
Streaming Based Bicriteria Approximation Algorithms for
Submodular Optimization

Victoria G. Crawford1

1vcrawford01@ufl.edu, Department of Computer and Information Science and Engineering, University of Florida

Abstract

This paper proposes the optimization problem Submodular Cover (SC), which is to minimize the
cost required to ensure that a non-monotone submodular benefit function exceeds a given threshold. Two
algorithms are presented for SC that both give a ((1 + ε)(4/ε2 + 1), 1/2(1− ε)) bicriteria approximation
guarantee to the problem. Both algorithms process the ground set in a stream, one in multiple passes. Further,
a (1/2(1− ε), (1 + ε)(4/ε2 + 1)) bicriteria approximation guarantee is given for the related optimization
problem Submodular Knapsack (SK).

1 Introduction
A function f : 2U → R≥0 defined on subsets of a ground set U of size n is submodular if it possesses the
following property: For all A ⊆ B ⊆ U and x /∈ B, f(A∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). Submodular
set functions are found in many applications in data mining and machine learning including data summarization
[Barezi et al., 2019; Xu et al., 2015; Tschiatschek et al., 2014], influence maximization in a social network
[Kempe et al., 2003], dictionary selection [Das and Kempe, 2011], monitor placement [Leskovec et al., 2007],
as well as in classic optimization problems such as maximum weighted cut, set cover, and facility location.
Further, many applications involve non-monotone1 submodular functions [Barezi et al., 2019; Xu et al., 2015;
Tschiatschek et al., 2014].

The simplest optimization problem involving submodular functions is the NP-hard unconstrained sub-
modular maximization problem, where we wish to find argmax{f(X) : X ⊆ U}. On the other hand, the
constrained submodular maximization problem has received a lot of attention, where we maximize f subject to
some constraint. For example, the cardinality constraint (find argmax{f(X) : X ⊆ U, |X| ≤ κ}) [Buchbinder
et al., 2014], or a knapsack constraint (argmax{f(X) : X ⊆ U,

∑
x∈X w(x) ≤ κ}) [Gupta et al., 2010], both

NP-hard.
However, in some applications it is desirable that rather than maximizing the submodular function, we

only wish that the submodular function be sufficiently good and then minimize some other value. For example,
in the data summarization application one may wish to find a sufficiently good summary (i.e. get a submodular
function above a threshold) while minimizing the total memory of the summary. Motivated by this, we
introduce here the optimization problem Submodular Cover (SC).

Definition 1 (Submodular Cover (SC)). Let f : 2U → R≥0 be a submodular function defined over subsets
of the universe U of size n such that f(∅) = 0, and let w : U → R≥0 be a cost function defined over the
elements of the universe. The Submodular Cover problem (SC) is, given τ ≤ max{f(X) : X ⊆ U}, find

argminX⊆U

{∑
x∈X

w(x) : f(X) ≥ τ

}
.

1 f is monotone if for all A ⊆ B, f(A) ≤ f(B).

1

An instance of SC is written as SC(U, f, w, τ,OPT) where OPT is the cost of the optimum solution.

SC has been considered in the special setting where f is also assumed to be monotone [Wolsey, 1982a],
but to the best of our knowledge has never been considered in the non-monotone setting. The topic of this
paper is therefore to consider whether approximation algorithms can be developed for this problem, and further
whether those algorithms can be made practical in the face of large data sets. In particular, the streaming model
is considered: U is assumed to arrive in an arbitrary order, and the goal is to solve SC so that very few passes
are made through the entire data set and in addition memory used at any point in time is limited.

1.1 Contributions
In particular, the contributions are:

(i) It is proven in Theorem 1 that we cannot approximate the constraint of SC better than 1/2 in polynomially
many queries of f . On the other hand, two bicriteria approximation algorithms that can yield constraint
approximations of arbitrarily close to 1/2 are presented (MULTI-PASS-COVER and SINGLE-PASS-
COVER).

(ii) The algorithm MULTI-PASS-COVER is proposed for SC, which is a multi-pass streaming approximation
algorithm with a bicriteria approximation guarantee of ((1 + ε)(4/ε2 + 1), γ(1− ε)), where γ is the
approximation ratio of an unconstrained submodular maximization algorithm used as a subroutine
(which can be 1/2 by using the algorithm of Buchbinder and Feldman [2018]). MULTI-PASS-COVER
takes at most ln(OPT/wmin)/ ln(1 + ε) passes through U in an arbitrary order, while storing elements
of total weight at most (1 + ε)(4/ε2 + 1)OPT .

(iii) The algorithm SINGLE-PASS-COVER is proposed for SC, which takes a single pass through U in an
arbitrary order and has a bicriteria approximation guarantee of ((1 + ε)(4/ε2 + 1), γ(1− ε)). The total
weight of all elements stored at one time is at most (1 + ε)(4/ε2 + 1) ln(2B/(ετξ))/ ln(1 + ε)B, where
B ≥ OPT is an input. SINGLE-PASS-COVER does not have a bound on the total weight of stored
elements relative to OPT , which is in fact shown to be impossible. Instead, SINGLE-PASS-COVER
has a bound on the total weight of stored elements relative to OPTi, the optimum solution over the
first i elements read in, provided it exists: Once the ith element of the universe has been read in by
SINGLE-PASS-COVER, the total weight of all elements stored at one time at most (1 + ε)(4/ε2 +
1) ln(2OPTi/(ετξ))/ ln(1 + ε)OPTi from that point on, where ξ is instance dependent.

