
Solutions to Homework 2

March 17, 2010

Bertsekas 3.1.1: (a)
x′x + λ(x′e − 1)

where e is the vector of all ones. The necessary conditions are

2x + λe = 0

⇒ λ = −2/n.

This gives us x = e/n.
(b)

n
∑

i=1

xi + λ(x′x − 1).

The necessary conditions are

e + 2λx = 0

⇒ x = −e/(2λ)

From the constraint x′x = 1 we get λ = n/2 and that x = −e/n.
(c)

x′x + λ(x′Qx − 1).

The necessary conditions are

2x + 2λQx = 0

(Q +
1

λ
I)x = 0.

From the constraint x′Qx = 1, we get x′x = −λ which implies that ‖x‖ =√
−λ. For

√
−λ to be the smallest possible value, x is a scaled eigenvector of Q

corresponding to its largest eigenvalue α = − 1
λ

with magnitude
√

1
α

=
√
−λ.

Bertsekas 3.1.2: The constrained surface area is

2x1x2 + 2x2x3 + 2x1x3 + λ(x2
1 + x2

2 + x2
3 − 3).

1



The necessary conditions are

2x2 + 2x3 + 2λx1 = 0 (1)

2x1 + 2x3 + 2λx2 = 0 (2)

2x1 + 2x2 + 2λx3 = 0. (3)

Subtracting (2) from (1), we get x1 = x2 and by repeating this process, we get
x1 = x2 = x3. Since we artificially picked the square of the diagonal to be of
length 3, we get a unit cube as the solution.

The constrained perimeter is

4x1 + 4x2 + 4x3 + λ(x2
1 + x2

2 + x2
3 − 3).

From the necessary conditions, we get x1 = x2 = x3 = −2/λ. Once again, we
get a unit cube.

Bertsekas 3.1.5: This is basically principal component analysis (PCA).
In the first problem, we minimize x′Qx subject to x′x = 1 to get the smallest
eigenvalue λ1 and eigenvector x = e1. For the second problem, we get

x′Qx + µ(e′1x) + γ(x′x − 1)

for which the necessary conditions are

2(Q + γI)x = −µe1.

From the constraint e′1x = 0, we get that γ must be equal to the negative of
one of the eigenvalues of Q and that it cannot be λ1. From further analysis, we
see that x must be an eigenvector which is orthogonal to e1. This analysis can
be repeated.

Bertsekas 3.1.8: The constrained problem is

sin x sin y sin z + λ(x + y + z − π)

The necessary conditions are

cosx sin y sin z + λ = 0

sinx cos y sin z + λ = 0

sinx sin y cos z + λ = 0.

Assuming λ 6= 0 and dividing, we get tan x = tan y = tan z which implies that
we have an equilateral triangle.

Bertsekas 3.1.9: (a) The problem is

x + y + z + λ(xyz − ρ2(x + y + z)).

From the necessary conditions, we get λyz = λxy = λxz = ρ2 − 1. Once again
this gives us x = y = z.
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(b) Let the equation of the line joining a and b be αx + βy + γ = 0. The

squared distance of point x from the line is (αx+βy+γ)2

α2+β2 where we have taken the

coordinates to be (x, y). Setting up a constrained optimization problem, we get

(αx + βy + γ)2

α2 + β2
+ λ(x2 + y2 − 1).

The necessary conditions give us (after some algebra), x = α√
α2+β2

and y =

β√
α2+β2

. If the origin (center of the circle) lies on a line connecting x and the

straight line, then the equation of that line has to be β√
α2+β2

x − α√
α2+β2

y = 0

which is perpendicular to the line defined by αx + βy + γ = 0.
(c) Since the points a and b are free, they can be constrained to lie on the

circle. In that case, the triangle found in (b) will be equilateral.
Bertsekas 3.1.13: The problem is

x′y + µ(x′x − 1) + ν(y′y − 1).

The necessary conditions are y+2µx = 0 and x+2νy = 0. Using the constraints,
we get x′y = −2µ = −2ν and that 4µν = 1 (by solving for y and substituting in
the x equation.) Therefore (x′y)2 = 1 which leads to the Schwartz inequality.
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