveness," Journal of Visual Languages & 
Computing, Vol. 13, 3 2002, pp. 259-290. 

[18] K. Karpierz and S.A. Wolfman, "Misconceptions and concept inventory 

questions for binary search trees and hash tables," Proceedings of the 
45th ACM technical symposium on Computer science education 2014, 

pp. 109-114. 

[19] R. Lister, "COMPUTING EDUCATION RESEARCH Programming, 
syntax and cognitive load," ACM Inroads, Vol. 2, 2 2011, pp. 21-22. 

[20] A. Luxton-Reilly, I. Albluwi, B.A. Becker, M. Giannakos, A.N. Kumar, 

L. Ott, J. Paterson, M.J. Scott, J. Sheard, and C. Szabo, "Introductory 
programming: a systematic literature review," Proceedings Companion 

of the 23rd Annual ACM Conference on Innovation and Technology in 

Computer Science Education 2018, pp. 55-106. 
[21] I.S. MacKenzie, Human-computer interaction: An empirical research 

perspective, Newnes, 2012. 



TE-2020-000394 

9 

 

1 

[22] D.J. Malan and H.H. Leitner, "Scratch for budding computer scientists," 
ACM Sigcse Bulletin, Vol. 39, 1 2007, pp. 223-227. 

[23] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, "The 

scratch programming language and environment," ACM Transactions on 
Computing Education (TOCE), Vol. 10, 4 2010, pp. 1-15. 

[24] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, "Learning computer 

science concepts with scratch," Computer Science Education, Vol. 23, 3 
2013, pp. 239-264. 

[25] P. Moraes and L. Teixeira, "Willow: A Tool for Interactive Programming 

Visualization to Help in the Data Structures and Algorithms Teaching-
Learning Process," Proceedings of the XXXIII Brazilian Symposium on 

Software Engineering 2019, pp. 553-558. 

[26] T.L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. 
Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and 

others, "Exploring the role of visualization and engagement in computer 

science education,", 2002, pp. 131-152. 
[27] T.L. Naps, J.R. Eagan, and L.L. Norton, "JHAVÉ—an environment to 

actively engage students in Web-based algorithm visualizations," 

Proceedings of the thirty-first SIGCSE technical symposium on 
Computer science education 2000, pp. 109-113. 

[28] L. Porter, D. Zingaro, C. Lee, C. Taylor, K.C. Webb, and M. Clancy, 

"Developing course-level learning goals for basic data structures in 

CS2," Proceedings of the 49th ACM technical symposium on Computer 

Science Education 2018, pp. 858-863. 

[29] L. Porter, D. Zingaro, S.N. Liao, C. Taylor, K.C. Webb, C. Lee, and M. 
Clancy, "BDSI: A validated concept inventory for basic data structures," 

Proceedings of the 2019 ACM Conference on International Computing 
Education Research 2019, pp. 111-119. 

[30] T.W. Price, Y. Dong, and D. Lipovac, "iSnap: towards intelligent 

tutoring in novice programming environments," Proceedings of the 2017 
ACM SIGCSE Technical Symposium on computer science education 

2017, pp. 483-488. 

[31] A. Repenning, "Moving beyond syntax: Lessons from 20 years of blocks 
programing in AgentSheets," Journal of Visual Languages and Sentient 

Systems, Vol. 3, 1 2017, pp. 68-89. 

[32] C.A. Shaffer, M. Akbar, A.J.D. Alon, M. Stewart, and S.H. Edwards, 
"Getting algorithm visualizations into the classroom," Proceedings of the 

42nd ACM technical symposium on Computer science education 2011, 

pp. 129-134. 
[33] C.A. Shaffer, M. Cooper, and S.H. Edwards, "Algorithm visualization: a 

report on the state of the field," Proceedings of the 38th SIGCSE 

technical symposium on Computer science education 2007, pp. 150-154. 
[34] C.A. Shaffer, M.L. Cooper, A.J.D. Alon, M. Akbar, M. Stewart, S. 

