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Figure 1: A to-scale image demonstrating the increase in undetectable technique usage when users do not know it is being used.
The blue hand represents the average first-detected scale when users are not aware of the technique, while the orange hand
represents the threshold derived from classical methods (in which users know about the technique).

ABSTRACT

Input remapping techniques have been widely explored to allow
users in virtual reality to exceed both their own physical abilities,
the limitations of physical space, or to facilitate interactions with
real-world objects. Often considered is how these techniques can
be applied to achieve maximum utility, but still be undetectable to
users to maintain a sense of immersion and presence. Existing psy-
chophysical methods used to determine these detection thresholds
have known limitations: they are highly conservative lower bounds
for detection and do not account for complex usage of the technique.
Our work describes and evaluates a method for estimating detection
that reduces these limitations and yields meaningful upper bounds.
We present the findings of our work where we apply this method
to a well-explored hand motion scaling technique. In wholly un-
aware cases, we determined that users may detect their hand speed
as abnormal at around 3.37 times the normal speed, compared to
a scale factor of 1.47 that was estimated using traditional methods
when users knew the motion scaling was occurring. A considerable
number of participants in unaware cases (12 of 56) never detected
their hand speed increasing at all, even at the maximum scale factor
of 5.0. The study demonstrates just how conservative the thresholds
generated by traditional psychophysical methods can be compared
to detection during naive usage, and our method can be modified
and applied easily to other techniques.
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1 INTRODUCTION

A wide variety of interaction techniques exist to support common
tasks such as selection, manipulation, and travel in virtual reality
(VR). An established question for implementing 3D interaction tech-
niques is whether the interaction should maintain realism compared
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to the real world and intentionally non-realistic techniques might be
preferable [7]. For example, variations of raycasting [4,35,57] are
commonly adopted methods of selection and manipulation despite
lacking realism, and joystick-based techniques are frequently used
for travel [10,44]. While these techniques have clear benefits for
practicality and convenience for many forms of applications, users
often prefer techniques that maintain higher similarity to real-world
interactions—such as those using real hand interaction [28] or phys-
ical walking [55]. Realistic and natural forms of interaction are easy
to learn since their metaphors are used in the real world (i.e., if you
know how to reach or walk in the real world, doing so in VR is
trivial) and can increase the user’s sense of presence [28,32,55].

However, the impact of practical constraints persists in adapting
natural interaction techniques in VR. External factors like physical
room size, occlusion by other objects, or object weight can affect
whether a desired action will be possible. And just as actions in the
real world are limited by their personal physical characteristics and
motor abilities, certain forms of interaction in VR can be challenging
while preserving high-fidelity interaction. In the context of reaching
and grabbing an object, if a user’s virtual hands perfectly matched
their physical hands, these same limitations would carry over into
the virtual world.

Thankfully, in VR we are permitted to break the rules of reality
and modify the parameters of the virtual world to overcome some
of these limitations while still maintaining a high level of realism
for interaction metaphor. In this research, we focus on the study of
techniques using input remapping, which modifies the translation
of a user’s physical movements into a different set of movements
in the virtual world. For example, hand remapping is when these
translations are applied to a user’s hands so that the motion of a
virtual hand in VR does not strictly match the movement of the
user’s physical hand. One such remapped hand technique is Go-
Go [41], a generalized reaching technique that applies an increasing
offset as a user extends their physical reach. Similar techniques also
exist to support natural locomotion in VR by adjusting how a user’s
head is mapped (e.g., [43]).

However, seeing one’s hand extend so far across a room and
being able to tell your view is rotated as your walk are not natural
by any means, and in cases where immersion and believability are
important (such as gaming or training scenarios), it is important for



these augmented interactions to feel natural. Though humans can
tolerate a certain amount of proprioceptive drift [54] before they
notice a mismatch between the positions of their real and virtual
hands or their real and virtual movements, at some point it becomes
intolerable. Thus, limits are often imposed on the techniques which
keep them within undetectable or unnoticeable ranges. These limits
or detection thresholds can be estimated by psychophysical methods
such as two-alternative forced-choice (2AFC) or Yes/No tasks [22,
30]. These methods have been widely applied to a variety of input
remapping techniques, and often consider how other factors such as
learning over time [31], the directionality of movement [17,60], or
hand representation [38] can effect detection.

However, for multiple reasons, these methods produce highly
conservative thresholds that may be more limiting than what would
be detected in a real application used by naive users [5,17,50,60,61].
Namely, users in these studies are made aware of the techniques
they are evaluating while end users of a VR application may not
know all the technical underpinning of their software. Additionally,
the tasks used to determine these thresholds are focused solely on
observing for the presence of a technique rather than taking place in
more complex scenarios with a wider range of user goals.

Some work has recently attempted to use indirect means via phys-
iological data (such as EEG, ECG, EDA, and RSP in conjunction
with interaction data) to predict detection and identified a high vari-
ance in detection based on this data [19]. A notable limitation of
this work was also the awareness of the technique occurring, even
if the direct intervention found in classical psychophysical meth-
ods was not present. Other methods [48] assess techniques not to
determine ranges of detectable intensities, but those that preserve im-
mersion, though in those cases participants still experience a direct
measurement intervention that is not present with real application
usage.

Our work helps bridge this gap and seeks to address these biases
of prior detection studies as they relate to the usage of input remap-
ping techniques. In the presented research on detection, we study
methodological differences using an experiment of a hand remapping
technique that has been previously evaluated with a psychophysical
method (scaled movement [17]). We address the research question:
How much further can a hand be remapped without detection when
a user does not know a hand remapping technique is being applied?

This allows us to provide strong upper-bound limits for detection
in cases that may apply more broadly to the usage of natural inter-
actions in real applications. We describe our method to determine
when a user has detected that their hand has been remapped subtly
and indirectly, and control for the aforementioned biases. We apply
the method to a gain-based, fast-scaled hand movement technique
due to its robustness under complex motion and utility in extending
auser’s reach [17,61], though future work may apply the method
to other techniques. We present the findings of our experiment,
including detection rates for different amounts of prior information
provided to users, comparisons to novel threshold analysis with our
task (as well as previously understood thresholds), and implications
for the body of detection-related work as it pertains to interaction
techniques in VR. We find that remapping may be undetected even
at values 180%—230% larger than the detection threshold when users
are not aware it is happening.