(iv) A similar approach to STREAM can be taken for the related problem SK (Submodular Knapsack). In par-
ticular, the algorithm SINGLE-PASS-KNAPSACK is proposed for SK. SINGLE-PASS-KNAPSACK takes a
single pass through U in an arbitrary order and has a bicriteria approximation guarantee of (γ(1−ε), (1+
ε)(4/ε2+1)). The total weight of all stored elements is at most (4/ε2+2/ε) ln(2κ/(wminε))/ ln(1+ε)κ.

1.2 Notation and Definitions
The following notation and definitions will be used throughout the paper: (i) Define w(X) for X ⊆ U to be∑

x∈X w(x); (ii) Define ∆f(X,x) = f(X ∪ {x})− f(X); (iii) Define wmin = minx∈U w(x).

1.3 Related Work
Unconstrained Submodular Maximization

SC is related to the unconstrained submodular maximization problem. In particular, if τ = max{f(X) : X ⊆
U}, then SC produces a solution to the unconstrained submodular maximization problem. It was proven by
Feige et al. [2011] that given any instance of unconstrained submodular maximization with optimum solution
S∗, there is no algorithm using fewer than eε

2n/8 queries that always finds a solution of expected value at least
(1/2 + ε)f(S∗) for any ε > 0 (even if the objective is assumed to have a symmetric function). This implies
Theorem 1 stated in this paper.

2

A number of approximation algorithms have been proposed for unconstrained submodular maximization
[Feige et al., 2011; Buchbinder et al., 2015; Dobzinski and Mor, 2015; Buchbinder and Feldman, 2018; Ene
et al., 2018; Chen et al., 2019]. One approach is via local search algorithms [Feige et al., 2011; Gharan
and Vondrák, 2011; Dobzinski and Mor, 2015], of which the best deterministic approximation ratio is 0.4
[Dobzinski and Mor, 2015] and the best randomized is 0.41 [Gharan and Vondrák, 2011]. On the other hand,
Buchbinder et al. [2015] proposed a deterministic 1/3, and a randomized 1/2 algorithm that are more of a
greedy approach, both running in linear time. Interestingly, a random set is a 1/4 approximation in expectation
[Feige et al., 2011]. Recently, Buchbinder and Feldman [2018] introduced a method of de-randomizing
algorithms, which could be applied to get a 1/2 guarantee in n2 time, or alternatively a 1/2 − ε guarantee
in O(n/ε) time. Chen et al. [2019] introduced a constant adaptivity algorithm with a 1/2 − ε randomized
guarantee, based on the multilinear extension. Independently, the same result was found by Ene et al. [2018].
All of the unconstrained submodular maximization algorithms require the entire ground set to be stored in
memory.

To the best of our knowledge, none of the above algorithms for unconstrained submodular cover have been
shown to give an approximation guarantee for SC. For some of them, it is easy to see that they do not give a
non-trivial approximation guarantee for SC: Both the local search algorithm of Feige et al. [2011] and the
double greedy algorithm of Buchbinder et al. [2015] can return solutions that have n times the cost of that of
the optimal.

Submodular Cover

Variants of Submodular Cover have been studied where f is assumed to be monotone [Wolsey, 1982b; Wan et
al., 2010; Crawford et al., 2019]. In particular, the greedy algorithm produces a 1 + ln(α/β)-approximate
solution, where α and β are instance dependent parameters [Wolsey, 1982b]. In addition, a slightly modified
greedy algorithm produces a (ln(1/ε), 1− ε)-bicriteria approximation ratio. To the best of our knowledge, a
non-monotone version of submodular cover has never been proposed.

Monotone submodular cover with cardinality cost has been studied previously in the streaming setting
[Norouzi-Fard et al., 2016]. In particular, if an upper bound εM of the optimal solution S∗ is given, the
streaming algorithm makes a single pass through the data and returns a (2/ε, 1 − ε) approximate solution,
storing a maximum of M elements, and making at most O(M) function evaluations per received element.
Alternatively, if ln(1/ε)|S∗| passes are allowed through the data, the approximation ratio can be improved to a
(ln(1/ε), 1− ε)-bicriteria approximation.

Iyer and Bilmes [2013] proposed algorithms where weighted cost could be extended to general monotone
submodular cost function. It appears that our result could fit into their algorithm’s framework, therefore could
be used for more general cost functions.

Constrained Submodular Maximization

The constrained submodular maximization problem has been extensively studied with many constraints, both
with monotone objectives [Nemhauser and Wolsey, 1978; Badanidiyuru et al., 2014; Mirzasoleiman et al.,
2015], and non-monotone [Lee et al., 2009; Gupta et al., 2010; Feige et al., 2011; Buchbinder et al., 2014,
2017]. While the seminal greedy algorithm produces an optimal 1− 1/e-approximate solution for monotone
submodular maximization subject to a cardinality constraint [Nemhauser and Wolsey, 1978], it does not
produce any non-trivial guarantee for non-monotone objectives.

