
Solutions to Homework 1

February 24, 2010

1. Bertsekas 1.1.1: Given the function

f(x, y) = x2 + y2 + βxy + x + 2y,

we need to determine which of its stationary points are minima. From the set of necessary conditions ∇f = 0,
we get

2x + βy = −1

βx + 2y = −2.

When these simultaneous equations are solved for (x, y), we obtain

x =
2(1 − β)

(β + 2)(β − 2)
, y =

4 − β

(β + 2)(β − 2)
.

The sufficient conditions for a minimum require that the Hessian ∇2f be positive definite. From this
condition, we obtain

|β| < 2.

When |β| = 2, there are no available solutions for the pair (x∗, y∗).
2. Bertsekas 1.1.2:

(a) The function f(x, y) = (x2 − 4)2 + y2 has stationary points (0, 0), (2,0) and (-2,0). The point (0,0) is

a saddle point since ∂2f
∂x2 < 0 and ∂2f

∂y2 > 0.

(b) The function f(x, y) = 1

2
x2 + x cos y has stationary points {(0, (2k + 1)π

2
), k = 0,±1,±2. . . .},

{(−1, 2kπ), k = 0,±1,±2, . . .} and {(1, (2k+1)π), k = 0,±1,±2, . . .}. The sufficient condition for a minimum
requires that

−x cos2 y − sin2 y ≥ 0

which is only satisfied for the sets {(−1, 2kπ), k = 0,±1,±2, . . .} and {(1, (2k + 1)π), k = 0,±1,±2, . . .}.
(c) Given the function f(x, y) = sin(x) + sin(y) + sin(x + y), the set of stationary points within

{(x, y)|0 < x < 2π, 0 < y < 2π} are given by the equations

cosx + cos(x + y) = 0,

cos y + cos(x + y) = 0.

The solutions within 0 < x < 2π and 0 < y < 2π are (π, π), (π/3, π/3), (5π/3, 5π/3). The matrix of second
derivatives is

[

− sinx − sin(x + y) − sin(x + y)
− sin(x + y) − sin y − sin(x + y)

]

.

We can easily check that (5π/3, 5π/3) is the only local minimum and that (π/3, π/3) is the only local
maximum. (See attached MATLAB plot).

(d) The stationary points of the function f(x, y) = (y−x2)2−x2 are (0, 0). The Hessian at this stationary

point is

[

−2 0
0 2

]

which implies that the point (0, 0) is a saddle point.
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Figure 1: MATLAB plot of the level sets of the function f(x, y) = sin x + sin y + sin(x + y).
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(e) Since the unconstrained problem has no local minima, the constrained problem must have minima
on the boundaries y = ±1. Performing 1D calculus on the functions f(x) = (1 − x2)2 − x2 and g(x) =
(1 + x2)2 − x2, we see that the minima occur at (0,−1), (

√
6/2, 1) and (−

√
6/2, 1).

3. Bertsekas 1.1.3:

(a) Since the function f(x∗ +αd) is minimized at α = 0 , we must have as a necessary condition that the
derivative w.r.t. α is zero. This gives us ∇fT d = 0 and since this has to be zero for all d, we get ∇f = 0.

(b) Consider the function f(y, z) = (z − py2)(z − qy2) where 0 < p < q. For an x∗ = (0, 0), x∗ + αd =
(αd1, αd2). Then

f(αd1, αd2) = α2d2

2
− α3d2(p + q)d2

1
+ pqα4d2

1
d2

2
.

From ∂f
∂α

= 0, we get α = 0 to be a stationary point. From the condition ∂2f
∂α2 ≥ 0, we get 2d2

2 ≥ 0 which
is strictly greater than zero for any d2 6= 0. Furthermore f(y, my2) = (m − p)(m − q)y4 < 0 if y 6= 0 and
p < m < q. Since y can be an arbitrarily small ǫ, we get f(ǫ, mǫ2) = (m − p)(m − q)ǫ4 < 0 despite the fact
that (0, 0) is a local minimum along every line passing through the origin. This illustrates that minimization
in a subspace—every line in this case—is not sufficient to be a local minimum in the original space.
4. Bertsekas 1.1.6: We seek to minimize

f(x) =
m

∑

i=1

wi‖x − yi‖

subject to x ∈ R
n and where w1, . . . , wm are given positive scalars.

(a) First we show that the objective function is convex. We require f(αx1 + (1− α)x2) ≤ αf(x1) + (1−
α)f(x2).

f(αx1 + (1 − α)x2) =

m
∑

i=1

wi‖αx1 + (1 − α)x2 − yi‖

≤
m

∑

i=1

αwi‖x1 − yi‖ +

m
∑

i=1

(1 − α)wi‖x2 − yi‖

≤ αf(x1) + (1 − α)f(x2).

We have used the triangle inequality in step 2. By Proposition 1.1.2, a local minimum is also a global
minimum.

(b) Since f(x) may not be strictly convex, the global minimum may not be unique.
(c) Assume that the lengths of the m strings are the same (d). Then the height of each string is

hi = h − (d − ‖x − yi‖) where h is the height of the table. Consequently

f(x) =

m
∑

i=1

wi‖x − yi‖

=

m
∑

i=1

wi(hi − h − d)

∝
m

∑

i=1

wihi.

Therefore the minimization of f(x) is equivalent to the minimization of the potential energy
∑m

i=1
wihi.

5. Bertsekas 1.1.10: The function

f(x) = x2

2
− ax2‖x‖2 + ‖x‖4 =

(

‖x‖2 − a

2
x2

)2

+

(

1 − a2

4

)

> 0

for 0 < a < 2. For the points (−p, q) and (p, q), we have that

f(x) = q2 − aq(p2 + q2) + (p2 + q2)2.
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We need to show that f(p, q) = f(−p, q) < f(0, q). From direct algebra,

f(p, q) − f(0, q) = p2 + 2(q − a

4
)2 − a2

8
≤ 0

for q = a
4

and 0 < p ≤ a

2
√

2
. For p = a

2
√

2
and q = a

4
, we get f(p, q) = a2

16
− 3a4

256
= a2

16

(

1 − 3a2

16

)

= γ. For

0 < a < 2, γ > 0.
6. Bertsekas 1.2.7: The engineer’s approach basically amounts to a coordinate ascent strategy. She
performs local maximization w.r.t. one variable while holding the other fixed and vice versa. Local maxi-
mization w.r.t. one variable is similar to steepest ascent except that the ascent is not clocked: each variable
is separately optimized while holding the other fixed. As long as each step is guaranteed to increase or keep
same the current I, this process will perform a type of ascent on the current. However, one cannot usually
guarantee convergence of each variable to a fixed point.
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