2 RELATED WORK

We first provide an overview of the wide range of uses for input
remapping as a whole, including a discussion of head-based and
hand-based techniques. We then cover traditional psychophysical
detection studies for remapping techniques (2AFC and Yes/No),
common limitations of these studies, and alternative detection meth-
ods for similar techniques.

Table 1: A selection of work using psychophysical methods, with

techniques and thresholds.

Technique

Threshold Value

Horizontal Hand Scaling [17]
Vertical Hand Scaling [17]
Depth Hand Scaling [17]

3D Hand Scaling [17]
Horizontal Hand Offsetting [5]
Vertical Hand Offsetting [5]
Depth Hand Offsetting [5]
Horizontal Hand Warping [61]
Vertical Hand Warping [61]
Gain-based Hand Warping [61]
Translational Walking Gain [50]

[0.809, 1.310]

[0.869, 1.520]

[0.779, 1.380]

[0.758, 1.430]

[Left 10.27 cm, Right 9.40cm]
[Down 13.37 cm , Up 12.83cm]
[Close 7.83cm, Far 13.25cm]
[Left 4.5 deg, Right 4.5 deg]
[Down 4.5 deg, Up 4.5 deg]
[0.88, 1.07]

[14% slower, 28% faster]

22m Circle
[5.57 deg Right, 4.68 deg Left]

Curvature Gain [50]
Strafing Walking Gain [60]

2.1 Uses of Remapped Interaction Techniques in VR

While our work utilizes a hand remapping technique, it is work
exploring both these techniques as well as those that remap the
motions of other body parts (e.g., a user’s head) as they use the same
psychophysical methods.

2.1.1 Head-based Techniques

Input remapping has been applied to a user’s virtual head (or view),
both regarding its rotation and positioning. These are often used
to support travel techniques or help with comfort and search by
reducing the physical head movement needed to transform a user’s
virtual view.

These have largely been leveraged for purposes of travel, such as
to enable redirected walking [29,37,43]. Three main forms of these
techniques are translational gain, rotational gain, curvature gain,
and bending gain [37]. Translation gain amplifies or reduces the
translational movement of a user’s head in VR [37]. For example,
with a gain factor of 2.0 a user who walked 1 meter forward in
the real world would have virtually moved 2 meters. Conversely,
the same physical movement under a gain factor of 0.5 would have
yielded a virtual movement of 0.5 meters. Modifications to the gain
factor and direction can also be modified based on the predicted
travel direction, as is used by the Seven League Boots metaphor [29].
Similarly, rotational gain scales the amount of virtual rotation a user
experiences based on their real-world rotation [37]. Curvature gain
applies a virtual rotation to the user’s view as they translate position
in the real world, with the goal being to have them correct the virtual
rotation by physically rotating in the opposite direction [37]. The
result is redirection onto a circular physical path, while the user
navigates a linear virtual path. Bending gain works similarly to
curvature gain, but applies rotation to an already curved path [37].
Another gain-based technique, strafing gain [60], exists which works
similarly to curvature gains. However, rather than rotate the user’s
view as they perform translational real-world movements, a small
horizontal displacement is applied. This causes a physical correction
in the opposite direction, which redirects them onto a diagonal path
which has the benefit of maintaining a consistent physical forward
direction.

Different head-based techniques with the explicit goals of increas-
ing comfort and enabling better search have also been developed.
Bolte et al. applied amplified head rotations to the pitch axis of a
user’s head (i.e., raising or lowering your head to look up and down)
which supports easier vertical search since the user does not need
to rotate their head as much [6]. This works by adding additional
virtual rotation when a user physically rotates so the visual effect is
a larger turn. Ragan et al. [42] later explored rotations in the yaw
axis (i.e., turning your head left and right), as well as learning effects
of these techniques with consideration for display type and allowed
amount of physical turning. Automated head rotations can also be



applied to guide users back towards a more comfortable neutral
position while maintaining a rotated virtual view [47].

2.1.2 Hand-based Techniques

In the real world, hands are a common means through which humans
manipulate their physical environment (e.g., grabbing and moving
objects), communicate with others (e.g., pointing and communi-
cating gesturally, etc.), and interact with technology (e.g., typing
on a keyboard or using mobile touchscreen devices). Given their
widespread use in the real world, VR researchers have sought to
develop techniques that maximize natural hand-based interactions
in virtual environments. Many methods for hand-based interactions
in VR rely on hand remapping. These techniques can be used to
support techniques such as augmented reaching [41] or haptic retar-
geting [3], which can increase user ability, immersion, and overall
satisfaction using VR applications [28].

Hand remapping has often been applied to support object selec-
tion and manipulation. Techniques such as Go-Go [41] virtually
extend a user’s reach by increasing the movement of a hand as the
user physically extends their arm. This supports natural reaching
and grabbing for selection and manipulation of objects from afar.
Other techniques, such as Precise and Rapid Interactions through
Scaled Movement (PRISM) support precision in object manipulation
by changing the speed at which a selected object moves based on
the user’s hand speed [21]. These techniques (and others) can also
be combined via chaining them sequentially [2].

Another benefit of remapping hands is that they can be used
to reduce fatigue (e.g., [20,36]). An effect of using natural input
methods with arms and hands is the “gorilla arm” effect where
muscle soreness increases over time [27]. Techniques like Erg-
O use space partitioning methods to ideally modify a user’s hand
speed to different values depending on proximity to known areas
of interest [36]. On the other hand, Ownershift simply rotates the
user’s virtual shoulder position upward so users can reach interfaces
in front of their head without the need to fully move their arm
forward [20].

Hand remapping can also be used to change movements for train-
ing and accessibility purposes. Rather than mapping all reachable
physical locations to unique virtual locations, SnapMove maps all
physical movements to a single preset virtual path [13]. While this
mapping is perhaps not obviously interesting, it has been demon-
strated by prior work that users will gradually align their positioning
to match that of the avatar, a self-avatar follower effect (SAFE) [25].
If spatial discrepancies exist between a user’s physical pose and
that of their avatar, they will attempt to minimize it during move-
ment. SnapMove leverages this phenomenon to gradually make
users match their movements to that of their avatar. Lilija et al. has
also used SAFE to train motor skills [33]. By providing a corrected
virtual hand location, a user’s physical movements better matched a
desired physical path. Similarly, models such as the minimum jerk
motion model can be applied to normally mapped hands as well as
remapped hands to predict when users will reach a target location
which can be used to optimize parameters of different techniques to
better support reaching [23].