Submodular maximization and submodular cover are related: It was proven by Iyer and Bilmes that
algorithms for submodular maximization can be used as a subroutine for algorithms for submodular cover
(and vice versa). In particular, an (a, b)-bicriteria approximation algorithm for submodular maximization
with a knapsack constraint that runs in time T can be used to get a ((1 + ε)b, a)-bicriteria approximation
algorithm for submodular cover in time T ln(w(S∗)/wmin)/ ln(1 + ε). This is done by guessing w(S∗)
in order wmin, (1 + ε)wmin, ..., w(S∗) and running the submodular maximization algorithm with budget
equal to each guess. For the case of uniform weights, the best currently known approximation guarantee for

3

submodular maximization is 0.385, using the multilinear extension, to the best of our knowledge [Buchbinder
and Feldman, 2019]. In addition, it has been proven that in the value oracle model it is impossible to get a better
approximation guarantee than 0.491 for uniform weights [Gharan and Vondrák, 2011]. Therefore this approach
to solving SC is limited. Notice that SINGLE-PASS-KNAPSACK is a bicriteria approximation algorithm, and
therefore does not necessarily produce a feasible solution and so can get approximation guarantee above 0.491.

Of particular interest is the algorithm of Gupta et al. [2010] for submodular maximization with a knapsack
constraint, which is a greedy-like approach that yields a solutions that is α+ 2e/(e− 1)-approximate, and a
(4 +α) approximate algorithm for uniform cost. The downside to using this algorithm to solve SC as described
above is that the resulting solution would not be very close to feasible, and the algorithm is relatively slow
for knapsack constraints. An alternative algorithm for submodular maximization with a cardinality constraint
are randomized greedy approaches [Buchbinder et al., 2014, 2017]. These give approximation guarantees
in expectation about 1/e, and therefore can be used to get significantly closer to a feasible solution for SC
compared to Gupta et al. [2010], but only for uniform cost. Further, they are faster, and Buchbinder et al.
[2017] runs in linear time.

One question is whether any of the greedy approaches can be extended to keep going and produce a
solution that is closer to feasible for SC. This approach works when the objective is monotone. However, the
non-monotonicity of the objective prevents this approach from working, and it is not clear that any greedy-like
approach that works for submodular maximization can be extended to SC.

A number of algorithms have been proposed for constrained submodular maximization in the streaming
setting [Chakrabarti and Kale, 2015; Alaluf et al., 2020]. The algorithm of Alaluf et al. is especially related to
those proposed in this paper because it uses a procedure where elements from the stream are stored in O(1/ε)
disjoint sets, and then runs an offline algorithm on the result. Alaluf et al. provide a streaming algorithm for
cardinality constrained submodular maximization that takes a single pass through the universe using O(κ/ε2)
(κ is the cardinality constraint) memory. The resulting solution is a α/(1 +α)− ε-approximate solution where
α is the approximation guarantee of the cardinality constrained submodular maximization algorithm used as a
subroutine. This yields a 0.2779 approximation guarantee if using the state-of-the-art algorithm.

2 Algorithms and Theoretical Guarantees
In this Section, several bicriteria approximation algorithms are presented for SC, and their approximation
guarantees proven. As mentioned in the introduction, the impossibility results of Feige et al. [2011] have
implications for the approximation guarantees of SC. This is because an algorithm for SC can also be used as
an algorithm for unconstrained submodular maximization by repeatedly guessing τ . These implications are
stated in the following Theorem.

Theorem 1. For any ε > 0, there are instances of nonnegative symmetric submodular cover such that there is
no (adaptive, possibly randomized) algorithm using fewer than Ω(ln(1 + ε)eε

2n/ ln(n)) queries that always
finds a solution of expected f value at least (1/2 + ε)τ .

Proof. Suppose such an algorithm existed, and let it be called A. Then a new algorithm for unconstrained
submodular maximization is defined as follows: A is run on instance SC(U, f, (1 + ε)i) for every i ∈ Z such
that maxu∈U f({u}) ≤ (1 + ε)i ≤ nmaxu∈U f({u}), and the solution with the highest value of f is returned.
Notice this results in running A ln(n)/ ln(1 + ε) times. Because OPT is in the above range, there exists some
i such that (1 + ε)i−1 ≤ OPT ≤ (1 + ε)i. Once A is run on SC(U, f, (1 + ε)i), by assumption it will return
X such that E[f(X)] ≥ (1/2 + ε)τ . This contradicts the result of Feige et al..

As a result of Theorem 1, is is not possible to develop an (α, β)-bicriteria approximation algorithm for SC
such that β > 1/2. Therefore the algorithms presented in this section approximate the feasibility constraint as
well as possible.

4

2.1 STREAM

The algorithms for SC presented in this section all depend on a subroutine called STREAM. In this section,
STREAM is described and some theoretical properties of STREAM are proven.

Algorithm Description

STREAM takes as input a parameter ε ∈ (0, 1) and a guess of the optimal solution value, κ. STREAM then
makes a single pass through the universe U in an arbitrary order, and stores a portion of the elements of total
cost at most (4/ε2 + 1)κ. The stored elements are broken into 2/ε disjoint sets, S1, ..., S2/ε. The elements are
chosen to be stored in at most one of the sets or not as they arrive, based upon their marginal gain to f with
respect to the set, as well as their cost. Once the entire stream has been read, an unconstrained maximization
algorithm, UNCONSTRAINEDMAXγ , with a γ approximation ratio, is run on the union of the stored elements.
Pseudocode for STREAM is presented in Algorithm 1.

