Solutions to Homework 1

February 24, 2010

1. Bertsekas 1.1.1: Given the function
flx,y) = 2 +y* + oy + x + 2y,

we need to determine which of its stationary points are minima. From the set of necessary conditions V f = 0,
we get

2¢+ By = -1
fbxr+2y = -—2.

When these simultaneous equations are solved for (x,y), we obtain

2(1-p) 4-p

B+2)8-2" " B+r2B-2)

The sufficient conditions for a minimum require that the Hessian V2f be positive definite. From this
condition, we obtain

18l < 2.

When || = 2, there are no available solutions for the pair (z*,y*).
2. Bertsekas 1.1.2:

(a) The function f(x,y) = (2% —4)? + y? has stationary points (0,0), (2,0) and (-2,0). The point (0,0) is
a saddle point since % < 0 and giyé > 0.

(b) The function f(z,y) = %a® + wcosy has stationary points {(0,(2k + 1)3), k = 0,£1,£2... .},
{(-=1,2km), k =0,+1,£2,...} and {(1, (2k+1)7),k = 0,41, +2,...}. The sufficient condition for a minimum
requires that

—zcos’y —sin®y >0
which is only satisfied for the sets {(—1,2kw), k =0,+1,+2,...} and {(1,(2k + 1)7),k =0,+1,+2,...}.

(c) Given the function f(z,y) = sin(x) + sin(y) + sin(x + y), the set of stationary points within
{(z,9)|0 <z < 27,0 < y < 27} are given by the equations

cosx +cos(x +y) = O,
cosy+cos(zr+y) = 0.

The solutions within 0 < z < 27 and 0 < y < 27 are (7, 7), (7/3,7/3), (57/3,57/3). The matrix of second
derivatives is

—sinz —sin(z + y) —sin(x + y)
—sin(z + y) —siny — sin(z + y)
We can easily check that (57/3,57/3) is the only local minimum and that (7/3,7/3) is the only local

maximum. (See attached MATLAB plot).
(d) The stationary points of the function f(z,y) = (y—2)?—2? are (0,0). The Hessian at this stationary

which implies that the point (0,0) is a saddle point.
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Figure 1: MATLAB plot of the level sets of the function f(x,y) = sinz + siny + sin(z + y).
igure 1:



(e) Since the unconstrained problem has no local minima, the constrained problem must have minima
on the boundaries y = +1. Performing 1D calculus on the functions f(z) = (1 — 2?)? — 22 and g(x) =
(1+22)2 — 22, we see that the minima occur at (0, —1), (v/6/2,1) and (—v/6/2,1).

3. Bertsekas 1.1.3:

(a) Since the function f(z* + ad) is minimized at o = 0 , we must have as a necessary condition that the
derivative w.r.t. « is zero. This gives us Vf7d = 0 and since this has to be zero for all d, we get Vf = 0.

(b) Consider the function f(y,2) = (2 — py?)(z — qy?) where 0 < p < ¢q. For an z* = (0,0), * + ad =
(ady, ads). Then

flady, ady) = a2d2 — a3dy(p + q)d? + pga’d3da.

From % = 0, we get @ = 0 to be a stationary point. From the condition % > 0, we get 2d3 > 0 which

is strictly greater than zero for any dy # 0. Furthermore f(y,my?) = (m — p)(m — q)y* < 0 if y # 0 and
p < m < q. Since y can be an arbitrarily small €, we get f(e, me?) = (m — p)(m — q)e* < 0 despite the fact
that (0,0) is a local minimum along every line passing through the origin. This illustrates that minimization
in a subspace—every line in this case—is not sufficient to be a local minimum in the original space.

4. Bertsekas 1.1.6: We seek to minimize

f@) =Y wille -y
i=1

subject to x € R™ and where wy, ..., w,, are given positive scalars.
(a) First we show that the objective function is convex. We require f(az; + (1 — a)zs) < af(z1) + (1 —

a) f(w2).

flazy+ (1 —a)xs) = Y willazs + (1 — )z — yil|
i=1
< Zawiﬂm — il + Z(l — a)w;||r2 — il
i=1 i=1
< af(en) +(1-a)f(z)

We have used the triangle inequality in step 2. By Proposition 1.1.2, a local minimum is also a global
minimum.

(b) Since f(x) may not be strictly convex, the global minimum may not be unique.

(c) Assume that the lengths of the m strings are the same (d). Then the height of each string is

h; = h— (d — ||z — y;||) where h is the height of the table. Consequently

fx) = Y wille -yl
i=1
= iwz(hz_h_d)
=1

m
X E wlhz
=1

Therefore the minimization of f(z) is equivalent to the minimization of the potential energy > '~ w;h;.
5. Bertsekas 1.1.10: The function

a 2 a?
) =~ azalll + el = (JolP - ) "+ (1- %) >0

for 0 < a < 2. For the points (—p, ¢) and (p, ¢), we have that

f@)=¢ —aq®® + %) + (0> + ¢*)°.



We need to show that f(p,q) = f(—p,q) < f(0,q). From direct algebra,

a2

f,q) = F(0.9) =p* +20a - 7)* = %

<0
forq:%and0<p§ﬁi.Forpzﬁiandq:%,Wegetf(p,q)z‘f—;—%z‘f—;( —%) = ~. For
0<a<2,v>0.

6. Bertsekas 1.2.7: The engineer’s approach basically amounts to a coordinate ascent strategy. She
performs local maximization w.r.t. one variable while holding the other fixed and vice versa. Local maxi-
mization w.r.t. one variable is similar to steepest ascent except that the ascent is not clocked: each variable
is separately optimized while holding the other fixed. As long as each step is guaranteed to increase or keep
same the current I, this process will perform a type of ascent on the current. However, one cannot usually
guarantee convergence of each variable to a fixed point.