The inclusion of haptic feedback has strong positive impacts on a
user’s sense of presence in VR [28], and remapping has been applied
to support haptic interactions with passive haptic props. Azmandian
et al. identify three main classes of warping techniques used to
align virtual objects with their corresponding physical prop: world
warping (rotating or translating the virtual space to align the objects),
body warping (manipulating the user’s movements or positioning via
remapping to align the objects), and hybrid warping (using both body
and world warping) [3]. Space partitioning methods that modify the
positioning of a virtual hand can be used to support haptics, with
physical locations of objects as inputs [9]. Based on the mismatch
between the virtual object and the prop, the virtual space is warped in

order to move the virtual hand to the prop as the user reaches it. Han
et al. explored translational and interpolative methods of aligning
props [26]. In translational shifting, the virtual hand is linearly offset
on the horizontal plane based on the difference between the virtual
and real objects. During interpolated reach, the virtual and real
hands begin at the same location, but an offset is gradually applied
toward the virtual object.

2.1.3 Summary

Input remapping techniques are used for a wide range of purposes,
of primary interest to this work are head-based and hand-based
techniques. They can be used to overcome real-world limitations,
either due to physical space or user ability, and can increase comfort
and performance in virtual environments.

2.2 Detection of Remapped Interaction Techniques

While the techniques previously discussed highlight some common
uses for input remapping techniques, when used to induce a large
enough mismatch between a user’s physical and virtual movements
they can become distracting or confusing. An issue for techniques
that modify a user’s head rotations is an increase in simulator sick-
ness [16] (e.g. curvature and rotation gains or amplified head rota-
tions). Regarding hand techniques, there is evidence that even simple
techniques like Go-Go [41] and PRISM [21] are less usable than a
regular hand at certain higher levels of intensity [59]. For purposes
of immersion and perceived realism, we also want to maintain a
sense of virtual body ownership. Discontinuities and mismatches in
a user’s virtual and real bodies can decrease virtual body ownership
[53], though a certain amount of mismatch can be tolerated [8].

To address these issues that can arise from remapped technique
usage, psychometric detection studies are often performed to de-
termine detection thresholds for each technique. By limiting the
“intensity” of the technique to undetectable ranges, we can help a VR
application user maintain a better sense of ownership and control.

2.2.1 Detection Methods for VR Interaction Techniques

VR researchers have adapted various methods from psychophysics
in order to evaluate their own novel interaction techniques. While
psychophysics has developed more robust methods to assess stimulus
detection [58], the evaluation of VR interactions has largely used
the classical methods. In these classical methods, two types of
tasks can be used: adjustment tasks where users directly modify
a stimulus until they cannot detect it, or classification tasks where
users are presented a fixed set of stimuli and asked some binary
question about it [18]. Adjustment methods are not well suited for
evaluation with naive user but can be effective in calibrating a system
by someone with technical knowledge (e.g., an experimenter) [18].
Therefore, different types of classification tasks have been used
instead. Other factors, such as trial ordering within a task (e.g.,
increasing/decreasing, randomized, or stair-cased [14]) may also
impact the estimated threshold values.

The main type of classification used for assessing the detection of
different VR techniques is the two-alternative forced-choice (2AFC)
methodology [18,22]. In this design, users are presented with a
technique, asked to perform some task while using it (e.g., reaching
for an object), then are forced to classify it as one of two options
presented to them (e.g., saying that their hand moved to the left
or right). Intensities of the technique are varied, and responses to
the 2AFC question are then fit to a psychometric sigmoid curve
(e.g., the logistic function) which predicts when users will classify
each intensity as one of the options. Threshold points can then
be determined from this curve, with the 75% detection value and
25% value representing the upper and lower values of “undetectable”
technique values.

Another method, Yes/No, instead asks users to state “Yes” if they
thought the technique was present or “No” if not [18]. Yes/No meth-



ods are useful when concerned with the presence of a stimulus, but
they can add some additional bias. [18] Participants may determine
their own criteria for cases where they are uncertain (e.g., always
defaulting to a “No” or “Yes” if there is any uncertainty). However,
this can also apply to 2AFC. However, in cases such as [5] where
multiple factors (6 directions) were simultaneously assessed using a
Yes/No method simplifies what is being asked to participants. Other
biases also exist. For instance, Abrahamyan et al. [1] identified
that subjects in psychophysical studies may adopt strategies that are
often reinforced over time if they receive feedback.

While these traditional psychophysical methods are beneficial
for establishing conservative ranges for technique usage, there are
some limitations to the methods that suggest that higher tolerances
would be present in more complex and applied tasks. Primarily, prior
work examining detection for hand remapping techniques typically
introduces the technique to the user in a practice session and makes
it directly known that their hand placement is going to be modified
in the study. This is necessary for psychophysical methodologies as
users must comprehend what it is they will be observing to make
accurate judgments, but in real applications, this awareness may not
be present. This can be understood as a bias of awareness. These
methods also place a large emphasis on paying explicit and direct
attention to a user’s hand during simple and limited movements
which induces a large bias of vigilance.

Other methods have used participant think-aloud (i.e., asking par-
ticipants to verbalize their thinking during a study) in conjunction
with guided interviews to estimate if a technique has been detected
by users [52]. Questionnaires have also been used by having par-
ticipants rate their agreement with certain statements (with some
relating to the technique being evaluated) (e.g., [51] or [45]). How-
ever, in both cases, this is only useful for determining if a user
detected a technique, not necessarily when they noticed, which is
important for determining a threshold of detection. Nevertheless,
these methods are more subtle than psychophysical methods which
repeatedly and directly ask participants to examine a stimulus.