Algorithm 1 STREAM

1: procedure STREAM(ε, κ)
2: S1 ← ∅, ..., S2/ε ← ∅
3: for x received from stream do
4: if w(x) ≤ κ and ∃j ∈ {1, ..., 2/ε} s.t. ∆f(Sj , x)/w(x) ≥ ετ/(2κ) then
5: Sj ← Sj ∪ {x}
6: if w(Sj) > 2κ/ε then
7: break
8: S0 ←UNCONSTRAINEDMAXγ

(
∪2/εj=1Sj

)
9: return argmax{f(S0), ..., f(S2/ε)}

Theoretical Guarantees of STREAM

Two important theoretical results about STREAM are stated and proven in this section. Lemma 1 gives
guarantees as far as the total weight of all stored elements of STREAM. Since the solution returned by STREAM
is a subset of all stored elements, this also implies theoretical guarantees about the weight of the returned
solutions. Lemma 2 gives needed theoretical guarantees about the f value of the solution returned by STREAM.

Lemma 1. Let S be the set returned by STREAM. Then w(S) ≤ (4/ε2 + 1)κ, and further throughout the
duration of STREAM the total weight of all elements stored at once is at most (4/ε2 + 1)κ.

Proof. Consider the state of STREAM at the beginning of an iteration of the for loop on Line 3, when an
element x has been read in but not yet added to any of the sets S1, ..., S2/ε. Then the if statement on Line 6
ensures that for all i ∈ {1, ..., 2/ε}, w(Si) ≤ 2κ/ε. At the end of the iteration, x has been added to at most a
single set Sj , and the condition that w(x) ≤ κ on Line 4 to add x ensures that w(Sj) ≤ (2/ε+ 1)κ. Further
S0 is a subset of ∪2/εi=1Si. Therefore, at any point in STREAM before Line 8,

w
(
∪S2/ε

i=0

)
≤

2/ε∑
i=0

w(Si)

≤ (4/ε2 + 1)κ.

Therefore the bound on the total weight at any point in STREAM holds. Because the solution returned by
STREAM is a subset of ∪S2/ε

i=1, the bound on its weight is the same as the bound on its total memory.

Lemma 2. Suppose that STREAM is run with input ε ∈ (0, 1), and κ ≥ OPT . Let S be the set returned by
STREAM. Then f(S) ≥ γ(1− ε)τ .

5

Proof. The loop on Line 3 of STREAM completes in one of two ways: (i) The if statement on Line 6 is satisfied;
or (ii) All of the elements of U have been read from the stream, and Line 6 was never satisfied. The proof of
Lemma 2 is broken up into each of these two events.

First suppose event (i) above occurs. Then at the completion of the loop there exists some r ∈ {1, ..., 2/ε}
such that w(Sr) ≥ 2κ/ε. Let Sr(`) be Sr after the `th element was added to it and Sr(0) = ∅. Then at the
completion of STREAM

f(Sr)
(a)

≥ f(Sr)− f(∅)

=

|Sr|∑
`=1

(f(Sr(`))− f(Sr(`− 1)))

(b)

≥
∑
x∈Sr

w(x)ετ/(2κ)

= w(Sr)ετ/(2κ)

(c)

≥ τ

where (a) is because f(∅) ≥ 0; (b) is by the condition on Line 7; and (c) is by the assumption that w(Sr) ≥
2κ/ε. Therefore at the completion of STREAM max{f(S0), ..., f(S2/ε)} ≥ f(Sr) ≥ τ.

Now suppose that event (ii) above occurs. Then at the end of STREAM, w(Sj) < 2κ/ε for all j ∈
{1, ..., 2/ε}. For this case, we need the following claim.

Claim 1. LetA1, ..., Am ⊆ U be disjoint, andB ⊆ U . Then there exists i ∈ {1, ...,m} such that f(Ai∪B) ≥
(1− 1/m)f(B).

Proof. Define g(X) = f(B ∪ X). Then g is a non-negative submodular function. Consider choosing A
uniformly randomly from the disjoint sets A1, ..., Am. Then any element of U has probability at most 1/m of
being in A. Then

1

m

m∑
i=1

f(B ∪Ai) =
1

m

m∑
i=1

g(Ai)

= E[g(A)]

(a)

≥
(

1− 1

m

)
g(∅)

=

(
1− 1

m

)
f(B)

where (a) is from Lemma 4. Therefore there must exist some i ∈ {1, ...,m} such that f(Ai ∪ B) ≥
(1− 1/m)f(B).

Let S∗ be an optimal solution to the instance of SC. By Claim 1, there exists t ∈ {1, ..., 2/ε} such that
(1− ε/2)τ ≤ f(S∗ ∪ St). Define X1 = S∗ ∩ (∪2/εi=1Si) and X2 = S∗ \X1. Then,

(1− ε/2)τ ≤ f(S∗ ∪ St)
= f(X1 ∪ St) + f(S∗ ∪ St)− f(X1 ∪ St)
(a)

≤ f(X1 ∪ St) +
∑
x∈X2

∆f(X1 ∪ St, x)

(b)

≤ f(X1 ∪ St) +
∑
x∈X2

∆f(St, x) (1)

6

where (a) and (b) are both due to submodularity. In addition,∑
x∈X2

∆f(St, x)
(a)
<
∑
x∈X2

w(x)ετ/(2κ)

= w(X2)ετ/(2κ)

(b)

≤ w(X2)ετ/(2OPT)

(c)

≤ ετ/2 (2)

where (a) is by submodularity and the condition on Line 4; (b) is because κ ≥ OPT ; (c) is because X2 ⊆ S∗
implies that w(X2) ≤ OPT . Then by combining Inequalities 1 and 2, we have that

(1− ε)τ ≤ f(X1 ∪ St)
(a)

≤ max
Y⊆∪2/ε

i=1Si

f(Y)

(b)

≤ 1

γ
f(S0)

where (a) is because X1 ∪ St ⊆ ∪2/εi=1Si; (b) is because S0 is an γ-approximate maximum of f over ∪2/εi=1Si.
Therefore max{f(S0), ..., f(S2/ε)} ≥ f(S0) ≥ γ(1− ε)τ.