Ponce, and S.H. Edwards, "Algorithm visualization: The state of the 

field," ACM Transactions on Computing Education (TOCE), Vol. 10, 3 
2010, pp. 1-22. 

[35] D. Weintrop and U. Wilensky, "To block or not to block, that is the 

question: students' perceptions of blocks-based programming," 
Proceedings of the 14th international conference on interaction design 

and children 2015, pp. 199-208. 

[36] D. Weintrop and U. Wilensky, "Bringing blocks-based programming 
into high school computer science classrooms," Annual Meeting of the 

American Educational Research Association (AERA), Washington DC, 

USA 2016. 
[37] D. Zingaro, C. Taylor, L. Porter, M. Clancy, C. Lee, S. Nam Liao, and 

K.C. Webb, "Identifying student difficulties with basic data structures," 

Proceedings of the 2018 ACM Conference on International Computing 
Education Research 2018, pp. 169-177. 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 



TE-2020-000394 

10 

 

1 

Pedro G. Feijóo-García received the B.Sc. degrees in systems 

& computing engineering (2013) and mechanical engineering 

(2014), and the M.Sc. degree in systems & computing 

engineering (2015) from Universidad de los Andes, Colombia. 

He also received a Grad. Cert. in university teaching from 

Universidad El Bosque, Colombia, in 2018. 

He is currently a Core-Faculty Assistant Professor at the 

Program of Systems Engineering, College of Engineering, at 

Universidad El Bosque, Colombia. He is also a Fulbright 

Doctoral Scholar pursuing his doctoral studies in human-

centered computing at the University of Florida, U.S.A., under 

the supervision of Prof. Benjamin Lok, Ph.D. in the Virtual 

Experiences Research Group (VERG). His current research 

interests include intelligent virtual agents, culturally relevant 

computing, and computer science education. 

 

Amanpreet Kapoor received the B.Tech. degree in computer 

science and engineering (2015) from Jaypee University of 

Engineering and Technology, India, and his M.Sc. in computer 

science (2016) from University of Florida, U.S.A. 

He is currently an Instructional Assistant Professor of 

Computer Science at the Department of Engineering Education 

and an Affiliate Instructional Assistant Professor in the 

Computer and Information Science and Engineering 

Department, Herbert Wertheim College of Engineering, 

University of Florida, U.S.A. He is also a Research Affiliate at 

the Engaging Learning Lab where he works with Dr. Christina 

Gardner-McCune on projects that aim to foster students' 

formation of computing identities and improve the 

employability of computing graduates. His current research 

interests include computing education, informal learning 

environments, and identity formation.  

 

Christina Gardner-McCune received the B.Sc. degree in 

computer engineering (2002) from Syracuse University, 

U.S.A., the M.Sc. degree in computer science (2005), and the 

Ph.D. in computer science (2011) from the Georgia Institute of 

Technology, U.S.A. 

She is currently an Associate Professor in the Computer and 

Information Science and Engineering Department, Herbert 

Wertheim College of Engineering, University of Florida, 

U.S.A. She is the director of the Engaging Learning Lab and 

leads projects on computer science education research, artificial 

education research, educational technology design, curriculum 

development, and computer science professional identity 

development. 

 

Eric Ragan received the B.Sc. degrees in mathematics and 

computer science (2007) from Gannon University, U.S.A., the 

M.Sc. degree in computer science and applications (2010), the 

Grad. Cert. in human-computer interaction (2011) and the 

Ph.D. in computer science (2013) from Virginia Tech, U.S.A. 

He is currently an Assistant Professor in the Computer and 

Information Science and Engineering Department, Herbert 

Wertheim College of Engineering, University of Florida, 

U.S.A. He is the director of the Interactive Data and Immersive 

Environments (INDIE) Lab and leads projects focused on the 

design and evaluation of applications and techniques that 

support effective interaction and understanding of data, 

information, and virtual environments. His current research 

interests include information visualization, virtual reality, 3D 

interaction, visual analytics, and explainable artificial 

intelligence (AI). 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 