Alternative methods and methods besides detection have also
been evaluated. Reinforcement learning with adaptive staircase
has been demonstrated to produce useful detection thresholds [40].
Rather than investigate detection thresholds, Schmitz et al. [48]
instead investigated thresholds of immersion, or ranges of remap-
ping that maintain a user’s sense of immersion regardless of if the
technique is detected. In this methodology, participants are directly
asked to report when something “feels strange or unnatural” while
remapping is unknowingly applied. In this method, participants lack
awareness of the assessed technique but are still vigilant toward
detecting unexpected changes. In other cases, tolerable remapping
has been explored [11].

2.2.2 Detection Thresholds

The previously discussed methods have been applied often to gen-
erate thresholds for a range of techniques (a subset are shown in
Table 1). Work has also considered other factors that may influence
detection with 2AFC studies. Ogawa et al. [38] examined the effects
that an abstract hand representation has on detection compared to
a realistic one and found that the abstract hand produced less de-
tectable thresholds. Related, avatar representation can also cause
users to change their movement behaviors in VR; more realistic
avatars can cause users to avoid passing through virtual objects [39].
Different avatars also induce different levels of presence based on
gender [49].

In an active approach to decreasing detection, change blindness
has also been leveraged [62]. Moderately sized instantaneous shifts
of a hand can be applied during a blink, yet remain undetected to
users. This can also be applied in conjunction with a continuous tech-
nique while the eyes are open for maximum redirection. Effects of
directionality regarding both physical movement [12] and technique

1.75m x 1.75m

Figure 2: Top: the user’s view in the experiment. Their virtual hand
is represented as the controller they were holding. Bottom Right: a
perspective view of the environment used in the experiment. Bottom
Left: A top-down view of the environment with dimensions.

direction [5, 17] have also been explored. Electrical stimulation of
the arm can also be used to decrease detection rates, though this only
had a significant effect in female participants [39].

Distraction [61] and task complexity [17] have also been investi-
gated for effects on detection, with distraction proving to increase
the undetectable range of detection while task complexity did not.
Work by Debarba et al. [15] has also used hand remapping to pur-
posefully increase the difficulty of a task (which also has potential in
rehabilitative contexts). In their experiment, participants were less
likely to detect a remapped hand if the gains applied made the task
easier. Additionally, over time user sensitivity to remapping but may
not change, but their own behavior may change to account for the
technique [31]. Users can also adapt to the use of techniques over
time, becoming more accurate with their movements or more com-
fortable as the technique changes [26,46]. Additionally, handedness
and direction of remapping can impact detection [24].

3 EXPERIMENT
3.1 Research Goals

As noted in our discussion of related work, existing psychophysical
methods are limited in their application to VR interactions for multi-
ple reasons. Most significantly, as it relates to hand remapping, they
impose a higher-than-normal amount of focus on a user’s hand than
what occurs in regular application or technique usage. They also
instill prior knowledge of the technique in a user that may not be
present when the technique is used outside an experimental context.
Our work seeks to address these biases of prior detection studies
and address the primary research question: How much further can
a hand be remapped when a user does not know a hand remapping
technique is being applied?

As the basis for the study, we designed an object search and
manipulation task to provide the context for using the interaction
technique to move objects around in VR during the experiment.
The task involved pattern matching with a sequence of trials that
displayed different configurations of colored objects, and partici-
pants had to move objects to match the patterns (see Figure 2). The
experimental manipulations were applied over time to study detec-
tion. Because participants were only manipulating virtual objects,
this study uses the virtual representation of a controller rather than
a realistic hand. We do note that hand representation can affect
detection [38].

3.2 Independent Variables

We designed a between-subjects experiment with one independent
variable at three levels controlling for the experiment instructional



biases (BIAS) present in traditional psychophysical methods. We
note that our study of bias refers to bias resulting from the re-
search method rather than personal or individual cognitive biases
of human-subjects participants. The degree of methodological bias
was manipulated by providing different sets of instructions to partic-
ipants at the beginning of the experiment, with the key difference
being whether the instructions explicitly informed participants they
should be looking for something to change during the trials. The
levels of bias examined are:

e LOW: Participants were not told their hands would be
remapped. This is intended to be representative of applica-
tion usage by users naive to the technique.

* MED: Participants were not told their hand is remapped, and
they are told there may be intentional features of the study we
were not telling them about but they should look for them. This
is intended to instill more vigilance in participants in order
to have them report their remapped hand movements more
frequently.

* HIGH: Participants were made aware of the technique being
applied, and were directly asked at the end of each trial if their
hand felt “normal” or “not normal”. This matches a traditional
Yes/No design.

3.3 Measures
The experiment studies how the levels of BIAS affect:

* Detection Rates: how frequently participants report a
remapped hand (regardless of when)

» Earliest Detected Values: the technique intensity at which
participants first report a remapped hand

Specifically, we evaluated the effects of BIAS on the same scaled-
movement technique described in [17], which is also similar to the
gain-based technique described in [61]. This technique applies a vari-
able scale factor to the user’s hand in order to accelerate movements
and consequentially increase reach (see Figure 3). In the technique,
a user’s virtual hand is placed according to Algorithm 1. We ap-
proximate the scale origin as a location 30 cm below the user’s head
location. This technique supports generic, target-agnostic reaching
which is beneficial in cases where users want to select or manipu-
late an object out of their natural reaching distance and has known
thresholds derived from an experiment using classical methods [17]
we can compare to. We also conduct our own threshold analysis
of a classical method (our HIGH bias condition) to verify these
thresholds hold for our modified task and scale order. Specifically,
the set of scale factors utilized was:

¢ Scale Factor: 1.0,1.1,1.2,1.3,14,1.5,1.6,1.7,1.8,1.9, 2.0,
2.2,2.4,26,2.8,3.0,3.33,3.67,4.0,4.5,5.0

We begin with small increments between scale factors close to 1.0,
and increase this gap between higher scale factors.

3.4 Hypotheses

As it relates to the scaled movement technique, our experimental
hypotheses are as follows:

¢ H1 (Detection Rates): HIGH > MED > LOW
¢ H2 (Detection Values): LOW > MED > HIGH

In H1, we expect to see more participants detect the technique when
told to look for something unexpected (i.e., their remapped hand).
Necessarily, all participants in the HIGH case will report their hand
speed being abnormal. In H2, we expect the reported scale factors
to be highest when no prior knowledge of the technique was given,
followed by the scales reported when participants are vigilant. In
our HIGH case, we expect to see higher sensitivity (lower scales
being detected more often).