2.2 MULTI-PASS-COVER

In this section, the multiple pass streaming algorithm for SC, MULTI-PASS-COVER, is presented. MULTI-
PASS-COVER takes O(ln(OPT)) passes through the universe U , stores elements of total weight at most
O(OPT), and produces a constant bicriteria approximate solution with constraint approximation near to the
optimal 1/2.

Algorithm Description

MULTI-PASS-COVER takes as input a parameter ε ∈ (0, 1). MULTI-PASS-COVER works be sequentially
running STREAM for increasingly large guesses of OPT . First, the smallest possible guess of wmin is made
for OPT . Each iteration, the guess is increased by a multiplicative factor of 1 + ε. During each iteration, the
solution S returned by STREAM is tested as to whether f(S) ≥ γ(1− ε)τ , where γ is the approximation ratio
of UNCONSTRAINEDMAXγ . Once the guess is at leastOPT , it is guaranteed that f(S) ≥ γ(1−ε)τ (as proven
in Theorem 2), and then MULTI-PASS-COVER returns S and terminates. Pseudocode for MULTI-PASS-COVER
is given in Algorithm 2.

Algorithm 2 MULTI-PASS-COVER

1: procedure MULTI-PASS-COVER(ε)
2: κ← wmin
3: while true do
4: S ← STREAM(ε, κ)
5: if f(S) ≥ γ(1− ε)τ then
6: return S
7: κ← (1 + ε)κ

7

Theoretical Guarantees of MULTI-PASS-COVER

The theoretical guarantees of MULTI-PASS-COVER are now presented in Theorem 2.

Theorem 2. Suppose that MULTI-PASS-COVER is run for an instance of SC. Then:

(i) The returned set S satisfies f(S) ≥ γ(1− ε)τ and w(S) ≤ (1 + ε)(4/ε2 + 1)OPT ;
(ii) At most ln(OPT/wmin)/ ln(1 + ε) passes through U are made;

(iii) The total cost of all elements needing to be stored at once is at most (1 + ε)(4/ε2 + 1)OPT ;

Proof. Define q ∈ Z>0 to be the unique value where

(1 + ε)q−1wmin < OPT ≤ (1 + ε)qwmin. (3)

By Lemma 2, if the loop on Line 3 reaches OPT = (1 + ε)qwmin, STREAM will return a set S that satisfies
f(S) ≥ γ(1− ε)τ . Then the if statement on Line 5 will be satisfied, and MULTI-PASS-COVER will terminate
with solution S. Further, by Lemma 1, w(S) ≤ (4/ε2 + 1)(1 + ε)qwmin ≤ (4/ε2 + 1)(1 + ε)OPT . Therefore
item (i) is proven.

Each iteration of the loop on Line 3 corresponds to one pass through U . Since the loop on Line 3 stops
before or once κ reaches (1 + ε)qwmin (as explained above), there are at most ln(OPT/wmin)/ ln(1 + ε)
passes through U . Therefore item (ii) is proven.

Over the course of MULTI-PASS-COVER, κ increases from wmin to (1 + ε)qwmin (as explained above).
Further, each iteration of the for loop on Line 3 stores elements only needed in the corresponding call of
STREAM. By Lemma 1, therefore the total weight of all elements stored at once is at most (4/ε2 + 1)(1 +
ε)qwmin ≤ (4/ε2 + 1)(1 + ε)OPT . Therefore item (iii) is proven.

2.3 SINGLE-PASS-COVER

While MULTI-PASS-COVER took O(ln(OPT)) passes through the ground set U , an algorithm that makes a
single pass through U while storing a low total cost is desirable for applications such as where the data is not
stored at all.

Unfortunately, it is not possible to develop a single pass streaming algorithm for SC that returns an
approximately feasible solution, while also maintaining low total stored cost relative to OPT . For example,
suppose we have some single pass streaming algorithm for SC that produces a solution with constraint value at
least ατ . Consider two instances of SC with uniform weight defined as follows: (i) SC ({u1, ..., un}, f1, τ)
where f1 is modular and f(ui) = τ/n for all i; (ii) SC ({u1, ..., un}, f2, τ) where f2 is modular and
f(ui) = τ/n for all i 6= n and f(un) = τ . Suppose the algorithm receives the universe in order u1, ..., un.
Then because the returned solution has constraint value at least αn, in instance (i) the algorithm must store at
least αn− 1 elements before reading element un. On the other hand, instances (i) and (ii) are indistinguishable
up to element un, therefore for instance (ii) the algorithm also stores at least αn − 1 elements. However,
OPT = 1 in the latter case, and therefore this stored memory is very large compared to OPT .

In this section, a single pass algorithm is proposed, SINGLE-PASS-COVER, that instead maintains low
memory relative to the optimal solution to an instance of SC where the universe is only those elements read so
far. Once the entire universe is read in, SC produces a solution with the same bicriteria approximation ratio as
MULTI-PASS-COVER.

