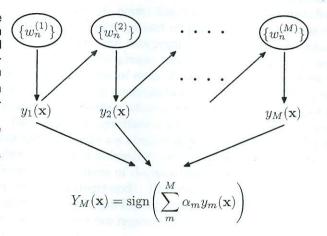
Figure 14.1 Schematic illustration of the boosting framework. Each base classifier $y_m(\mathbf{x})$ is trained on a weighted form of the training set (blue arrows) in which the weights $w_n^{(m)}$ depend on the performance of the previous base classifier $y_{m-1}(\mathbf{x})$ (green arrows). Once all base classifiers have been trained, they are combined to give the final classifier $Y_M(\mathbf{x})$ (red arrows).



AdaBoost

- 1. Initialize the data weighting coefficients $\{w_n\}$ by setting $w_n^{(1)}=1/N$ for $n=1,\ldots,N$.
- 2. For m = 1, ..., M:
 - (a) Fit a classifier $y_m(\mathbf{x})$ to the training data by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n)$$
 (14.15)

where $I(y_m(\mathbf{x}_n) \neq t_n)$ is the indicator function and equals 1 when $y_m(\mathbf{x}_n) \neq t_n$ and 0 otherwise.

(b) Evaluate the quantities

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$
(14.16)

and then use these to evaluate

$$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}. \tag{14.17}$$

(c) Update the data weighting coefficients

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{\alpha_m I(y_m(\mathbf{x}_n) \neq t_n)\right\}$$
 (14.18)

Section 14.4