Algorithm 1 Scaled Hand Movement

Input: the scale origin O, the user’s real hand position P, the scale
factor s

QOutput: the user’s scaled virtual hand position P,
Jr < O—P. > Get the offset between the origin and real hand.
P, O+sx Jr > Add the scaled offset to the origin.

' &
1
30 cm: -

PI‘ ,——‘ o
22-"" Puv= O+s*dr

Figure 3: lllustration of the technique evaluated in this work. Scaling is
applied from an origin point 30 cm below the user’s head. The virtual
hand (P,) is scaled along the vector between the user’s real hand and
the origin (P,) by a factor of s.

3.5 Design and Methodology

In this section, we describe the method used to detect when partici-
pants detected their increased hand speed. Because in both the LOW
and MED conditions participants are not aware of the technique, it
is necessary to design the task and experiment with elements that en-
courage participants to speak up if they notice something unexpected
(in this case, their hand speed increasing). The four key elements
of the design are 1) using a deceptive task, 2) gradually increasing
the scaling of the remapped hand, 3) having participants think-aloud
during the experiment, and 4) including intentional errors for partic-
ipants to comment on.
A general overview of the method is as follows:

1. Participants were provided a “dummy” task that incorporates
common interactions in VR (with a focus on visual search,
object selection, and object manipulation). They complete this
task without the awareness their hand movement is scaled.

2. Between trials, their hand speed is gradually increased without
their knowledge.

3. While completing the task, they are instructed to think aloud
about the task and other things they are observing. The trial
and speed where they first comment on their hand is used to
estimate the scale factor at which they detected the technique.

4. Intentional application/task errors are included early in the
experiment to subtly encourage participants to report anything
that is odd or abnormal (ideally, their hand speed).

3.5.1 User Task and Deception

First, in order to hide that we were scaling their hand speed, we
utilized deception (approved by our organization’s Institutional Re-
view Board) so that participants were not informed of the focus on
detection of interaction techniques. In our experiment, participants
were told that we were examining how object placements and group-
ings affect search time and object manipulation. Specifically, the
task was to examine a pattern consisting of objects with different
shapes and colors, search for those objects on tables placed around
them, grab them, then put them into the pattern. Once finished, a
new pattern was loaded during a short fade to black (during which
their hand speed was modified while not visible to them).

This task was chosen in order to implement use cases where hand
remapping is useful (selection and manipulation of objects [32])
and other tasks common in VR (visual search and movement [32]).
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Figure 4: Ordering of scales in the experiments, and location of intentional application errors. These errors were to reinforce participant think
aloud behavior and subtly encourage them to comment on things that were abnormal or strange that were not a stated part of the deceptive task
(of interest to us, their hand speed changing). During the delayed transition, the fade effect between trials held indefinitely until the participant
commented on it to the experimenter. During a trial with a missing object, an object belonging to the pattern was missing which prevented the

participant from advancing until it was mentioned to the experimenter.

Other factors were also included in the design to provide a more
complex task than those often used in 2AFC studies, including: 1.
a precision constraint for how closely the objects had to match the
pattern (5cm) and 2. 360 degree item placement around the user to
require turning and small walking movements to reach objects when
scaling was not applied

These ensure that the benefits/drawbacks of scaling the hand
speed are observed subconsciously by participants. Over time, it
becomes difficult to be precise as small physical movements become
amplified by increasing amounts. However, simultaneously less
walking and reaching are needed to grab the objects.

Participants were also told that the patterns would increase in
difficulty over time, but all patterns observed while the movement
scaling was applied were designed to be similar in difficulty (re-
quired searching for and moving four objects) and were modified
versions of a few template patterns to maintain difficulty of patterns
throughout the experiment. The patterns also accounted for the de-
ceptive reasoning for the experiment: in some trials, objects were
grouped by color, others by shape, and others randomly.

3.5.2 Gradually Increasing Scale Factor

Because participants are now aware the scaling is being applied, the
order in which the scales are experienced by users can also affect
detection. We carefully order them in an ascending order to prevent
premature detection at a scale factor exceeding the participant’s
minimally detected scale. If a randomized ordering was used, then
participants may be biased by seeing a large intensity early in the ex-
periment causing them to become more vigilant for it later. Consider
a participant who, by chance, saw their hand moving at five times
the speed in the first trial: they become aware that this is something
to look out for and pay more attention to their hand in the future.
The ordering used in our study can be seen in Figure 4. We note that
increases in the scale are not consistent; as the trials progress we
add more scale to the hand between trials.

3.5.3 Think-Aloud

In our experiment, we are not directly intervening in every trial as
is done in traditional 2AFC or Yes/No methods in order to reduce
vigilance. Thus, we rely on participant utterances to determine if and
when they detect the stimulus. We used a think-aloud [56] method
during the experiment, where participants are asked to verbally
explain their thought processes and observations as they complete
a task or exercise. Eventually, given a hand moving at a noticeable
speed, participants should comment on it.

Prior to beginning the trials, participants were asked to comment
on things they were seeing and noticing, if the task felt easier or
harder as they progressed, and if anything else came to mind. This
is also where different levels of BIAS were instilled in users. In the
MED case, participants received the same think-aloud prompt as
participants in LOW but were also told that there may be aspects of
the experiment they were not being told about that they should try
to identify.

3.5.4 Inclusion of Intentional Application Errors

A risk of relying on a participant’s think-aloud is that they may fixate
on only commenting on elements of the task they are presented with
(in this case, only about searching for and moving the objects to
the pattern), rather than the stimulus. To counter this, purposeful
errors and uncanny elements were added to the experiment to subtly
communicate to the participant that they should also comment on
anything unexpected (i.e., their hand moving quicker). Specifically,
whenever one of these intentional glitches was reported, the exper-
imenters responded, “Thank you for letting me know about that.
Please let me know if anything else strange or abnormal happens.”.
This provides a subtle prompt to users to report anything which
may also be perceived as an error like their hand moving faster than
normal.