Algorithm Description

SINGLE-PASS-COVER takes as input a parameter ε ∈ (0, 1), and a parameter B ∈ R≥0. Like MULTI-
PASS-COVER, SINGLE-PASS-COVER essentially works by running STREAM for guesses of OPT . However,
SINGLE-PASS-COVER runs STREAM in parallel. Instead of guessing OPT sequentially, SINGLE-PASS-
COVER maintains a set of guesses of OPT and updates a lower bound for the guesses lazily. On the other hand,
an upper bound for OPT is initially given as input (B), and then updated by running UNCONSTRAINEDMAXγ
for each guess after reading in each element. Pseudocode for SINGLE-PASS-COVER is given in Algorithm 3.

8

Algorithm 3 SINGLE-PASS-COVER

1: procedure SINGLE-PASS-COVER(ε, B)
2: S(1+ε)i,j ← ∅ ∀i ∈ Z, j ∈ {0, ..., 2/ε}
3: for x received from stream do
4: if f({x})/w(x) > m then
5: m← f({x})/w(x)

6: for κ in {(1 + ε)i : i ∈ Z, ετ/(2m) ≤ (1 + ε)i ≤ B} do
7: if ∃i ∈ {1, ..., 2/ε} s.t. |Sκ,i| < 2κ/ε and ∆f(Sκ,i, x) ≥ w(x)ετ/(2κ) then
8: Sκ,i ← Sκ,i ∪ {x}
9: Sκ,0 ←UNCONSTRAINEDMAXγ (∪2/εi=1Sκ,i)

10: if max{f(Sκ,i) : i ∈ {0, ..., 2/ε}} ≥ γ(1− ε)τ then
11: B ← κ
12: S(1+ε)i,j ← ∅ ∀i ∈ Z, (1 + ε)i > B, j ∈ {0, ..., 2/ε}
13: return argmax{f(Sκ,i) : κ ≤ B, i ∈ {0, ..., 2/ε}}

Theoretical Guarantees of SINGLE-PASS-COVER

The theoretical guarantees of SINGLE-PASS-COVER are presented in Theorem 3.

Theorem 3. Define ξ = minu∈U w(u)/f({u}). Then if B ≥ OPT :

(i) The set S returned by SINGLE-PASS-COVER satisfies f(S) ≥ γ(1− ε)τ and w(S) ≤ (1 + ε)(4/ε2 +
1)OPT ;

(ii) SINGLE-PASS-COVER makes a single pass through U ;
(iii) The total weight of all elements stored at one time is at most (1+ε)(4/ε2+1) ln(2B/(ετξ))/ ln(1+ε)B;

Let u1, ..., un be the order that the elements of U arrive in, Ui = {u1, ..., ui}, SC(Ui, f, τ, OPTi) to be the
instance of SC corresponding to ground set Ui, and r = min{i ∈ {1, ..., n} : SC(Ui, f, τ, OPTi) has a
feasible solution}. Then if B ≥ OPTr:

(v) Once the iteration of the loop corresponding to element ui, i ≥ r, is complete, the total weight of all
elements stored at one time at most (1 + ε)(4/ε2 + 1) ln(2OPTi/(ετξ))/ ln(1 + ε)OPTi from that
point on.

Proof. Consider an alternate version of STREAM where instead of running UNCONSTRAINEDMAXγ on ∪Si
after receiving all elements in the stream (Line 8), UNCONSTRAINEDMAXγ is run at the end of each iteration
of the loop on Line 3 of STREAM. I.e., UNCONSTRAINEDMAXγ is run after reading in each element of U .
Notice that this does not change any of the properties of STREAM detailed in Lemmas 1 and 2. Then, one can
imagine SINGLE-PASS-COVER as running many different instances of STREAM in parallel as U is read in.
In particular, the set {(1 + ε)i : i ∈ Z, ετ/(2m) ≤ (1 + ε)i ≤ B} are the guesses of OPT , and there is an
instance of STREAM corresponding to each guess. For each guess κ, Sκ,0, ..., Sκ,2/ε in SINGLE-PASS-COVER
correspond to the sets S0, ..., S2/ε in STREAM.

Consider the value of B at the end of some iteration of the for loop on Line 3. It is now shown that without
loss of generality, one can assume that up to this point SINGLE-PASS-COVER is equivalent to running STREAM
in parallel with guesses of OPT {(1 + ε)i : i ∈ Z, ετ/(2m) ≤ (1 + ε)i ≤ B} up to this point in the algorithm.
B is only decreasing throughout STREAM, therefore we need to show that small guesses of OPT are wlog
running in parallel. Consider any (1 + ε)i ≤ B. Consider any previous iteration of the loop on Line 3 such
that for the first time an x has arrived such that ∆f(∅, x) ≥ w(x)ετ/(2(1 + ε)i) (i.e. the first time an element
should be added to S(1+ε)i,j for some j ∈ {1, ..., 2/ε}), and we are at the beginning of the loop on Line 3. If

9

ετ/(2m) > (1 + ε)i, then

f({x})/w(x) ≥ ∆f(∅, x)/w(x)

≥ ετ/(2(1 + ε)i)

> m.

Therefore the if statement on Line 4 will be true, m will be reset to f({x})/w(x), and (1 + ε)i added to the
guesses of OPT since

(1 + ε)i ≥ w(x)ετ/(2∆f(∅, x))

≥ ετ/(2m).

