Solutions to Homework 2

March 17, 2010

Bertsekas 3.1.1: (a)

$$
x^{\prime} x+\lambda\left(x^{\prime} e-1\right)
$$

where e is the vector of all ones. The necessary conditions are

$$
\begin{aligned}
2 x+\lambda e & =0 \\
\Rightarrow \lambda & =-2 / n
\end{aligned}
$$

This gives us $x=e / n$.
(b)

$$
\sum_{i=1}^{n} x_{i}+\lambda\left(x^{\prime} x-1\right)
$$

The necessary conditions are

$$
\begin{aligned}
e+2 \lambda x & =0 \\
\Rightarrow & x=-e /(2 \lambda)
\end{aligned}
$$

From the constraint $x^{\prime} x=1$ we get $\lambda=n / 2$ and that $x=-e / n$.
(c)

$$
x^{\prime} x+\lambda\left(x^{\prime} Q x-1\right) .
$$

The necessary conditions are

$$
\begin{aligned}
& 2 x+2 \lambda Q x=0 \\
& \left(Q+\frac{1}{\lambda} I\right) x=0
\end{aligned}
$$

From the constraint $x^{\prime} Q x=1$, we get $x^{\prime} x=-\lambda$ which implies that $\|x\|=$ $\sqrt{-\lambda}$. For $\sqrt{-\lambda}$ to be the smallest possible value, x is a scaled eigenvector of Q corresponding to its largest eigenvalue $\alpha=-\frac{1}{\lambda}$ with magnitude $\sqrt{\frac{1}{\alpha}}=\sqrt{-\lambda}$.

Bertsekas 3.1.2: The constrained surface area is

$$
2 x_{1} x_{2}+2 x_{2} x_{3}+2 x_{1} x_{3}+\lambda\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-3\right)
$$

The necessary conditions are

$$
\begin{align*}
& 2 x_{2}+2 x_{3}+2 \lambda x_{1}=0 \tag{1}\\
& 2 x_{1}+2 x_{3}+2 \lambda x_{2}=0 \tag{2}\\
& 2 x_{1}+2 x_{2}+2 \lambda x_{3}=0 \tag{3}
\end{align*}
$$

Subtracting (2) from (1), we get $x_{1}=x_{2}$ and by repeating this process, we get $x_{1}=x_{2}=x_{3}$. Since we artificially picked the square of the diagonal to be of length 3 , we get a unit cube as the solution.

The constrained perimeter is

$$
4 x_{1}+4 x_{2}+4 x_{3}+\lambda\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-3\right)
$$

From the necessary conditions, we get $x_{1}=x_{2}=x_{3}=-2 / \lambda$. Once again, we get a unit cube.

Bertsekas 3.1.5: This is basically principal component analysis (PCA). In the first problem, we minimize $x^{\prime} Q x$ subject to $x^{\prime} x=1$ to get the smallest eigenvalue λ_{1} and eigenvector $x=e_{1}$. For the second problem, we get

$$
x^{\prime} Q x+\mu\left(e_{1}^{\prime} x\right)+\gamma\left(x^{\prime} x-1\right)
$$

for which the necessary conditions are

$$
2(Q+\gamma I) x=-\mu e_{1}
$$

From the constraint $e_{1}^{\prime} x=0$, we get that γ must be equal to the negative of one of the eigenvalues of Q and that it cannot be λ_{1}. From further analysis, we see that x must be an eigenvector which is orthogonal to e_{1}. This analysis can be repeated.

Bertsekas 3.1.8: The constrained problem is

$$
\sin x \sin y \sin z+\lambda(x+y+z-\pi)
$$

The necessary conditions are

$$
\begin{aligned}
\cos x \sin y \sin z+\lambda & =0 \\
\sin x \cos y \sin z+\lambda & =0 \\
\sin x \sin y \cos z+\lambda & =0
\end{aligned}
$$

Assuming $\lambda \neq 0$ and dividing, we get $\tan x=\tan y=\tan z$ which implies that we have an equilateral triangle.

Bertsekas 3.1.9: (a) The problem is

$$
x+y+z+\lambda\left(x y z-\rho^{2}(x+y+z)\right)
$$

From the necessary conditions, we get $\lambda y z=\lambda x y=\lambda x z=\rho^{2}-1$. Once again this gives us $x=y=z$.
(b) Let the equation of the line joining a and b be $\alpha x+\beta y+\gamma=0$. The squared distance of point x from the line is $\frac{(\alpha x+\beta y+\gamma)^{2}}{\alpha^{2}+\beta^{2}}$ where we have taken the coordinates to be (x, y). Setting up a constrained optimization problem, we get

$$
\frac{(\alpha x+\beta y+\gamma)^{2}}{\alpha^{2}+\beta^{2}}+\lambda\left(x^{2}+y^{2}-1\right)
$$

The necessary conditions give us (after some algebra), $x=\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}$ and $y=$ $\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}$. If the origin (center of the circle) lies on a line connecting x and the straight line, then the equation of that line has to be $\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}} x-\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}} y=0$ which is perpendicular to the line defined by $\alpha x+\beta y+\gamma=0$.
(c) Since the points a and b are free, they can be constrained to lie on the circle. In that case, the triangle found in (b) will be equilateral.

Bertsekas 3.1.13: The problem is

$$
x^{\prime} y+\mu\left(x^{\prime} x-1\right)+\nu\left(y^{\prime} y-1\right)
$$

The necessary conditions are $y+2 \mu x=0$ and $x+2 \nu y=0$. Using the constraints, we get $x^{\prime} y=-2 \mu=-2 \nu$ and that $4 \mu \nu=1$ (by solving for y and substituting in the x equation.) Therefore $\left(x^{\prime} y\right)^{2}=1$ which leads to the Schwartz inequality.