Specifically, we chose two error types that prevented participants
from proceeding without mentioning it to the experimenter: a de-
layed transition during the fade-to-black between trials where the
scene never reappeared (i.e., the application blacked out indefinitely),
and missing virtual objects that were necessary to complete the trial.
The delayed transition occurred between T2 and T3 after having
seen the quick transition occur after the first trial. A missing object
is present in T3, to reinforce the same behavior. Finally, another
missing object is included in T25 to serve as a final check that partic-
ipants have nothing abnormal to report. T26 repeats the final scale,
in the event that the participant first reports the missing object before
manipulating any objects.

3.6 Procedure

The procedure and deceptive nature of our study were approved by
our Institutional Review Board (IRB). One hour was allotted for
each participant to complete the study. When a participant arrived,
they were asked to read through and sign a consent form. This form
listed the false purpose of the study but described the task, risks, and
benefits accurately.

Participants were then aided in donning the headset and handheld
controller and told to begin completing the trials. To identify de-
tection thresholds of the scaled hand movement participants were
instructed to think aloud and verbally explain their thought process
about things they were seeing and noticing, if the task felt easier or
harder as they went on, and if anything else came to mind (LOW
BIAS). In the second condition, participants were also told that there
may be parts of the study they were not told about and to be on
the lookout for anything unexpected or abnormal (MED BIAS). In
keeping with standard think-aloud practices [56], if the participant
stopped thinking aloud for an extended period of time during the
experiment the investigator would remind them to continue think-
ing aloud, with no additional suggestion of what to talk about as
to not bias the participant.. Follow-up questions were also asked
if participant utterances were unclear or lacking in detail (e.g., if
the participant uttered “This is hard.”, they may be prompted to
elaborate with more details with “How is it hard?”).

When a participant reached a stage with a built-in glitch the inves-
tigator would wait for them to verbally address the problem. Once
it was addressed, the investigator would express confusion at the
“glitch”, apologize for the inconvenience and inform the participant



that they would manually skip that trial, before telling the participant
to continue addressing anything out of the ordinary in future trials.
While the participant completed the trials, the investigator took notes
of participant remarks that related to scaled hand movement, and the
trial at which the remarks were made.

When the participant had completed the final trial they were
asked to remove the headset and take a seat at a desktop computer
to fill out a post-survey. This survey collected demographic data
and responses to eight Likert questions asking to what extent par-
ticipants noticed various abnormalities. These included irrelevant
abnormalities that should not have been experienced such as hearing
unexpected sounds in the virtual world, alongside relevant abnormal-
ities such as strangeness in the participant’s movements in the virtual
world. This survey was followed up by verbal questions asked by
the investigator to get detailed feedback on whether the participant
perceived the task to get easier or harder as it went on, why they
felt that way, and anything that felt strange. This also served as one
last chance for participants who had not verbally addressed the hand
scaling to comment on it.

Participants generally completed the entire procedure within 40—
60 minutes. Immediately afterward, the investigator debriefed the
participants on the true purpose of the study and told them of the
hand scaling that had occurred. If the participant had not yet re-
marked on the hand scaling either implicitly or explicitly at any
point during the study, they were asked if they recalled it in retro-
spect.

In the HIGH case, since deception and subtlety were not required,
participants were provided with examples of a normal and fast hand
before starting the experimental trials. They were instructed that
after each trial they would be asked “Did your hand speed feel
normal or not normal?”, and that they would have to pick one of
those choices. They were unaware that the scaled hand speed would
be observed in a strictly increasing order. They also completed
each trial without the intention glitches included for LOW and MED.
Upon completion of the trial, the scene faded to black and they were
then asked if their hand speed in the previous trial felt “normal” or
“not normal”. This was logged by the experimenter, the scene was
restored, and the next trial started.

3.7 VR System and Environment

The VR system we utilized for the experiment consisted of a HTC
Vive Pro Eye Office headset wired directly to the computer running
the Unity project and tracked using three SteamVR base stations.
The headset had a resolution of 1440x1600 pixels per eye at 615
PPI, a 110 degree horizontal field of view, and the system had a
refresh rate of 60 FPS. The study application was run through the
Unity game engine with the center of the virtual space aligned to
be physically centered over an “X” marked in tape on the floor of
the experiment room. Participants were instructed to start on “X”. A
six-foot radius was cleared around the center for participants to be
able to move and reach toward any of the tables as needed.

The virtual environment was simple and utilized flat textures for
everything except the tables, which used a realistic wooden texture.
Several point lights that cast shadows were included to light the
scene from above. See Figure 2 for images from the application.

Because users were manipulating only virtual objects, the rep-
resentation of the virtual hand in VR was limited to the virtual
representation of the controller.

3.8 Participants

We conducted this experiment with a total of 77 participants (self-
reported as 50 male, 26 female, and 1 subject not willing to disclose
gender identity) (LOW=28, MED=28, HIGH=21). All participants
were conducted from undergraduate or graduate-level computer
science and human-centered computing courses. Participant ages
ranged from 18 to 37, with a median of 21 years. Participants

self-reported handedness with 70 right-hand dominant, 6 left-hand
dominant (2 in LOW, 1 in MED, 3 in HIGH, and 1 ambidextrous
(LOW). All completed the experiment with their right hand, though
we note that handedness can impact detection [24]. Additionally, the
gender, age, and educational background may also limit transfer to
other populations.

4 RESULTS
4.1 Yes/No Threshold Analysis

To establish a baseline comparison to classical psychophysical meth-
ods, we first conducted threshold analysis on our HIGH BIAS case
to produce a meaningful point of comparison to our lower levels
of BIAS. This analysis is necessary due to the different task and
experiment designs used by Esmaeili et al. [17]. Our trials are longer
and more complex and have increased exposure to the technique
which may affect detection. Additionally, we cannot use a random-
ized order to evaluate LOW and MED BIAS, so this analysis also
accounts for the constantly increasing scale ordering used.

We utilized the quickpsy [34] package in R to test several fits of
curves. The logistic function had the minimal AIC of all candidate
curves fit and was ultimately chosen to estimate this threshold. Of
interest to us here is the scale factor that yields a 50% chance of a
user detecting that their hand speed was not normal; exceeding this
value indicates that users will be more likely to detect the hand speed
is being scaled than not.