Item (i) is now proven. By Lemma 2, if there exists a run of STREAM with a guess of OPT that is
at least as big, then the set returned by STREAM has f value at least γ(1 − ε)τ . Therefore by the end of
SINGLE-PASS-COVER, any run of STREAM corresponding to a guess of OPT that is at least as big as OPT
must have triggered the if statement on Line 10. Initially B ≥ OPT , and only decreases if the if statement on
Line 10 is true, it must be that the solution S of SINGLE-PASS-COVER has f(S) ≥ γ(1− ε)τ . In addition, the
above discussion implies that B is no greater than (1 + ε)OPT at the end of SINGLE-PASS-COVER, then
Lemma 1 implies the remaining part of item (i).

Item (iii) is now proven. By Lemma 1, the total weight of all elements stored by each run of STREAM with
input (ε, κ) is (4/ε2 + 1)κ, which is bounded above by (4/ε2 + 1)B. In addition, ετ/(2m) ≥ ξ, and therefore
there are at most ln(B/ξ)/ ln(1 + ε) parallel instances of STREAM running in SINGLE-PASS-COVER. This
proves item (iii).

Finally, item (v) is proven. Suppose the iteration of the for loop on Line 3 corresponding to element ui
is complete. By a nearly identical argument to that used for item (i), one can see that the largest guess of
OPT is no bigger than (1 + ε)OPTi at this point. Therefore the largest memory for any run of STREAM is
(1 + ε)(4/ε2 + 1)OPTi by Lemma 1. As shown when proving item (ii), there are at most ln(B/ξ)/ ln(1 + ε)
parallel instances of STREAM running in SINGLE-PASS-COVER. Altogether this implies item (v).

2.4 Submodular Maximization with a Knapsack Constraint
A related optimization problem to SC is Submodular Maximization with a Knapsack Constraint, defined as
follows.

Definition 2 (Submodular Knapsack (SK)). Let f : 2U → R≥0 be a submodular function defined over subsets
of the universe U of size n such that f(∅) = 0, and let w : U → R≥0 be a cost function. The Submodular
Knapsack problem (SK) is, given κ ∈ R≥0, find

argmaxX⊆U{f(X) :
∑
x∈X

w(x) ≤ κ}.

Bicriteria approximation algorithms similar in spirit to those presented previously for SC can also be used
for SK. These algorithms as well as their theoretical guarantees are presented in the current section.

Algorithm Description

SINGLE-PASS-KNAPSACK is most related to SINGLE-PASS-COVER for SC, in that it runs STREAM in parallel
for many guesses of OPT . However, it is simpler to guess OPT for this problem. SINGLE-PASS-KNAPSACK
keeps track of a set of guesses of OPT , T , and updates them lazily (Line 6 of Algorithm 4). There is no need
to run UNCONSTRAINEDMAXγ repeatedly after every element is read in, UNCONSTRAINEDMAXγ is run for
each guess of OPT once all elements have read in. Pseudocode for SINGLE-PASS-KNAPSACK can be found
in Algorithm 4.

10

Algorithm 4 SINGLE-PASS-KNAPSACK

1: procedure SINGLE-PASS-KNAPSACK(ε)
2: S(1+ε)i,j ← ∅ ∀i ∈ Z, j ∈ {0, ..., 2/ε}
3: for x received from stream do
4: if f({x})/w(x) > m then
5: m← f({x})/w(x)
6: S(1+ε)i,j ← ∅ ∀i ∈ Z, (1 + ε)i < f({x}), j ∈ {0, ..., 2/ε}
7: for τ in {(1 + ε)i : i ∈ Z, f({x}) ≤ (1 + ε)i ≤ 2mκ/ε} do
8: if ∃i ∈ {1, ..., 2/ε} s.t. |Sκ,i| < 2κ/ε and ∆f(Sκ,i, x) ≥ w(x)ετ/(2κ) then
9: Sκ,i ← Sκ,i ∪ {x}

10: for τ in T do
11: Sτ,0 ←UNCONSTRAINEDMAXγ (∪2/εi=1Sτ,i)

12: return argmax{f(Sτ,i) : τ ∈ T, i ∈ {0, ..., 2/ε}}

Theoretical Guarantess of SINGLE-PASS-KNAPSACK

Theorem 4. Suppose that SINGLE-PASS-KNAPSACK is run for SK(U, f, w, κ,OPT) with input ε ∈ (0, 1).
Then:

(i) The set S returned by SINGLE-PASS-KNAPSACK satisfies f(S) ≥ γ(1 − ε)OPT and w(S) ≤ (1 +
ε)(4/ε2 + 1)κ;

(ii) At most (4/ε2 + 2/ε) ln(2κ/(wminε))/ ln(1 + ε)κ elements of U are stored all at once;

Proof. In order to prove Theorem 4, a new version of Lemma 2 is needed. The following Lemma is proved in
as essentially identical way to Lemma 2:

Lemma 3. Suppose that STREAM is run with input ε ∈ (0, 1), and τ ≥ OPT . Let S be the set returned by
STREAM. Then f(S) ≥ γ(1− ε)OPT .

Similar to SINGLE-PASS-COVER, SINGLE-PASS-KNAPSACK is essentially running a bunch of instances
of STREAM in parallel as U is read in. In particular, the set {(1 + ε)i : i ∈ Z, f({x} ≤ (1 + ε)i ≤ 2mκ/ε}
are the guesses of OPT , and there is an instance of STREAM corresponding to each guess. For each guess τ ,
Sτ,0, ..., Sτ,2/ε in SINGLE-PASS-COVER correspond to the sets S0, ..., S2/ε in STREAM.

Define q ∈ Z to be the unique value such that

(1 + ε)q ≤ OPT < (1 + ε)q+1.

Then we may assume without loss of generality that there is an instance of STREAM corresponding to (1 + ε)q

as a guess of OPT for the duration of SINGLE-PASS-KNAPSACK, as explained as follows. First of all, clearly
(1 + ε)q ≥ max{f({x}) : x ∈ U} and therefore is at least the smallest guess throughout the duration of
SINGLE-PASS-KNAPSACK. On the other hand, suppose that for the first time we have received from the stream
an element x such that ∆f(∅, x) ≥ εw(x)(1 + ε)q/(2κ) (i.e. the first time an element x should be added to
S(1+ε)q,i for some i ∈ {1, ..., 2/ε}). If (1 + ε)q > 2mκ/ε at the beginning of the for loop then

f({x})/w(x)
(a)

≥ ∆f(∅, x)/w(x)

≥ ε(1 + ε)q/(2κ)

> m

where (a) is because f(∅) ≥ 0. Therefore the if statement on Line ?? will be true, m will be re-assigned as

11

f({x})/w(x), and (1 + ε)q added to the guess of OPT since

(1 + ε)q ≤ 2∆f(∅, x)κ/(w(x)ε)

≤ 2f({x})κ/(w(x)ε)

= 2mκ/ε

and will remain in the guesses until the end.
In light of the above, items (i) and (ii) follow by Lemmas 1 and 3.

3 Appendix
Lemma 4. (Lemma 2.2 from Feige et al. [2011]) Let g : 2U → R≥0 be a non-negative submodular function.
Denote by A(p) a random subset of A where each element appears with probability at most p (not necessarily
independently). Then E[g(A(p))] ≥ (1− p)g(∅).

References
Naor Alaluf, Alina Ene, Moran Feldman, Huy L Nguyen, and Andrew Suh. Optimal streaming algorithms

for submodular maximization with cardinality constraints. In 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Streaming
Submodular Maximization: Massive Data Summarization on the Fly. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and Data Mining (KDD), pages 671–680, 2014.

Elham J Barezi, Ian D Wood, Pascale Fung, and Hamid R Rabiee. A submodular feature-aware framework
for label subset selection in extreme classification problems. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1009–1018, 2019.

Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization problems. ACM
Transactions on Algorithms (TALG), 14(3):1–20, 2018.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmetric technique.
Mathematics of Operations Research, 44(3):988–1005, 2019.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization with cardinality
constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1433–1452. SIAM, 2014.

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-approximation for
unconstrained submodular maximization. SIAM Journal on Computing, 44(5):1384–1402, 2015.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query trade-off in
submodular maximization. Mathematics of Operations Research, 42(2):308–329, 2017.

Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: Matchings, matroids, and
more. Mathematical Programming, 154(1):225–247, 2015.

Lin Chen, Moran Feldman, and Amin Karbasi. Unconstrained submodular maximization with constant
adaptive complexity. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 102–113, 2019.

12

Victoria Crawford, Alan Kuhnle, and My Thai. Submodular cost submodular cover with an approximate
oracle. In International Conference on Machine Learning, pages 1426–1435. PMLR, 2019.

Abhimanyu Das and David Kempe. Submodular meets Spectral: Greedy Algorithms for Subset Selection,
Sparse Approximation and Dictionary Selection. Proceedings of the 28th International Conference on
Machine Learning (ICML), 2011.

Shahar Dobzinski and Ami Mor. A deterministic algorithm for maximizing submodular functions. arXiv,
pages arXiv–1507, 2015.

Alina Ene, Huy L Nguyen, and Adrian Vladu. A parallel double greedy algorithm for submodular maximization.
arXiv preprint arXiv:1812.01591, 2018.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular functions. SIAM
Journal on Computing, 40(4):1133–1153, 2011.

Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In Proceedings of
the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1098–1116. SIAM, 2011.

Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-monotone submodular
maximization: Offline and secretary algorithms. In International Workshop on Internet and Network
Economics, pages 246–257. Springer, 2010.

Rishabh K Iyer and Jeff A Bilmes. Submodular optimization with submodular cover and submodular knapsack
constraints. In Advances in Neural Information Processing Systems, pages 2436–2444, 2013.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network.
In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 137–146. ACM, 2003.

Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone submodular
maximization under matroid and knapsack constraints. In Proceedings of the forty-first annual ACM
symposium on Theory of computing, pages 323–332. ACM, 2009.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance.
Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 420–429, 2007.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas Krause.
Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

G L Nemhauser and L A Wolsey. Best Algorithms for Approximating the Maximum of a Submodular Set
Function. Mathematics of Operations Research, 3(3):177–188, 1978.

Ashkan Norouzi-Fard, Abbas Bazzi, Marwa El Halabi, Ilija Bogunovic, Ya-Ping Hsieh, and Volkan Cevher.
An efficient streaming algorithm for the submodular cover problem. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, pages 4500–4508, 2016.

Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning mixtures of submodular
functions for image collection summarization. In Advances in neural information processing systems, pages
1413–1421, 2014.

Peng Jun Wan, Ding Zhu Du, Panos Pardalos, and Weili Wu. Greedy approximations for minimum submodular
cover with submodular cost. Computational Optimization and Applications, 45(2):463–474, 2010.

Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combina-
torica, 2(4):385–393, 1982.

13

Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combina-
torica, 2(4):385–393, 1982.

Jia Xu, Lopamudra Mukherjee, Yin Li, Jamieson Warner, James M Rehg, and Vikas Singh. Gaze-enabled
egocentric video summarization via constrained submodular maximization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2235–2244, 2015.

14