Fitting the curve to the data provided a threshold value of 1.47
(see Figure 5), with a 95% confidence interval of between 1.39 and
1.54. In comparison to Esmaeili’s threshold, this value is slightly
higher (1.47 vs. 1.43 [17]) and both confidence intervals overlap
significantly (1.39-1.54 vs. 1.38-1.48 [17]). In the remainder of
the paper, we compare directly against the threshold value from our
work.

4.2 Detection Counts

The previous section covers the core analysis of the HIGH BIAS case.
To analyze the LOW and MED bias cases, we first conducted an
analysis of the counts for each type of detection under each condition
(seen in Table 2). We are interested in seeing if the different levels
of bias resulted in more participants detecting the technique (at any
level). Participants in the MED case were told there were parts
of the may be other features of the study they were not told about
and to pay attention for anything unexpected or abnormal, so we
would expect more participants to report that the hand scaling was
present compared to LOW since the changing hand speed would be
something unexpected.

To determine whether participants detected the remapping in our
study method, we analyzed all participant utterances from the think-
aloud recordings. After completing the experiment, we classified
participants into one of three categories regarding detection based on
their comments and responses during the experiment and debrief. An
iterative coding method was used to determine these categories. We
started with a priori codes for detected and not detected, and then
early iterations expanded to four categories: 1) explicit detection
of the technique (e.g., comments directly about the hand speed
changing), 2) implicit detection (e.g., comments related to other
“side effects” of the technique but not about the hand speed), 3)
no detection, and 4) indeterminate. Ultimately, we decided to join
the implicit cases with the explicit comments into a single group
(“detected”) for analysis, though future work may consider more
carefully these user conceptualizations of remapping. The final three
categories of detection types are:

* Detected: The participant either explicitly verbalized seeing
the technique (e.g., “My hand looks really far away...” or
verbalized an indirect effect of the technique (e.g., “I'm
having a really hard time placing these objects.” or “I kinda
Jjust have to stay in place... I don’t have to move as much.”).
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Table 2: Counts of Detection Types.

| Detected  Not Detected  Indeterminate | Total

LOW 20 5 3 28
MED 14 7 7 28
HIGH 21 0 0 21
Total | 55 12 10 77

Table 3: Means, Medians, Standard Deviations, and 95% Confidence
Intervals of Earliest Detected Scale Factors.

| Mean Median  SD 95% CI
LOW 3.37 3.33 1.04 [2.91, 3.82]
MED 2.70 2.5 0.84 [2.27,3.14]
HIGH 1.39 1.2 042 [1.22,1.57]

* Not Detected: The participant did not verbalize anything about
their hand during the experiment, and after being explicitly
informed of the technique’s presence during the debrief, the
participant affirmed they did not notice it.

* Indeterminate: The participant did not verbalize anything
related to their hand or interaction during the experiment, but
after being informed of the technique’s presence during the
debrief, they indicated they did notice but did not feel the need
to comment on it.

Pearson’s Chi-Squared Test was used to determine if the distribu-
tions of detection classifications significantly varied between LOW
and MED. The HIGH condition was excluded, as due to the method
participants would necessarily detect the technique at some point.

As stated in our first hypothesis H1, we expect that when par-
ticipants are told explicitly to report anything that is strange or
abnormal more would detect the technique. The result of the test
was x2 = 2.99, df =2, p = 0.224, which suggests that the type of
bias induced in participants did not yield significantly different rates
of detection; even when made vigilant for something unexpected
(an increasing hand speed), participants did not comment on it more
frequently. Because of this, we partially reject H1. Both LOW and
MED did have lower levels of detection compared to HIGH, which
logically follows from the experimental structure of the HIGH condi-
tion (all participants were aware of the technique and directly asked
about it every trial so they necessarily must detect it at some point).

4.3 Earliest Detected Scale Factors

Next, we sought to determine whether the types of biases induced
significantly affected the scale factor at which participants first no-
ticed the hand scaling. Based on when the participant first uttered a
statement suggesting detection (for LOW and MED) or the first time
they responded their hand felt not normal (for HIGH), we consider
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Figure 6: Earliest Detected Scale Factors by BIAS condition. Each
dot represents the earliest detected scale for a participant, with “Not
Detected” cases existing at some unknown point above our maximum
scale of 5.0. The orange line at 1.47 represents the detection thresh-
old determined by analysis of the HIGH BIAS case in Section 4.1.

the first scale reported as “not normal”. This is intended to approxi-
mate the point where users start to notice the technique; they may
not be confident, but it suggests that they have noticed it. Only data
from participants who detected the technique were included in this
analysis as they were the only ones who produced reliable, known
detected values. The earliest detected scale factors for participants
are shown in Figure 6, and averages among participants in each
condition in Table 3.

Given the unequal group sizes, we utilized a non-parametric
Kruskal-Wallis test to test for differences in these earliest detected
scale factors between the levels of BIAS. Only data points from par-
ticipants who detected the technique were included. The test result
(H =34.35, p < 0.001) suggests there is a difference significant
difference between the groups. A pairwise Nemenyi test was used
to determine pairwise differences; HIGH was significantly lower
than both LOW and MED (both at p < 0.001), while LOW was not
significantly different than MED (p = 0.404).

Then, individual one-sided Wilcoxon tests were used to compare
these earliest detected scale factor against our estimated threshold of
1.47: LOW:V =210, p < 0.001, MED: V =105, p < 0.01, HIGH:
V =61, p=0.059 We see that for the HIGH case, the average value
is not significantly different from the threshold. For LOW and MED,
these are significantly higher (this can be seen graphically in Figure
6).

Overall, H2 is partially rejected. Though no differences between
the earliest detected scale factors were observed between our LOW
and MED cases, both were significantly lower than those found in
the HIGH case. Compared to the threshold determined in Section
4.1, the converse is true. LOW and MED earliest detected scale
factors are distributed well above the threshold, while HIGH is not.

5 DISCUSSION

This study demonstrates how different levels of experimental bias
(in the form of the prior awareness participants have regarding what
is being evaluated) can impact detection rates and values. We con-
sidered a hand remapping technique where the user’s hand moves
at increasingly larger speeds, and found that when users were not
aware that this was happening detection occurred at much higher
values than when they were made aware.

5.1 Scaled Hand Movement Detection

Most importantly, this work provides much-needed upper bounds for
detection that traditional psychophysical methods cannot estimate.



These methods require prior awareness of a technique and induce
a higher level of attention toward the remapped interaction than in
situ technique usage outside an experiment. While other work has
examined the perception of remapping in looser contexts [48], our
work further lessened these constraints (via the compared differences
in procedure to provide varying levels of BIAS), and did not make
users aware of the technique.

We show that when unaware their hand is being remapped, users
can unknowingly use the technique to a much larger extent than
is estimated by 2AFC or Yes/No methods. We evaluated scaled
hand movement and found that you can move a user’s hand up to
3.37 times its normal speed on average before participants notice
it on average when they were not made aware of its application.
Compared to our threshold estimate from a classical Yes/No (HIGH
BIAS) method (1.47), detection during cases lessened (MED BIAS)
and no (LOW BIAS) amount of prior awareness was significantly
higher with detection starting at approximately scales of 2.70 and
3.37 respectively. Compared to our estimated detection threshold
(1.47), the LOW and MED average earliest detected values are 180%
and 230% larger. Prior work using 2AFC and Yes/No methods often
main claims that their thresholds are conservative (e.g., [5,17,50,
60,61], but until now it has been difficult to understand exactly how
restrictive they are.

Practically, this could translate into more utility from remapping
techniques due to greater flexibility for deviation from realistic input-
to-output mappings. For scaled movement, less physical movement
is necessary when used at this upper bound which can increase the
ease of reaching for users, while also letting them benefit from sec-
ondary effects like less physical movement being needed to grab
something, lessened fatigue, and increased immersion through natu-
ral interactions. For other techniques, like those for walking, using
upper bound values determined with similar experiments could also
increase their utility and further reduce the physical space needed to
simulate large virtual environments.

We also observed a wide range of reported detected scale factors,
ranging from 1.5 to 5.0. All participants reported the technique
occurring after the value of 1.47. Most interesting are the cases
where participants never detected the technique. Approximately 1
in 5 participants in the MED/LOW conditions (12 of 56) completed
the entire study without commenting on their hand moving faster
and later confirmed they did not notice their hand moving faster
after being made aware the technique was applied. This is quite
surprising, and we suspect the engagement and focus of participants
of the “dummy” object manipulation task sufficiently engaged or
distracted these users from detecting their hand.

In summary, our key findings are: 1. Unaware users start
detecting techniques at intensities much higher than detection
thresholds. Remapping may be undetected even at values 180%—
230% larger than the detection threshold for the technique if users
are brought up to that value over time. 2. Unaware users are widely
varied in detection. Even at our maximum value, 1-in-5 users did
not notice the remapping being applied.

5.2 Limitations and Future Work

Our work represents a novel approach for estimating the detection
of remapped interaction techniques, but we identify opportunities
for further advancement of knowledge of detection through future
research. For instance, there are trade-offs between using think-
aloud utterances to generate detection points and the more direct
data collection methods used by psychophysical methods. Think-
alouds may introduce waste or delay in reporting, but allows us to
evaluate technique usage without participants being aware. Repeated
and direct asking of a 2AFC or Yes/No question posed to users every
trial guarantees data collection, but these methods are also biased
between users [18,22,30] and cannot evaluate techniques without
participants being aware. Regarding our usage of think-aloud, 10

of 56 participants in the LOW and MED BIAS cases (approximately
18%) stated after the experiment that they did notice the technique
but did not comment on it during the trials. However, a majority
of participants did produce useful data points; as the technique
intensity increased, 34 of 56 (approximately 61%) of participants
reported noticing the technique during the experiment and 12 of 56
(approximately 21%) denied noticing the technique until after being
told it was present. Combined, this is roughly 82% of participants in
the LOW and MED BIAS cases.

As part of this design, we also examined possible acclimation
effects of using a scaled hand that has been seen in other techniques
(e.g., [26,46]). As stated in Section 3.5.2, to find the smallest de-
tected scale factor it was necessary to slowly increase the hand
speed to prevent participants from prematurely becoming aware of
hand modifications. If a participant saw their hand moving at the
maximum scale factor in an early trial, then they would know to
pay attention to their hand in later trials. Thus, our upper bounds
may be detectable if applied immediately at the start of application
usage. However, in our Yes/No condition, users still experienced
an increasing hand speed order and we did not see drastically dif-
ferent thresholds than Esmaeili et. al [17] who used a random order.
Regardless, work should examine how quickly the scale factor can
increase to a threshold value without being noticeable.

Finally, this method should be refined further and generalized
to accommodate the evaluation of other techniques. As discussed
in Section 3.5.1, we chose to include a variety of commonly used
tasks in VR (selection, manipulation, search, and navigation [32]).
As is, this design may be applied to rotation gain applied to the
head [37] since our task design requires 360-degree movement.
Other techniques, such as those for travel, may require modifications
such as moving the objects further away from the pattern to require
walking.

6 CONCLUSION

The constraints of traditional detection methodologies (2AFC and
Yes/No) limit the direct transfer of threshold values to more realistic
cases. Under these methods, participants are explicitly made aware
of the technique and their focus is on making a judgment regarding it.
In applied scenarios, this is not the case; users are typically focused
on a different primary task, and they may not actually know the
technique is being used.

To address these limits, we designed and conducted an exper-
iment to determine reasonable upper bounds for the detection of
a scaled hand movement technique in virtual reality that may be
used in higher-level applications and scenarios. In our experiment,
participants were not told that their hand speed would be increasing
over time (from a scale factor of 1.0 to 5.0) but were asked to think
aloud about their observations while completing a pattern matching
and search task. In the condition where users had the lowest amount
of awareness, the average earliest detected scale factor was 3.37,
which is a significantly larger value than both the Yes/No threshold
we derived (1.47) and the average earliest detected scale value for
the Yes/No condition (1.39).

Overall, this work starts to bridge the gap between highly con-
trolled evaluations of remapping techniques and technique usage
in realistic applications. The presented method simulates cases
where users do not know remapped interaction techniques are used
and demonstrates that detection in these cases varies greatly from
detection in the limited scenarios previously investigated.
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